
COS 226             Algorithms and Data Structures             Spring 2016 
 

Midterm Exam 
 

 

 

This midterm has 7 questions for a total of 66 points. 

 

You have 80 minutes. The exam is closed book, and no calculators or other electronic devices 

are allowed. You may use one 8.5×11 page (one side) of notes in your own handwriting. 

 

 

 

Name: 

 

 

NetID: 

 

 

Precept: 

 

 

Room in which you’re taking the exam: 

 

 

 

 

 

Write and sign:  

        “I pledge my honor that I have not violated the Honor Code during this examination.” 

  

 

 

 

 

 

 

 

 

 

Optional: mark how you feel at the beginning of the test...                  ...and at the end 

                                            

P01 Th 9–9:50am Maia Ginsburg 

P02 Th 10–10:50am Shivam Agarwal 

P02A Th 10–10:50am Marc Leef 

P03 Th 11–11:50am Maia Ginsburg 

P03A Th 11–11:50am Ming-Yee Tsang 

P04 Th 12:30pm–1:20pm Miles Carlsten 

P05 Th 1:30pm–2:20pm Sergiy Popovych 

P06 F 10–10:50am Andy Guna 

P07 F 11–11:50am Andy Guna 

P07A F 11–11:50am Harry Kalodner 

P99 M 7:30–8:20pm Andy Guna 



1.  Heaps (6 points). 

 

Here’s an array representation of a min-heap.  

 

  i  0  1  2  3  4  5  6  7  8  9 10 11 

a[i]  _  C  G  H  K  M  L  U  V  R  Q  P 

 

Show the resulting array after performing each of the following operations. 

 

(a) Insert E. 

i 0 1 2 3 4 5 6 7 8 9 10 11 12 

a[i] __             

 

 

(b) Delete the minimum, starting from the original heap (i.e, without performing (a) first). 

i 0 1 2 3 4 5 6 7 8 9 10 

a[i] __           

 

 

 

 

 

 

 

 

 

 

 

2. Balanced search trees (6 points). 

 

Recall that inserting into a 2–3 tree temporarily creates 2–3–4 trees. Here is such a 2–3–4 tree. 

 

 



(a) Draw the corresponding left-leaning red-black tree. Mark red links with ‘r’. (Note that it 

may violate some of the conditions for a valid LLRB.) If you end up drawing several trees, 

make sure you circle your final answer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) Draw the left-leaning red-black tree that results after the insert has been completed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(c) [Extra credit, 1 point] Show one possible order in which these 8 keys could have been 

inserted, starting from an empty tree, so that the result would be the 2–3–4 tree shown on the 

previous page. 

        

 



3. Union-find (10 points).  

 

(a) In each case, write yes in the right column if the array a[i] could represent the state of 

quick find after some sequence of union operations, and no otherwise. 

 

 Quick find Possible? 

i 
a[i] 

0  1  2  3  4  5  6  7  8 
3  1  4  4  4  4  3  4  4 

 

i 
a[i] 

0  1  2  3  4  5  6  7  8 
1  1  1  1  4  4  4  4  4 

 

 

(b) In each case, write yes in the right column if the array a[i] could represent the state of 

weighted quick union after some sequence of union operations, and no otherwise. 

 

 Weighted quick union Possible? 

i 
a[i] 

0  1  2  3  4  5  6  7  8 
1  8  8  5  8  5  7  7  7 

 

i 
a[i] 

0  1  2  3  4  5  6  7  8 
2  1  1  1  4  4  3  5  4 

 

i 
a[i] 

0  1  2  3  4  5  6  7  8 
0  4  3  3  5  1  3  3  2 

 

 

  



4.  Collections (8 points).  

 

The class Mystery implements a collection that we’ve studied in class: 

 

public class Mystery<Item> { 

 private Stack<Item> s; 

 

 public Mystery() { 

  s = new Stack<Item>(); 

 } 

 

 public boolean isEmpty() { 

  return s.isEmpty(); 

 } 

 

 public void add(Item item) { 

  s.push(item); 

 } 

 

 public Item remove() { 

  assert !s.isEmpty(); 

Item x = s.pop(); 

  if (s.isEmpty())  

   return x; 

  Item y = remove(); 

  s.push(x);  

  return y; 

 } 

} 

 

(a) Suppose we make 3 add() calls to a newly constructed Mystery object, followed by a 

remove(). Write the sequence of s.push() and s.pop() operations invoked in executing 

remove(). [For example, you might write something like push, pop, push.] 

