COS3820: Compiling Techniques

Zak Kincaid

April 16,2019

Generic (forward) dataflow analysis algorithm

» Given:

+ Abstract domain (£,C, L, 1, T)
+ Transfer function

post . : Basic Block x L — L
- Control flow graph G = (N, E, s)

+ Compute: least function fsuch that

O fs)=T
@ Forallp — n € E,post(p, f(p)) C f(n)

Generic (forward) dataflow analysis algorithm

* Given:
+ Abstract domain (£,C, L, 1, T)
+ Transfer function
post . : Basic Block x L — L
- Control flow graph G = (N, E, s)

+ Compute: least function fsuch that

O fs)=T
@ Forallp — n € E,post(p, f(p)) C f(n)

fls) < T;

f(n) = L for all other nodes;
work «+— N\ {s};

while work # () do

Pick some n from work;
work < work \ {n} ;

ve || post, (. fip)):

pEpred(n)
if v # f(n) then
‘ fin) < u

work < work U succ(n)

Generic (forward) dataflow analysis algorithm

* Given: fls) < T
. f(n) = L for all other nodes;
- Abstract domain (£,C, L, L, T) work « N\ {s};
« Transfer function while work # () do
post . : Basic Block x L — L Pick some n from work;
- Control flow graph G = (N, E, s) work «+ work \ {n} ;
+ Compute: least function fsuch that v |_|d()POStL (p, f(p)):
pepred(n
O fs)=T if v % f(n) then
@ Forall p — n € E, post,.(p, f(p)) C f(n) ‘ fin) « v,
work < work U succ(n)

Invariants:
* work contains all n € N that may violate their constraints (post(p, f(p)) Z f(n) for some p — n € E)
* Use f; to denote fon the ith iteration and f* to denote least solution to the constraint system. Then for all n,

fi(n) C f(n).

Generic (forward) dataflow analysis algorithm

* Given: fls) < T
. f(n) = L for all other nodes;
- Abstract domain (£,C, L, L, T) work « N\ {s};
« Transfer function while work # () do
post . : Basic Block x L — L Pick some n from work;
- Control flow graph G = (N, E, s) work «+ work \ {n} ;
+ Compute: least function fsuch that v |_|d()POStL (p, f(p)):
pepred(n
O fs)=T if v % f(n) then
@ Forall p — n € E, post,.(p, f(p)) C f(n) ‘ fin) « v,
work < work U succ(n)

Invariants:
* work contains all n € N that may violate their constraints (post(p, f(p)) Z f(n) for some p — n € E)
* Use f; to denote fon the ith iteration and f* to denote least solution to the constraint system. Then for all n,
£(n) C £ ().
Termination:
* Why does this algorithm terminate?

Generic (forward) dataflow analysis algorithm

* Given: fls) < T
. f(n) = L for all other nodes;
- Abstract domain (£,C, L, L, T) work « N\ {s};
« Transfer function while work # () do
post . : Basic Block x L — L Pick some n from work;
- Control flow graph G = (N, E, s) work «+ work \ {n} ;
+ Compute: least function fsuch that v |_|d()POStL (p, f(p)):
pepred(n
O fs)=T if v % f(n) then
@ Forall p — n € E, post,.(p, f(p)) C f(n) ‘ fin) « v,
work < work U succ(n)

Invariants:
* work contains all n € N that may violate their constraints (post(p, f(p)) Z f(n) for some p — n € E)
* Use f; to denote fon the ith iteration and f* to denote least solution to the constraint system. Then for all n,
fi(n) € f(n).
Termination:
* Why does this algorithm terminate?
+ Ascending chain condition = for each n, fi(n) C fa(n) C f3(n) C ... must eventually stabilize

Coincidence

+ We had two specifications for available expressions
- Global: ¢ € ae(n) iff for every path from sto nin G:
@ the expression eis evaluated along the path
@ after the last evaluation of ¢ along the path, no variables in e are overwritten
- Local: ae is the smallest function such that
- ae(s) =10
+ Foreach p — n € E, post,.(p,ae(p)) 2 ae(n)

« Why are these specifications the same?

Coincidence

+ We had two specifications for available expressions
- Global: ¢ € ae(n) iff for every path from sto nin G:
@ the expression eis evaluated along the path
@ after the last evaluation of ¢ along the path, no variables in e are overwritten
+ Local: ae is the smallest function such that
- ae(s) =10
+ Foreach p — n € E, post,.(p,ae(p)) 2 ae(n)
« Why are these specifications the same?

