COS320: Compiling Techniques

Zak Kincaid

March 26, 2019
Logistics

- Midterm scores released today
- HW 2 scores released by end of week
- Shifted office hours moved this week: 4:00-5:30
Semantic Analysis
Semantic analysis

• The *semantic analysis phase*
 • Resolve symbol *occurrences* to declarations / binders
 • ex.c:3:11: error: ‘i’ undeclared (first use in this function)
 • Type check AST
 • ex.c:4:5: warning: assignment makes integer from pointer without a cast

• Main data structure manipulated by semantic analysis: *symbol table*
 • Mapping from symbols to information about those symbols (its type, location in source text, ...)
 • Symbol table is used to help translation into IR
 • Semantic analysis may also *decorate* AST (e.g., attach type information to expressions, or replace symbols with references to their symbol table entry).
 • Semantic analysis may not be a separate phase – e.g., may be incorporated into IR translation
Types

• Type checking catches errors at compile time, eliminating a class of mistakes that would otherwise lead to run-time errors
• Type information is sometimes necessary for code generation
 • Floating-point + is not the same instruction as integer + is not the same as pointer/integer +
 • pointer/integer compiled differently depending on pointer type
 • Assignment $x = y$ compiled differently if y is an int or a struct
What is a type?

• **Intrinsic view** (Church-style): a type is syntactically part of a term.
 • A term that cannot be typed is not a term at all
 • Types do not have inherent meaning – they are just used to define the syntax of a program

• **Extrinsic view** (Curry-style): a type is a *property* of a term.
 • For any term and every type, either the term has that type or not
 • A term may have multiple types
 • A term may have no types
What is a type system?

• A type system consists of a system of judgements and inference rules
 • (Extrinsic view) A judgement is a claim, which may or may not be valid
 • \(\vdash 3 : \text{int} \) – “3 has type integer”
 • \(\vdash (1 + 2) : \text{bool} \) – “(1+2) has type boolean”
 • Inference rules are used to derive valid judgements from other valid judgements.

\[
\begin{array}{c}
\text{ADD} \\
\vdash e_1 : \text{int} \quad \vdash e_2 : \text{int} \\
\hline
\vdash e_1 + e_2 : \text{int}
\end{array}
\]

Read: “If \(e_1 \) and \(e_2 \) have type \text{int}, so does \(e_1 + e_2 \)”

• Type system might involve many different kinds of judgement
 • Well-typed expressions
 • Well-formed types
 • Well-formed statements
 • ...
Inference rules, generally

• An *inference rule* consists of a list of *premises* J_1, \ldots, J_n and one *conclusion* J (optionally: a side-condition):

$$
\begin{array}{cccccc}
J_1 & J_2 & \cdots & J_n \\
\hline
J \\
\end{array}
\text{SIDE-CONDITION}
$$

• Side-condition: additional premise, but not a judgement
• Read *top-down*: If J_1 and J_2 and ... and J_n are valid, and the side condition holds, then J is valid.
• Read *bottom-up*: To prove J is valid, sufficient to prove J_1, J_2, ... J_n are valid
A simple expression language

• Syntax of expressions

\[\text{<Exp> ::= <Exp> + <Exp> | <Exp> * <Exp> | <Exp> ^ <Exp> | <Exp> \& <Exp> | <Exp> \lor <Exp> | <Exp> \leq <Exp> | <Exp> = <Exp> | \text{if <Exp> then <Exp> else <Exp>} \]

• 3 + (2 \& 0) is syntactically well-formed, but not well-typed

• Is \(x + 1 \) well-typed?
Type judgements

- A **type environment** is a symbol table mapping symbols to types.
 - E.g., \([x \mapsto \text{int}, y \mapsto \text{bool}, z \mapsto \text{int}]\): \(x\) and \(z\) are ints, \(y\) is a bool
 - Notation: type environment denoted by \(\Gamma\)
 - Notation: \((\Gamma\{x \mapsto t\})\): functional update

\[
\Gamma\{x \mapsto t\}(y) = \begin{cases}
 t & \text{if } x = y \\
 \Gamma(y) & \text{otherwise}
\end{cases}
\]

