6.4 Maximum Flow

- introduction
- Ford–Fulkerson algorithm
- maxflow–mincut theorem
- analysis of running time
- Java implementation (see videos)
- applications
6.4 Maximum Flow

- introduction
- Ford–Fulkerson algorithm
- maxflow–mincut theorem
- analysis of running time
- Java implementation
- applications
Network flow

Input. An edge-weighted digraph, source vertex s, and target vertex t.

Intuition. Water flows from a source to a sink through a network of pipes. Each pipe has a flow capacity.
Min-cut problem

Def. A *st-cut (cut)* is a partition of the vertices into two disjoint sets, with *s* in one set *A* and *t* in the other set *B*.

Def. Its *capacity* is the sum of the capacities of the edges from *A* to *B*.

capacity = 10 + 5 + 15 = 30
Mincut problem

Def. A *st-cut (cut)* is a partition of the vertices into two disjoint sets, with *s* in one set *A* and *t* in the other set *B*.

Def. Its **capacity** is the sum of the capacities of the edges from *A* to *B*.

capacity = 10 + 8 + 16 = \(34\)
Mincut problem

Def. A *st-cut (cut)* is a partition of the vertices into two disjoint sets, with *s* in one set *A* and *t* in the other set *B*.

Def. Its *capacity* is the sum of the capacities of the edges from *A* to *B*.

Minimum st-cut (mincut) problem. Find a cut of minimum capacity.

![Diagram of a network with vertices *s* and *t* and edges with capacities 10, 8, and 10, with a shaded set *A* and a cut with capacity 28.](image)
Maxflow: quiz 1

What is the capacity of the st-cut $\{A, E, F, G\}$?

A. 11 $(20 + 25 - 8 - 11 - 9 - 6)$

B. 34 $(8 + 11 + 9 + 6)$

C. 45 $(20 + 25)$

D. 79 $(20 + 25 + 8 + 11 + 9 + 6)$
Min-cut application

U.S. goal. Cut supplies (if Cold War turns into real war).

rail network connecting Soviet Union with Eastern European countries
(map declassified by Pentagon in 1999)
Maxflow problem

Though maximum flow algorithms have a long history, revolutionary progress is still being made.

By Andrew V. Goldberg and Robert E. Tarjan

Efficient Maximum Flow Algorithms

Efficient Maximum Flow Algorithms by Andrew Goldberg and Bob Tarjan

http://vimeo.com/100774435
Maxflow problem

Def. An *st-flow (flow)* is an assignment of values to the edges such that:
- Capacity constraint: $0 \leq$ edge’s flow \leq edge’s capacity.
- Local equilibrium: inflow = outflow at every vertex (except s and t).
Maxflow problem

Def. An *st*-flow (flow) is an assignment of values to the edges such that:

- Capacity constraint: \(0 \leq \text{edge’s flow} \leq \text{edge’s capacity} \).
- Local equilibrium: inflow = outflow at every vertex (except \(s \) and \(t \)).

Def. The *value* of a flow is the inflow at \(t \).

we assume no edges point to \(s \) or from \(t \)

value = 5 + 10 + 10 = 25
Maxflow problem

Def. An *st-flow (flow)* is an assignment of values to the edges such that:
- Capacity constraint: $0 \leq \text{edge’s flow} \leq \text{edge’s capacity}$.
- Local equilibrium: inflow = outflow at every vertex (except s and t).

Def. The *value* of a flow is the inflow at t.

Maximum st-flow (maxflow) problem. Find a flow of maximum value.

![Diagram of a maxflow problem with values on edges and vertices](image)
Maxflow application

Soviet Union goal. Maximize flow of supplies to Eastern Europe.

rail network connecting Soviet Union with Eastern European countries
(map declassified by Pentagon in 1999)
Summary

Input. An edge-weighted digraph, source vertex s, and target vertex t.

Mincut problem. Find a cut of minimum capacity.

Maxflow problem. Find a flow of maximum value.

Remarkable fact. These two problems are dual!
6.4 Maximum Flow

- introduction
- Ford–Fulkerson algorithm
- maxflow–mincut theorem
- analysis of running time
- Java implementation
- applications
Ford–Fulkerson algorithm

Initialization. Start with 0 flow.
Idea: increase flow along augmenting paths

Augmenting path. Find an undirected path from s to t such that:
- Can increase flow on forward edges (not full).
- Can decrease flow on backward edge (not empty).