+ Coincidence theorem (Kildall, Kam & Ullman): for any abstract domain (£, C, L), L, T) and
distributive transfer function post ., the least solution fto the constraint system

0 /52T
@ Foreach p — n € E, post,.(p, f(p)) C f(n)
coincides with the function g(n) = |_| post . (m, T), where post . is extended to paths by
7€ Path(s,n)
taking

post . (ning...ng, T) = post,(ng_1, ...,post (11, T))

Gen/kill analyses

+ Suppose we have a finite set of data flow “facts”

- Elements of the abstract domain are sets of facts

« For each basic block n, associate a set of generated facts gen(n) and killed facts kill(n)
- Define post . (n, F)) = (F'\ kill(n)) U gen(n).

Gen/kill analyses

+ Suppose we have a finite set of data flow “facts”
« Elements of the abstract domain are sets of facts

« For each basic block n, associate a set of generated facts gen(n) and killed facts kill(n)
- Define post . (n, F)) = (F'\ kill(n)) U gen(n).
« The order on sets of facts may be C or O

- C used for existential analyses: a fact holds at n if it holds along some path to n

- E.g., avariable is possibly-uninitialized at n if it is possibly-uninitialized along some path to n.
- D used for universal analyses: a fact holds at n if it holds along all paths to n
- E.g., an expression is avaiable at n if it is available along all paths to n

Gen/kill analyses

+ Suppose we have a finite set of data flow “facts”
+ Elements of the abstract domain are sets of facts
« For each basic block n, associate a set of generated facts gen(n) and killed facts kill(n)
- Define post . (n, F)) = (F'\ kill(n)) U gen(n).
« The order on sets of facts may be C or O
- C used for existential analyses: a fact holds at n if it holds along some path to n
- E.g., avariable is possibly-uninitialized at n if it is possibly-uninitialized along some path to n.
- D used for universal analyses: a fact holds at n if it holds along all paths to n
- E.g., an expression is avaiable at n if it is available along all paths to n

- In either case post . is monotone and distributive

post.(n, FU G) = ((FU G) \ kill(n)) U gen(n)
= ((F\ kill(n)) U (G \ kill(n))) U gen(n)
= ((F\ kill(n)) U gen(n)) U (((G\ kill(n))) U gen(n))
= post(n, F') U post ;(n, G)

Possibly-uninitialized variables analysis

+ Avariable zis possibly-uninitialized at a location n if there is some path from start to n
along which z is never written to.

- If n uses an uninitialized variable, that could indicate undefined behavior

« Can catch these errors at compile time using possibly-uninitialized variable analysis
- E.g. javac does this by default

+ Possibly-unintialized variables as a dataflow analysis problem:

Possibly-uninitialized variables analysis

+ Avariable zis possibly-uninitialized at a location n if there is some path from start to n
along which z is never written to.

- If n uses an uninitialized variable, that could indicate undefined behavior

« Can catch these errors at compile time using possibly-uninitialized variable analysis
- E.g. javac does this by default

+ Possibly-unintialized variables as a dataflow analysis problem:

- Abstract domain 2¥%" (each V € 2Y" represents a set of possibly-uninitialized vars)
- Existential = orderis C, joinis U, T is Var, Lis ()

Possibly-uninitialized variables analysis

+ Avariable zis possibly-uninitialized at a location n if there is some path from start to n
along which z is never written to.
- If nuses an uninitialized variable, that could indicate undefined behavior
« Can catch these errors at compile time using possibly-uninitialized variable analysis
- E.g. javac does this by default
+ Possibly-unintialized variables as a dataflow analysis problem:
- Abstract domain 2¥%" (each V € 2Y" represents a set of possibly-uninitialized vars)
- Existential = orderis C, joinis U, T is Var, Lis ()
- kill(x:= e) = {z}
cgen(z:=¢) =10

Reaching definitions analysis

« A definition is a pair (n, z) consisting of a basic block », and a variable z such that n
contains an assignment to z.

- We say that a definitoin (n, z) reaches a node m if there is a path from start to m such that
the latest definition of xzalong the path is at

+ Reaching definitions as a data flow analysis:

Reaching definitions analysis

« A definition is a pair (n, z) consisting of a basic block », and a variable z such that n
contains an assignment to z.

- We say that a definitoin (n, z) reaches a node m if there is a path from start to m such that

the latest definition of xzalong the path is at
+ Reaching definitions as a data flow analysis:
- Abstract domain: 2V Var
- Existential = orderis C, joinis U, T is N x Var, Lis
 kill(n) = {(m,z) : m € N, (z:=e)inn}
- gen(n) = {(n,z) : (z:= e)inn}