- A **type judgement** takes the form \(\Gamma \vdash e : t\)
 - “Under the type environment \(\Gamma\), the expression \(e\) has type \(t\)”
Inference rules

\begin{align*}
\text{INT} & \quad \frac{n \in \{\ldots, -1, 0, 1, \ldots\}}{\Gamma \vdash n : \text{int}} \\
\text{VAR} & \quad \frac{\Gamma \vdash x : t}{\Gamma \vdash \Gamma(x) = t} \\
\text{ADD} & \quad \frac{\Gamma \vdash e_1 : \text{int} \quad \Gamma \vdash e_2 : \text{int}}{\Gamma \vdash e_1 + e_2 : \text{int}} \\
\text{AND} & \quad \frac{\Gamma \vdash e_1 : \text{bool} \quad \Gamma \vdash e_2 : \text{bool}}{\Gamma \vdash e_1 \land e_2 : \text{bool}} \\
\text{LEQ} & \quad \frac{\Gamma \vdash e_1 : \text{int} \quad \Gamma \vdash e_2 : \text{int}}{\Gamma \vdash e_1 \leq e_2 : \text{bool}} \\
\text{IF} & \quad \frac{\Gamma \vdash e_1 : \text{bool} \quad \Gamma \vdash e_2 : t \quad \Gamma \vdash e_3 : t}{\Gamma \vdash \text{if } e_1 \text{ then } e_2 \text{ else } e_3 : t}
\end{align*}
A derivation or proof tree is a tree where each node is labelled by a judgement, and edges connect premises to a conclusion according to some inference rule.

Leaves of the tree are axioms (inference rules w/o premises)

Derivation of \(x : \text{int} \vdash 2 + x \leq 10 : \text{bool} \):
Derivation for $x : \text{int} \vdash \text{if } x \leq 0 \text{ then } x \text{ else } -1 * x : \text{int}$:

<table>
<thead>
<tr>
<th>RULE</th>
<th>INFERS</th>
<th>INFERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>VAR</td>
<td>$x : \text{int} \vdash x : \text{int}$</td>
<td>INT</td>
</tr>
<tr>
<td>LEQ</td>
<td>$x : \text{int} \vdash x \leq 0 : \text{bool}$</td>
<td>VAR</td>
</tr>
<tr>
<td>IF</td>
<td>$x : \text{int} \vdash \text{if } x \leq 0 \text{ then } x \text{ else } -1 * x : \text{int}$</td>
<td>INT</td>
</tr>
</tbody>
</table>
Type checking

- Goal of a type checker: given a context Γ, expression e, and type t, determine whether a derivation of the judgement $\Gamma \vdash e : t$ exists.
- Method: recurse on the structure of the AST, applying inference rules “bottom-up”
Binders & functions: scope logic

LET

\[
\frac{\Gamma \vdash e_1 : t_1 \quad \Gamma \{x \mapsto t_1\} \vdash e_2 : t}{\Gamma \vdash \text{let } x = e_1 \text{ in } e_2 : t}
\]

FUN

\[
\frac{\Gamma \vdash \{x \mapsto t_1\} \vdash e : t_2}{\Gamma \vdash \text{fun } (x : t_1) \rightarrow e : t_1 \rightarrow t_2}
\]

APP

\[
\frac{\Gamma \vdash e_1 : t_1 \rightarrow t_2 \quad \Gamma \vdash e_2 : t_1}{\Gamma \vdash e_1 \ e_2 : t_2}
\]
• Goal of type inference: given a context Γ and expression e, determine a type t for which there is a derivation of the judgement $\Gamma \vdash e : t$.

