COS320: Compiling Techniques

Zak Kincaid

March 12,2019

Parsing III: LR parsing

Bottom-up parsing

« Stack holds a word in (N U X)* from which it is possible to derive the part of the input string that
has been consumed

+ At any time, may read a letter from input string and push it on top of the stack

+ At any time, may non-deterministically choose a rule A ::= ~;...7,, and apply it in reverse: pop
Yn...1 Off the top of the stack, and push A.

+ Accept when stack just contains start non-terminal

Ge—(
), e—=)
+t,e > +
X, € = X

- + e,e—~$ Ae,<5>$—>e
<S> 1= +<S> | Start_)@ >%/ (o

 = (<S>) | x

€,<S>+ — <S>
€, — <S>
€,)<S>(—
€,x —

<S>:
:

= +<S> |
= (<S>) | x

Ge—(
), e—)
+,e = +
X, € = X

€,e—$ €,<8>% — €
start =»(90 >%/ >((9

€,<S>+ — <S>
€, — <S>
€,)<S>(—
€, X —

State Stack | Input
q0 € | (x+x)+x
@ $ | (xH)+x
qQ ($ | x+x)+x
@ X($ | +x)+x
Q1 ($ | +x)+x
q +($ | x)+x
q1 X+($ |)+x
q +($ |)+x
q1 <S>+($ |)+x
Q <S>($ |)*x
@)<S>($ | +x
q1 $ | +x
q1 +$ | x
q1 x+$ | €
Q1 +$ | €
q1 <S>+$ €
q1 <S$>$ | €
€ €

9f

LL vs LR

+ LL parsers are top-down, LR parsers are bottom-up
- Easier to write LR grammars
+ Every LL(k) grammar is also LR(k), but not vice versa.
+ No need to eliminate left (or right) recursion
- No need to left-factor
« Harder to write LR parsers
- But parser generators will do it for us!

Bottom-up PDA has two kinds of actions:
- Shift: move lookahead token to the top of the stack
« Reduce: remove 7y, ..., v1 from the top of the stack, replace with A (where A ::= ~4...y, is
a rule of the grammar)
- Just as for LL parsing, the trick is to resolve non-determinism.

+ When should the parser shift?

+ When should the parser reduce?
Ge—=(
), e =)
+ € — +
X, € —> X

<S> 1= +<S> ’ e e—$ /Q €,<5>$ — €
SO OO

 = (<S>) | x

€, <S>+ — <S>
€, — <S>
€,)<S>(—
€,X —

Determinizing the bottom-up PDA

« Intuition: reduce greedily
- If any reduce action applies, then apply it

+ Actually, a bit more nuanced: only apply reduction action if it is “relevant” (can eventually lead to
the input word being accepted)

+ If no reduce action applies, then shift

- Can use the states of the PDA to implement greedy strategy
- State tracks top few symbols of the stack

Determinizing the bottom-up PDA

« Intuition: reduce greedily
- If any reduce action applies, then apply it

+ Actually, a bit more nuanced: only apply reduction action if it is “relevant” (can eventually lead to
the input word being accepted)

+ If no reduce action applies, then shift

- Can use the states of the PDA to implement greedy strategy
- State tracks top few symbols of the stack

- Challenge: after applying reduce action, need to re-compute the state

Determinizing the bottom-up PDA

« Intuition: reduce greedily
- If any reduce action applies, then apply it
+ Actually, a bit more nuanced: only apply reduction action if it is “relevant” (can eventually lead to
the input word being accepted)

+ If no reduce action applies, then shift

- Can use the states of the PDA to implement greedy strategy
- State tracks top few symbols of the stack

- Challenge: after applying reduce action, need to re-compute the state

- Solution: use the stack to store states

- Shift reads current state off the top of the stack, then pushes the next state
+ Reduce A ::= 71, ..., pops last n states, then proceeds from (n — 1)th state as if A had been
read

Warm-up: LR(0) parsing

<S> = (<L>) | x
<L> = <S> | <L>;<S>

+ LR(0) = LR with O-symbol lookahead
+ An LR(O) item of a grammar G = (N, X, R, S) is of the form A ::= .75 Yi11... 70,
where A ::=~;---7yisaruleof G
* ~1...y; derives part of the word that has already been read
* Yi+1...Yn derives part of the word that remains to be read
+ LR(O) items ~ states of an NFA that determines when a reduction applies to the top of the

stack
+ LR(O) items for the above grammar:
e <S> 1= o(<KL>),<S> ::= (e<L>),<S> ::= (<L>e),<S> ::= (<L>)e,
* <S> ::= ex,<S> ::= Xe,
e <L> ::= e<S> <L> ::= <S>e,

e <L> 1= o<L>;<S> <L> ::= <L>e;<S> <L> ::= <L>;e<S> <L> ::= <L>;<S>e,

closure and goto

« For any set of items I, define closure(1) to be the least set of items such that
« closure(J) contains I
« If closure(I) contains an item of the form A ::= « e B3 where A is a non-terminal, then
closure(]) contains B ::= ey forall B::=~v € R