 

 

 

(b) Which data type does Mystery implement?  

 

 

(c) What’s the order of growth of the worst-case running time of add() on a Mystery object 

with N items? What about remove? Assume a linked-list implementation of Stack. 

 

add: O(  ) remove: O(  ) 



5. Sorting (12 points).  

 

For each of these statements about sorting algorithms, state whether it is true or false.  

 

(a) Insertion sort has optimal best-case running time. 
 
(b) In any given array, bottom-up mergesort will compare the same pairs of keys 
as top-down mergesort; it just does the comparisons in a different order. 
 
(c) Selection sort compares each pair of keys at most once. 
 
(d) Mergesort with cutoff to insertion sort for subarrays of size ≤ 10 items has  
O(n log n) worst-case running time (where n is the size of the array). 
 
(e) Mergesort with cutoff to insertion sort for subarrays of size ≤ log n items has 
O(n log n) worst-case running time (where n is the size of the array). 
 
(f) For arrays where every key has at least one duplicate, 3-way quicksort runs in 
linear time. 
 
(g) One reason heapsort can be slower than quicksort in practice is that it makes 
poor use of cache. 
 
(h) We can sort an array by date by first sorting it by day, then by month, then by 
year, but only if we use a stable sorting algorithm. 
 

 _______ 
 
 
 _______ 
 
 _______ 
 
 
 _______ 
 
 
 _______ 
 
 
 _______ 
 
 
 _______ 
 
 
 _______ 

 

 

6. Memory (12 points).  

 

(a) Consider the following separate-chaining hash table implementation. Only the variables 

are shown, methods are not. 

 

public class SeparateChainingHashST<Key, Value> { 

 

private static class Node<Key, Value>  { 

private Key key; 

private Value val; 

private Node next; 

... 

} 

 

private int M;    // length of st array 

private Node[] st;   // array of chains 

... 

} 

 



Using the 64-bit memory cost model from lecture and the textbook, estimate the number of 

bytes of memory consumed by the hash table as a function of M (which is the length of the 

array st), and the number of keys N. Express your answer in tilde notation. Ignore the 

memory consumed by the keys and values themselves. 

 

Hint: since you’re allowed to use both M and N in your answer, you don’t need to worry about 

expressing M in terms of N (i.e., no need to take into account the average chain length). 

    

~  bytes 
 

(b) Now consider the following linear-probing hash table implementation. As before, only the 

variables are shown. 

 

public class LinearProbingHashST<Key, Value> { 

 private int L;   // length of keys and vals arrays 

 private Key[] keys;  // array of keys 

 private Value[] vals;  // array of corresponding values 

 ... 

} 

 

Estimate the number of bytes of memory consumed by this implementation as a function of 

the array length L and the number of keys N. Express your answer in tilde notation. Ignore the 

memory consumed by the keys and values themselves.  
    

~  bytes 
 

(c) After a certain number of keys N have been inserted into each hash table implementation, 

it is observed that they have both consumed the same amount of memory. It is also observed 

that the average chain length in the separate chaining implementation is 4.0. Based on this 

information, calculate the fraction of the linear-probing hash table that’s filled up. 

 

(Write a number between 0 and 1, either as a decimal or as a fraction.) 

     

   
 

 

 

  



7. Design (12 points).  

 

Call two strings equivalent if one is an anagram of the other, that is, one string can be turned 

into the other by rearranging the characters. An equivalence class is a set in which any pair is 

equivalent. For example, in the array ["aaa", "aab", "aba"], there are two equivalence 

classes since the latter two strings are equivalent but neither is equivalent to the first string. 

 

Given an array of strings, design an algorithm to find the number of equivalence classes 

among them. Write your answer in words, rather than code or pseudocode. But be precise 

about your data structures and the steps of your algorithm.  

 

Analyze the order-of-growth running time of your algorithm. For full credit, it should run in 

time O(NM (log N + log M)) in the worst case, where N is the length of the array and M is the 

maximum length of the strings.  

 

 

  



Use this space for scratch. And don’t forget to write your info on the front page! 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Problem Score 

1  

2  

3  

4  

5  

6  

7  

Total  

 


