COS3820: Compiling Techniques

Zak Kincaid

February 5, 2019

Welcome!

- Instructor: Zak Kincaid
- TAs:

Chirag Bharadwaj Qinshi Wang
+ Website: http://www.cs.princeton.edu/courses/archive/springl9/cos320/

+ Piazza: https://piazza.com/princeton/spring2019/cos320
- Office hours: see website

http://www.cs.princeton.edu/courses/archive/spring19/cos320/
https://piazza.com/princeton/spring2019/cos320

What is a compiler?

« A compiler is a program that takes a program written in a source language and translates it
into a functionally equivalent program in a target language.

- Source languages: C, Java, OCaml, ...

- Target languages: x86 Assembly, Java bytecode, C, ...

What is a compiler?

« A compiler is a program that takes a program written in a source language and translates it
into a functionally equivalent program in a target language.

- Source languages: C, Java, OCaml, ...

- Target languages: x86 Assembly, Java bytecode, C, ...

+ A compiler can also
- Report errors & potential problems

+ Uninitialized variables, type errors, ...
« Improve (“optimize”) the program

Why take COS3207

You will learn:
+ How high-level languages are translated to machine language

- How to be a better programmer

+ What can a compiler do?
+ What can a compiler not do?

- Lexing & Parsing

- (Some) functional programming in OCaml
- A bit of programming language theory

« A bit of computer architecture

Course resources

+ Recommended textbook: Modern compiler implementation in ML (Appel)

+ Real World OCaml (Minsky, Madhavapeddy, Hickey)
realworldocaml.org

realworldocaml.org

Grading

+ 60% Homework

- 6 assignments, evenly weighted
- HW1: OCaml introduction

« HW?2: Build an x86 simulator

+ HW3-6: Build a compiler

+ 20% Midterm

+ March 14, in class
+ 20% Final

Homework policies

« Except for HW1, homework can be done individually or in pairs
- Late assignments will be penalized 1% per hour past the deadline.
- Five late passes, can submit up to 24 hours late without penalty (at most 3/HW).

Feel free to discuss with others at conceptual level.
Submitted work should be your own.

Lecture expectations

- Lecture 1: Intro

- Lecture 2: OCaml (review COS326)
+ Lecture 3: x86 (review COS217)
« Lecture 4 + k: not review

Compilers

(Programming) language = syntax + semantics

- Syntax: what sequences of characters are valid programs?
- Typically specified by context-free grammar
<expr> ::=<integer>
|<variable>
|<expr> + <expr>
|<expr> x <expr>
|(<expr>)
- Semantics: what is the behavior of a valid program?
- Operational semantics: how can we execute a program?
+ In essence: an interpreter

- Axiomatic semantics: what can we prove about a program?
- Denotational semantics: what mathematical function does the program compute?

(Programming) language = syntax + semantics

- Syntax: what sequences of characters are valid programs?
- Typically specified by context-free grammar
<expr> ::=<integer>
|<variable>
|<expr> + <expr>
|<expr> x <expr>
|(<expr>)
- Semantics: what is the behavior of a valid program?
- Operational semantics: how can we execute a program?
+ In essence: an interpreter

- Axiomatic semantics: what can we prove about a program?
- Denotational semantics: what mathematical function does the program compute?

The job of a compiler is to translate from the syntax of one language to another, but preserve
the semantics.

—_

CQwvwowouibhw

#include <stdio.h>

int factorial(int n) {

int acc = 1;

while (n > 2) {
acc = acc * n;
n=n-1;

3

return acc;

}

int main(int argc,

char xargv[l) {

printf(”factorial (6)._.=_.%d\n”, factorial(6));

}

VoONOUVTEWN -

_factorial:
BB#0:
pushl
movl
subl
movl
movl
movl
LBBO_1:
cmpl
jle
BB#2:
movl
imull
movl
movl
subl
movl
jmp
LBBO_3:
movl
addl
popl
retl

%ebp

Y%esp, %ebp
$8, %esp
8(%ebp), %eax
Y%eax , —4(%ebp)
$1, —8(%ebp)

$0, —4(%ebp)
LBBO_3

—8(%ebp), %eax
—4(%ebp), %eax
Y%eax, —8(%ebp)
—4(%ebp), %eax
$1, %eax

Y%eax, —4(%ebp)
LBBO_1

—8(%ebp), %eax
$8, %esp
Y%ebp

Compiler phases (simplified)

Lexing
A\ 4

Parsing
A\ 4

Abstract syntax tree

. (Translation

Intermediate representation) Optimization

. (Code generation

COS320 assignments

By the end of the course, you will build (in OCaml) a complete compiler from a high-level
type-safe language (“Oat”) to a subset of x86 assembly.

- HW1: OCaml programming
- HW2: X86lite interpreter
+ HW3: LLVMlite compiler
+ HW4: Lexing, Parsing, simple compilation
- HW5: Higher-level Features
+ HW6: Analysis and Optimizations
We will use the assignments from Penns CIS 354, provided by Steve Zdancevic.

OCaml

+ Why OCaml?
- Algebraic data types + pattern matching are very convenient features for writing compilers

+ OCamlis a functional programming language

« Imperative languages operate by mutating data

+ Functional languages operate by producing new data
+ OCamlis a typed language

- Contracts on the values produced and consumed by each expression
- Types are (for the most part) automatically inferred.

+ Good style to write types for top-level definitions

Preparation

+ Excellent preparation: COS326 (Functional programming)
+ More than you will need for this class.

+ Thursday’s lecture + review sessions
+ Poll on Piazza

HW1: Hellocaml

« Available now on the course website
+ Topic: OCaml introduction + interpreter & compiler for a little calculator language

- OCaml dev environment on VirtualBox virtual machine
- Recommend Emacs + merlin