- closure([) saturates I with all items that may be relevant to reducing via /
- Eg., closure({<s> ::= (e<L>)}) =
{<S> ::= (8<L>),<L> ::= o<S> <L> ::= e<L>;<S> <S> ::= o(<L>)<S> ::= ex}
- Part of the not-quite greedy strategy: don't try to reduce using all rules all the time, track only
a relevant subset

closure and goto

« For any set of items I, define closure(1) to be the least set of items such that
« closure() contains I
- If closure(I) contains an item of the form A ::= o ¢ B3 where A is a non-terminal, then
closure(]) contains B ::= ey forall B::=~v € R

- closure([) saturates I with all items that may be relevant to reducing via /
- Eg., closure({<s> ::= (e<L>)}) =
{<S> ::= (e<L>),<L> ::= <S> <L> ::= e<L>;<S> <S> ::= o(<L>)<S> ::= ex}
- Part of the not-quite greedy strategy: don't try to reduce using all rules all the time, track only
a relevant subset

« For any item set I, and (terminal or non-terminal) symbol v € NU ¥ define
goto(l,y) = closure({A :=aye | Au=aeys c I})
- l.e., goto(I,) is the result of “moving e across v”
- E.g., goto(closure({<S> ::= (e<L>)},<L>)) = {<S> ::= (<L>e),<L> ::= <L>e;<S> }

Mechanical construction of LR(0) parsers

© Add a new production ' ::= 53 to the grammar.

- S is new start symbol
+ $ marks end of the stack

@ Construct transitions as follows: for each closed item set 1,
- For each item of the form A ::= ~;...,e in I, add reduce transition

€ 1N1..Jn—1K — K'K,whereK' = goto(K, A)
- For each item of the form A ::= v e a8 in Iwith a € &, add a shift transition

a, [— I'ITwhere I' = goto(I, a)

Resulting automaton is deterministic <= grammar is LR(O)

Example run

<S> = (<L>) | x
<L> 5= <S> | <L>;<S>

« Input word: (x;x)$
- Stack:

<S’> ::= e<S>§,
<S> ::= e(<L>),
<S> ::= ex

- Action: shift

« Input word: (x;x)$

<S> i
<L> ::
<L> ::
<S>
<S>

- Stack:
<S’> ::= e<5>$
<S> ::= o(<L>),
<S> ::= ex

- Action: shift

(o<L>)
<S>

Example run

<S> = (<L>) | x
<L> 5= <S> | <L>;<S>

o< >;<S>

o(<L>)
ox

<S> i

« Input word: (;x)$
- Stack:

<S’> ::= e<5>$

<S> ::= e(<L>),

<S> ::= ex

- Action: reduce

<L> ::
<L> ::
<S>
<S>

Example run

<S> = (<L>) | x

<L> 5= <S> | <L>;<S>

(o<L>)
<S>

o< >;<S>
o(<L>)
ox

{<S> :

= xe}

<S> i

« Input word: (;x)$
- Stack:

<S’> ::= e<5>$

<S> ::= e(<L>),

<S> ::= ex

- Action: reduce

<L> ::
<L> ::
<S>
<S>

Example run

<S> = (<L>) | x

<L> 5= <S> | <L>;<S>

(o<L>)
<S>

o< >;<S>
o(<L>)
ox

{<L> ti= <S>o}

<S> i

« Input word: (;x)$
- Stack:

<S’> ::= e<S>§,

<S> ::= e(<L>),

<S> ::= ex

- Action: shift

<L> ::
<L> ::
<S>
<S>

Example run

<S> = (<L>) | x
<L> 5= <S> | <L>;<S>

(o<L>)

<S>

o< >;<S> {<S> = (e) }
<L> ::= <L>e;<S>

o(<L>)

[3%

<S> i

« Input word: [x)$
- Stack:

<S’> ::= e<S>$

<S> ::= o(<L>),

<S> ::= ex

- Action: shift

<L> ::
<L> ::
<S>
<S>

Example run

<S> = (<L>) | x
<L> 5= <S> | <L>;<S>

(o<L>)
<S>
o< >;<S>
o(<L>)
ox

—
A A
- Ww
VvV Vv
nmn

<L> ::
(<L>e) } { <S>
<L>e;<S>

<S>

<L>; e<S>
o (<L>),
ox

}

<S> i

+ Input word:)$

- Stack:
<§’> ::= <S>, <L> ::
<S> ::= o(<L>), <L> ::
<S> ::= ex

- Action: reduce

<S>
<S>

Example run

<S> = (<L>) | x
<L> 5= <S> | <L>;<S>

(o<L>)