• Method: (again) recurse on the structure of the AST, applying inference rules “bottom-up”

• This only works because we have a very simple type system
 • OCaml type inference: recurse on the structure of the AST to produce a constraint system, then solve the constraints
Type soundness

• Robin Milner: “Well typed programs do not go wrong”
• More formally: if $\vdash e : t$ is derivable, then evaluating e either fails to terminate or yields a value of type t
 • Note: for our language (extension of simply-typed lambda calculus with integers and booleans), we have something stronger – evaluating e always yields a value of type t
Well-formed types

- In languages with type definitions, need additional rules to define well-formed types
- Judgements take the form $H \vdash t$
 - H is set of type names
 - t is a type
 - $H \vdash t$ – “Assuming H names well-formed types, t is a well-formed type”
Well-formed types

- In languages with type definitions, need additional rules to define well-formed types
- Judgements take the form \(H \vdash t \)
 - \(H \) is set of type names
 - \(t \) is a type
 - \(H \vdash t \) – “Assuming \(H \) names well-formed types, \(t \) is a well-formed type”

\[
\begin{align*}
\text{INT} & \quad \text{BOOL} & \quad \text{ARROW} & \quad \text{NAMED} \\
H \vdash \text{int} & \quad H \vdash \text{bool} & \quad \frac{H \vdash t_1 \quad H \vdash t_2}{H \vdash t_1 \rightarrow t_2} & \quad \frac{H \vdash s \quad s \in H}{H \vdash s}
\end{align*}
\]
Well-formed types

- In languages with type definitions, need additional rules to define well-formed types
- Judgements take the form $H \vdash t$
 - H is set of type names
 - t is a type
 - $H \vdash t$ – “Assuming H names well-formed types, t is a well-formed type”

 \[
 \begin{align*}
 \text{INT} & \quad \text{BOOL} & \quad \text{ARROW} & \quad \text{NAMED} \\
 H & \vdash \text{int} & H & \vdash \text{bool} & H & \vdash t_1 \quad H & \vdash t_2 & H & \vdash t_1 \rightarrow t_2 & H & \vdash s \quad s \in H
 \end{align*}
 \]

- Note: also need to modify the typing rules & judgements. E.g.,

\[
\begin{align*}
\text{FUN} & \quad H & \vdash t_1 & \quad H, \Gamma \{ x \mapsto t_1 \} & \vdash e : t_2 \\
& \quad H, \Gamma & \vdash \text{fun} (x : t_1) \rightarrow e : t_1 \rightarrow t_2
\end{align*}
\]
Statements

• In languages with statements, need additional rules to defined well-formed statements
• E.g., judgements may take the form $D; \Gamma; rt \vdash s$
 • D maps type names to their definitions
 • Γ is a type environment (variables \rightarrow types)
 • rt is a type
 • $D; \Gamma; rt \vdash s$ – “with type definitions D, assuming type environment Γ, s is a valid statement within the context of a function that returns a value of type rt”
In languages with statements, need additional rules to defined well-formed statements

E.g., judgements may take the form $D; \Gamma; rt \vdash s$

- D maps type names to their definitions
- Γ is a type environment (variables \rightarrow types)
- rt is a type
- $D; \Gamma; rt \vdash s$ - “with type definitions D, assuming type environment Γ, s is a valid statement within the context of a function that returns a value of type rt”

\[
\begin{align*}
\text{ASSIGN} & \quad \Gamma \vdash e : \Gamma(x) \\
& \quad D; \Gamma; rt \vdash x := e \\
\hline
\text{RETURN} & \quad \Gamma \vdash e : rt \\
& \quad D; \Gamma; rt \vdash \textbf{return} e \\
\hline
\text{DECL} & \quad \Gamma \vdash e : t \\
& \quad D; \Gamma\{x \mapsto t\}; rt \vdash s_2 \\
& \quad D; \Gamma; rt \vdash \textbf{var} x = e; s_2
\end{align*}
\]
Additional aspects

• In OCaml, can have a variable and a type with the same name
 • Multiple namespaces \(\Rightarrow\) multiple environments / symbol tables

• Parametric polymorphism
 • E.g., \texttt{fun x \to x} in ocaml has type \('a \to 'a\)
 • Finite representation of infinitely many typings

• Subtyping (e.g., object-oriented languages) – next time
 • Related: casting, coercion