1st augmenting path

![Network diagram with labeled edges and nodes showing the first augmenting path. The bottleneck capacity is 10, and the flow calculation is $0 + 10 = 10$.](image)
Idea: increase flow along augmenting paths

Augmenting path. Find an undirected path from s to t such that:
- Can increase flow on forward edges (not full).
- Can decrease flow on backward edge (not empty).

2nd augmenting path
Idea: increase flow along augmenting paths

Augmenting path. Find an undirected path from s to t such that:

- Can increase flow on forward edges (not full).
- Can decrease flow on backward edge (not empty).

3rd augmenting path

![Diagram showing 3rd augmenting path with flow values and edge labels.](image-url)
Idea: increase flow along augmenting paths

Augmenting path. Find an undirected path from s to t such that:
- Can increase flow on forward edges (not full).
- Can decrease flow on backward edge (not empty).

4th augmenting path

![Graph diagram](attachment:image.png)
Idea: increase flow along augmenting paths

Termination. All paths from \(s \) to \(t \) are blocked by either a

- Full forward edge.
- Empty backward edge.

no more augmenting paths

[Diagram with nodes and edges labeled with capacities and labels indicating full forward edge and empty backward edge]
Which is an augmenting path?

A. $A \rightarrow E \rightarrow F \rightarrow G \rightarrow D \rightarrow H$

B. $A \rightarrow F \rightarrow B \rightarrow G \rightarrow C \rightarrow D \rightarrow H$

C. Both A and B.

D. Neither A nor B.
Ford–Fulkerson algorithm

Start with 0 flow.
While there exists an augmenting path:
 - find an augmenting path
 - compute bottleneck capacity
 - update flow on that path by bottleneck capacity

Fundamental questions.
• How to find an augmenting path?
• How many augmenting paths?
• Guaranteed to compute a maxflow?
• Given a maxflow, how to compute a mincut?
6.4 Maximum Flow

- introduction
- Ford–Fulkerson algorithm
- maxflow–mincut theorem
- analysis of running time
- Java implementation
- applications
Relationship between flows and cuts

Def. The net flow across a cut \((A, B)\) is the sum of the flows on its edges from \(A\) to \(B\) minus the sum of the flows on its edges from \(B\) to \(A\).

\[
\text{net flow across cut} = 5 + 10 + 10 = 25
\]

value of flow = 25
Relationship between flows and cuts

Def. The net flow across a cut \((A, B)\) is the sum of the flows on its edges from \(A\) to \(B\) minus the sum of the flows on its edges from \(B\) to \(A\).

\[
\text{net flow across cut} = 10 + 5 + 10 = 25
\]

value of flow = 25
Def. The net flow across a cut (A, B) is the sum of the flows on its edges from A to B minus the sum of the flows on its edges from B to A.

\[
\text{net flow across cut} = (10 + 10 + 5 + 10 + 0 + 0) - (5 + 5 + 0 + 0) = 25
\]
Which is the net flow across the st-cut $\{A, E, F, G\}$?

A. 11 $(20 + 25 - 8 - 11 - 9 - 6)$

B. 26 $(20 + 22 - 8 - 4 - 4)$

C. 42 $(20 + 22)$

D. 45 $(20 + 25)$
Relationship between flows and cuts

Property 1. The net flow across any cut is the same as the outflow from the source and the inflow to the target.

Intuition. Conservation of flow.

Property 2. Value of any flow \leq capacity of any cut.

Intuition. Flow is bounded by capacity.
Exercise: computing a cut from a maxflow

- Note: no augmenting paths with respect to f.
- Compute $A = \text{set of vertices connected to } s \text{ by an undirected path with no full forward or empty backward edges}; \ B = \text{all other vertices.}$
- What are the properties of the edges crossing the cut (A, B)?
- What is the capacity of the cut?

```
Try to find augmenting paths.
Go as far as you can; stop when you can go no further
```
Computing a mincut from a maxflow

- Note: no augmenting paths with respect to f.
- Compute $A =$ set of vertices connected to s by an undirected path with no full forward or empty backward edges.
- Capacity of cut $(A, B) =$ value of flow f.
- Since value of any flow \leq capacity of any cut, this must be a mincut!