<S> <> -
o< >;<S> { 4> o
o(<L>)

ox

<L> ::
(<L>e) } {<S> H
<L>e;<S>

<S>

<L>; e<S>
o (<L>),
ox

}{<S> 1= xe }

<S> i

+ Input word:)$

- Stack:
<§’> ::= <S>, <L> ::
<S> ::= o(<L>), <L> ::
<S> ::= ex

- Action: reduce

<S>
<S>

Example run

<S> = (<L>) | x
<L> 5= <S> | <L>;<S>

(o<L>)

<S> <> -
o< >;<S> { 4> o
o(<L>)

ox

<L> ::
(<L>e) } {<S> H
<L>e;<S>

<S>

<L>; e<S>
o (<L>),
ox

} {<L> 1:= <L>;<S>e)

<S> i

Input word:)$
- Stack:
<S’> ::= e<S>§,
<S> ::= e(<L>),
<S> ::= ex

- Action: shift

<L> ::
<L> ::
<S>
<S>

Example run

<S> = (<L>) | x
<L> 5= <S> | <L>;<S>

(o<L>)

<S>

o< >;<S> {<S> = (e) }
<L> ::= <L>e;<S>

o(<L>)

[3%

Example run

<S> = (<L>) | x
<L> 5= <S> | <L>;<S>

+ Input word: $
- Stack:
<S> ::= (e<L>)
<S’> ::= e<S>§, <L> ::= o<S> L
<S> ::= e(<L>), <L> ::= e<L>;<S> {zfi T iiti'i»} {<s> 1:= (<L>)e}
<S> 1= ex <S> 1:= e(<L>) N ’
<S> ::= ex

- Action: reduce

Example run

<S> = (<L>) | x
<L> 5= <S> | <L>;<S>

+ Input word: $

- Stack:
<S’> ::= e<S>§,
<S> 1:= e(<L>), » {<S'> 1:= <S>e$}
<S> ::= ex

- Action: shift

Example run

<S> = (<L>) | x
<L> 5= <S> | <L>;<S>

+ Input word:
- Stack:

<S’> = e<S>$,
<S> ::= o(<L>), {<S’> 1= <S>o$}{<$’> 1= <S>$o}
<S> ox

+ Action: accept

Conflicts

+ Recall: Automaton is deterministic <= grammar is LR(O)
+ Observe: for LR(O) grammars, each closed set of items is either a reduce state or a shift
state
+ Reduce state has exactly one item, and it's of the form {4 ::= e}

- Shift state has no items of the form 4 ::= e
+ Reduce/reduce conflict: state has two or more items of the form A ::= ~e (choice of
reduction is non-deterministic!)
+ Reduce/reduce conflict: state has an item of the form A ::= e and one of the form
A ::= v e af (choice of whether to shift or reduce is non-deterministic!)

Simple LR (SLR)

- Simple LR is a straight-forward extension of LR(O) with a lookahead token

- Idea: proceed exactly as LR(O), but eliminate (some) conflicts using lookahead token
- For each item of the form A ::= ~;...y,e in I, add reduce transition

€, 1J;...0,_1K — K K, whereK' = goto(K, A)

with any lookahead token in follow(A)

- Example: the following grammar is SLR, but not LR(O)

<S> :=<T>b
<T>u=a<T> | e

Consider: closure({<S’> ::= e<S>$}) contains T ::= e.

LR(1) parser construction

+ An LR(1) item of agrammar G = (N, 2, R, S) is of the form (A ::= 1.7, @ yir1...70, @),
where A ::=~;---y,isaruleof Ganda € ¥

* ~1...y; derives part of the word that has already been read

* Yit1..-Yn derives part of the word that remains to be read

+ ais alookahead symbol

+ For any set of items I, define closure(I) to be the least set of items such that

+ closure(I) contains I
« If closure(I) contains an item of the form (A ::= « e Bf, a) where Bis a non-terminal, then
closure(I) contains (B ::= e, b) forall B::=~ € Rand all b € first(5a).

- Construct PDA as in LR(O)

LALR(1)

+ LR(1) transition tables can be very large

+ LALR(1) (“lookahead LR(1)") make transition table smaller by merging states that are
identical except for lookahead

- Merging states can create reduce/reduce conflicts. Say that a grammar is LALR(1) if this
merging doesn' create conflicts.

Summary of parsing

- Forany k, LL(k) grammars are LR(k)

« SLR grammars are LALR(1) are LR(1)

« In terms of language expressivity, there is an SLR (and therefore LALR(1) and LR(1) grammar
for any context-free language that can be accepted by a deterministic pushdown
automaton).

+ Not every deterministic context free language is LL(k): {a"b" : n € N} U {a"c" : n € N}is
DCFL but not LL(k) for any k!

'John C. Beatty, Two iteration theorems for the LL(k) Languages

