
COS320: Compiling Techniques

Zak Kincaid

February 5, 2019

Welcome!

• Instructor: Zak Kincaid
• TAs:

Chirag Bharadwaj Qinshi Wang
• Website: http://www.cs.princeton.edu/courses/archive/spring19/cos320/
• Piazza: https://piazza.com/princeton/spring2019/cos320
• Office hours: see website

http://www.cs.princeton.edu/courses/archive/spring19/cos320/
https://piazza.com/princeton/spring2019/cos320

What is a compiler?

• A compiler is a program that takes a program written in a source language and translates it
into a functionally equivalent program in a target language.

• Source languages: C, Java, OCaml, ...
• Target languages: x86 Assembly, Java bytecode, C, ...

• A compiler can also
• Report errors & potential problems

• Uninitialized variables, type errors, ...
• Improve (“optimize”) the program

What is a compiler?

• A compiler is a program that takes a program written in a source language and translates it
into a functionally equivalent program in a target language.

• Source languages: C, Java, OCaml, ...
• Target languages: x86 Assembly, Java bytecode, C, ...

• A compiler can also
• Report errors & potential problems

• Uninitialized variables, type errors, ...
• Improve (“optimize”) the program

Why take COS320?

You will learn:
• How high-level languages are translated to machine language
• How to be a better programmer

• What can a compiler do?
• What can a compiler not do?

• Lexing & Parsing
• (Some) functional programming in OCaml
• A bit of programming language theory
• A bit of computer architecture

Course resources

• Recommended textbook: Modern compiler implementation in ML (Appel)
• Real World OCaml (Minsky, Madhavapeddy, Hickey)
realworldocaml.org

realworldocaml.org

Grading

• 60% Homework
• 6 assignments, evenly weighted
• HW1: OCaml introduction
• HW2: Build an x86 simulator
• HW3-6: Build a compiler

• 20% Midterm
• March 14, in class

• 20% Final

Homework policies

• Except for HW1, homework can be done individually or in pairs
• Late assignments will be penalized 1% per hour past the deadline.
• Five late passes, can submit up to 24 hours late without penalty (at most 3/HW).

Feel free to discuss with others at conceptual level.
Submitted work should be your own.

Lecture expectations

• Lecture 1: Intro
• Lecture 2: OCaml (review COS326)
• Lecture 3: x86 (review COS217)
• Lecture 4 + k: not review

Compilers

(Programming) language = syntax + semantics

• Syntax: what sequences of characters are valid programs?
• Typically specified by context-free grammar

<expr> ::=<integer>

|<variable>
|<expr>+ <expr>

|<expr> ∗ <expr>
|(<expr>)

• Semantics: what is the behavior of a valid program?
• Operational semantics: how can we execute a program?

• In essence: an interpreter
• Axiomatic semantics: what can we prove about a program?
• Denotational semantics: what mathematical function does the program compute?

The job of a compiler is to translate from the syntax of one language to another, but preserve
the semantics.

(Programming) language = syntax + semantics

• Syntax: what sequences of characters are valid programs?
• Typically specified by context-free grammar

<expr> ::=<integer>

|<variable>
|<expr>+ <expr>

|<expr> ∗ <expr>
|(<expr>)

• Semantics: what is the behavior of a valid program?
• Operational semantics: how can we execute a program?

• In essence: an interpreter
• Axiomatic semantics: what can we prove about a program?
• Denotational semantics: what mathematical function does the program compute?

The job of a compiler is to translate from the syntax of one language to another, but preserve
the semantics.

1 #inc lude <stdio.h>

3 i n t factorial(i n t n) {
4 i n t acc = 1;
5 whi le (n > 0) {
6 acc = acc * n;
7 n = n - 1;
8 }
9 r e t u r n acc;

10 }

12 i n t main(i n t argc , char *argv []) {
13 printf(”factorial (6)␣=␣%d\n”, factorial (6));
14 }

1 _ f a c t o r i a l :
2 ## BB#0:
3 push l %ebp
4 movl %esp , %ebp
5 s u b l $8 , %esp
6 movl 8(%ebp) , %eax
7 movl %eax , −4(%ebp)
8 movl $1 , −8(%ebp)
9 LBB0_1 :

10 cmpl $0 , −4(%ebp)
11 j l e LBB0_3
12 ## BB#2:
13 movl −8(%ebp) , %eax
14 i m u l l −4(%ebp) , %eax
15 movl %eax , −8(%ebp)
16 movl −4(%ebp) , %eax
17 s u b l $1 , %eax
18 movl %eax , −4(%ebp)
19 jmp LBB0_1

20 LBB0_3 :
21 movl −8(%ebp) , %eax
22 addl $8 , %esp
23 popl %ebp
24 r e t l

Compiler phases (simplified)

Source text

Token stream

Abstract syntax tree

Intermediate representation

Assembly

Lexing

Parsing

Translation

Code generation

Optimization

COS320 assignments

By the end of the course, you will build (in OCaml) a complete compiler from a high-level
type-safe language (“Oat”) to a subset of x86 assembly.

• HW1: OCaml programming
• HW2: X86lite interpreter
• HW3: LLVMlite compiler
• HW4: Lexing, Parsing, simple compilation
• HW5: Higher-level Features
• HW6: Analysis and Optimizations

We will use the assignments from Penn’s CIS 354, provided by Steve Zdancevic.

OCaml

• Why OCaml?
• Algebraic data types + pattern matching are very convenient features for writing compilers

• OCaml is a functional programming language
• Imperative languages operate by mutating data
• Functional languages operate by producing new data

• OCaml is a typed language
• Contracts on the values produced and consumed by each expression
• Types are (for the most part) automatically inferred.

• Good style to write types for top-level definitions

Preparation

• Excellent preparation: COS326 (Functional programming)
• More than you will need for this class.

• Thursday’s lecture + review sessions
• Poll on Piazza

HW1: Hellocaml

• Available now on the course website
• Topic: OCaml introduction + interpreter & compiler for a little calculator language

• OCaml dev environment on VirtualBox virtual machine
• Recommend Emacs + merlin