By construction of cut:

Net flow across cut = capacity of cut

forward edge from A to B
(flow = capacity)

backward edge from B to A
(flow = 0)
Maxflow–mincut theorem

Augmenting path theorem. A flow f is a maxflow iff no augmenting paths.

Maxflow–mincut theorem. Value of the maxflow $= \text{capacity of mincut}.$

Alternative formulation. For any flow $f,$ these three conditions are equivalent:

i. f is a maxflow.

ii. There is no augmenting path with respect to $f.$

iii. There exists a cut whose capacity equals the value of the flow $f.$

Proof.

[$i \Rightarrow ii$] If condition ii is false, then there is an augmenting path, so we can improve f by sending flow across that path [which contradicts condition i].

[$ii \Rightarrow iii$] There is an algorithm to construct such a cut from a flow [prev slide]

[$iii \Rightarrow i$] Since value of any flow $\leq \text{capacity of any cut}.$
Given the following maxflow, which is a mincut?

A. $S = \{ A \}$.

B. $S = \{ A, B, C, E, F \}$.

C. Both A and B.

D. Neither A nor B.
6.4 MAXIMUM FLOW

- introduction
- Ford–Fulkerson algorithm
- maxflow-mincut theorem
- analysis of running time
- Java implementation
- applications
Important special case. Edge capacities are integers between 1 and U.

Invariant. The flow is integral throughout Ford–Fulkerson.

Pf. [by induction]

- Bottleneck capacity is an integer.
- Flow on an edge increases/decreases by bottleneck capacity. □

Proposition. Number of augmentations \leq the value of the maxflow.

Pf. Each augmentation increases the value by at least 1. □

Integrality theorem. There exists an integral maxflow.

Pf.

- Proposition + Augmenting path theorem \Rightarrow FF terminates with maxflow.
- Proposition + Invariant \Rightarrow FF terminates with an integral flow. □
Bad case for Ford–Fulkerson

Bad news. Even when edge capacities are integers, number of augmenting paths could be very large.

![Diagram](image_url)
Bad case for Ford–Fulkerson

Bad news. Even when edge capacities are integers, number of augmenting paths could be very large.
Bad case for Ford–Fulkerson

Bad news. Even when edge capacities are integers, number of augmenting paths could be very large.
Bad case for Ford–Fulkerson

Bad news. Even when edge capacities are integers, number of augmenting paths could be very large.

![Diagram showing 3rd augmenting path](image)
Bad case for Ford–Fulkerson

Bad news. Even when edge capacities are integers, number of augmenting paths could be very large.
Bad case for Ford–Fulkerson

Bad news. Even when edge capacities are integers, number of augmenting paths could be very large.
Bad news. Even when edge capacities are integers, number of augmenting paths could be very large.

200th augmenting path
Bad case for Ford–Fulkerson

Bad news. Even when edge capacities are integers, number of augmenting paths could be very large.

exponential in input size
How to choose augmenting paths?

Good news. Clever choices lead to efficient algorithms.

<table>
<thead>
<tr>
<th>augmenting path</th>
<th>number of paths</th>
<th>implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>shortest path (fewest edges)</td>
<td>(\leq \frac{1}{2} EV)</td>
<td>queue (BFS)</td>
</tr>
<tr>
<td>fattest path (max bottleneck capacity)</td>
<td>(\leq E \ln(EU))</td>
<td>priority queue</td>
</tr>
</tbody>
</table>

Flow network with \(V \) vertices, \(E \) edges, and integer capacities between 1 and \(U \)
6.4 Maximum Flow

- introduction
- Ford–Fulkerson algorithm
- maxflow–mincut theorem
- analysis of running time
- Java implementation
- applications
Maxflow and mincut applications

Maxflow/mincut is a widely applicable problem-solving model.

- Data mining.
- Open-pit mining.
- Bipartite matching.
- Network reliability.
- Baseball elimination.
- Image segmentation.
- Network connectivity.
- Distributed computing.
- Security of statistical data.
- Egalitarian stable matching.
- Multi-camera scene reconstruction.
- Sensor placement for homeland security.
- Many, many, more.
Bipartite matching problem

Problem. Given n people and n tasks, assign the tasks to people so that:
- Every task is assigned to a *qualified* person.
- Every person is assigned to exactly one task.
Bipartite matching problem

Problem. Given a bipartite graph, find a perfect matching (if one exists).
Maxflow formulation of bipartite matching

- Create s, t, one vertex for each task, and one vertex for each person.
- Add edge from s to each task (of capacity 1).
- Add edge from each person to t (of capacity 1).
- Add edge from task to qualified person (of infinite capacity).
Maxflow formulation of bipartite matching

1–1 correspondence between perfect matchings in bipartite graph and integral flows of value n in flow network.

Integrality theorem + 1–1 correspondence \Rightarrow Maxflow formulation is correct.
How many augmentations does the Ford–Fulkerson algorithms make to find a perfect matching in a bipartite graph with n vertices per side?

A. n
B. n^2
C. n^3
D. n^4
Maximum flow algorithms: theory

(Yet another) holy grail for theoretical computer scientists.

<table>
<thead>
<tr>
<th>year</th>
<th>method</th>
<th>worst case</th>
<th>discovered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>1951</td>
<td>simplex</td>
<td>$E^3 U$</td>
<td>Dantzig</td>
</tr>
<tr>
<td>1955</td>
<td>augmenting path</td>
<td>$E^2 U$</td>
<td>Ford–Fulkerson</td>
</tr>
<tr>
<td>1970</td>
<td>shortest augmenting path</td>
<td>E^3</td>
<td>Dinitz, Edmonds–Karp</td>
</tr>
<tr>
<td>1970</td>
<td>fattest augmenting path</td>
<td>$E^2 \log E \log(EU)$</td>
<td>Dinitz, Edmonds–Karp</td>
</tr>
<tr>
<td>1977</td>
<td>blocking flow</td>
<td>$E^{5/2}$</td>
<td>Cherkasky</td>
</tr>
<tr>
<td>1978</td>
<td>blocking flow</td>
<td>$E^{7/3}$</td>
<td>Galil</td>
</tr>
<tr>
<td>1983</td>
<td>dynamic trees</td>
<td>$E^2 \log E$</td>
<td>Sleator–Tarjan</td>
</tr>
<tr>
<td>1985</td>
<td>capacity scaling</td>
<td>$E^2 \log U$</td>
<td>Gabow</td>
</tr>
<tr>
<td>1997</td>
<td>length function</td>
<td>$E^{3/2} \log E \log U$</td>
<td>Goldberg–Rao</td>
</tr>
<tr>
<td>2012</td>
<td>compact network</td>
<td>$E^2 / \log E$</td>
<td>Orlin</td>
</tr>
<tr>
<td>?</td>
<td>?</td>
<td>E</td>
<td>?</td>
</tr>
</tbody>
</table>

Maxflow algorithms for sparse networks with E edges, integer capacities between 1 and U
Maximum flow algorithms: practice

Warning. Worst-case order-of-growth is generally not useful for predicting or comparing maxflow algorithm performance in practice.

Computer vision. Specialized algorithms for problems with special structure.

On Implementing Push-Relabel Method for the Maximum Flow Problem

Boris V. Cherkassky¹ and Andrew V. Goldberg²

¹ Central Institute for Economics and Mathematics, Krasikova St. 32, 117418, Moscow, Russia
 cher@cemi.msk.su
² Computer Science Department, Stanford University
 Stanford, CA 94305, USA
 goldberg@cs.stanford.edu

Abstract. We study efficient implementations of the push-relabel method for the maximum flow problem. The resulting codes are faster than the previous codes, and much faster on some problem families. The speedup is due to the combination of heuristics used in our implementations. We also exhibit a family of problems for which the running time of all known methods seem to have a roughly quadratic growth rate.
Summary

MinCut problem. Find an *st*-cut of minimum capacity.

Maxflow problem. Find an *st*-flow of maximum value.

Duality. Value of the maxflow = capacity of mincut.

Proven successful approaches.
- Ford–Fulkerson (various augmenting-path strategies).
- Preflow–push (various versions).

Open research challenges.
- Practice: solve real-world maxflow/mincut problems in linear time.
- Theory: prove it for worst-case inputs.
- Still much to be learned!