
COS 226 Algorithms and Data Structures Spring 2015

Midterm

This test has 9 questions worth a total of 55 points. You have 80 minutes. The exam is closed book, except that
you are allowed to use a one page cheatsheet. No calculators or other electronic devices are permitted. Give your
answers and show your work in the space provided. Write out and sign the Honor Code pledge just before
turning in the test.

Again, because this exam is preprocessed by computer: make sure your writing is dark, do not
write any answers outside of the designated frames, and do not write on the corner marks.

“I pledge my honor that I have not violated the Honor Code during this examination.”

Name:

netID:

Room:

P01 P01A P02 P03 P04 P05 P05A P06 P06A P06B P07
Precept:

Problem Score Problem Score
0 5
1 6
2 7
3 8
4

Sub 1 Sub 2

Total

P01 Th 11 Andy Guna
P01A Th 11 Shivam Agarwal
P02 Th 12:30 Andy Guna
P03 Th 1:30 Swati Roy

P04 F 10 Robert MacDavid
P05 F 11 Robert MacDavid
P05A F 11 Shivam Agarwal
P06 F 2:30 Jérémie Lumbroso
P06A F 2:30 Ryan Beckett
P06B F 2:30 Josh Wetzel
P07 F 3 Jérémie Lumbroso

0. Initialization. (1 point)

In the space provided on the front of the exam, write your name and Princeton netID; fill in your precept number;
write the name of the room in which you are taking the exam; and write and sign the honor code.

1. Memory and Data Structures. (3 points)

Using the 64-bit memory cost model from lecture, how many bytes does each SearchNode object use?

public class SearchNode implements Comparable<SearchNode> {
private int moves; // number of moves to get to this node
private int priority; // cache of the priority
private Board board; // the current board
private SearchNode prev; // the previous node

// [constructor and instance methods omitted]
}

When an object is referenced, do not include the memory for the object, but do include the memory for the reference
to the object. Also, note that SearchNode is a top-level class (and not a nested class).

bytes

2. Eight Sorting Algorithms and a Shuffling Algorithm. (8 points)

The column on the left is the original input of strings to be sorted or shuffled; the column on the right are the
strings in sorted order; the other columns are the contents at some intermediate step during one of the algorithms
listed below. Match up each algorithm by writing its number under the corresponding column. Use each number
exactly once.

,
0 cyan cafe bark bole gold cyan bark bole aqua aqua
1 cafe aqua cafe bone flax bone bole bone bark bark
2 ruby bole aqua cafe dust lava bone cafe bole bole
3 bole bone bole cyan fawn bole buff cyan bone bone
4 flax buff cyan flax cyan fawn cafe fawn buff buff
5 bone bark bone rose bole flax cyan flax cafe cafe
6 rose cyan buff ruby cafe cafe fawn gold cyan cyan
7 sage cyan cyan sage buff jade flax jade cyan cyan
8 fawn leaf fawn bark cyan gray gold leaf dust dust
9 leaf gold leaf buff bone rose gray rose fawn fawn

10 gold jade gold fawn aqua buff jade ruby flax flax
11 jade lava jade gold bark gold lava sage gold gold
12 lava fawn lava gray gray sage leaf bark gray gray
13 bark gray sage jade jade leaf rose buff jade jade
14 gray sage gray lava kobi ruby ruby cyan kobi kobi
15 buff kobi rose leaf lava bark sage gray lava lava
16 kobi rose kobi aqua leaf kobi kobi kobi ruby leaf
17 cyan dust flax cyan mint cyan cyan lava rose mint
18 dust silk dust dust palm dust dust dust leaf palm
19 silk palm silk kobi rose silk silk silk silk rose
20 palm sand palm mint ruby palm palm palm palm ruby
21 sand flax sand palm sage sand sand sand sand sage
22 aqua mint ruby sand sand aqua aqua aqua sage sand
23 mint ruby mint silk silk mint mint mint mint silk

---- ---- ---- ---- ---- ---- ---- ---- ---- ----

0 9

(0) Original input

(1) Selection sort

(2) Insertion sort

(3) Mergesort
(top-down)

(4) Mergesort
(bottom-up)

(5) Quicksort
(standard, no shuffle)

(6) Quicksort
(Dijkstra 3-way, no shuffle)

(7) Heapsort

(8) Knuth shuffle

(9) Sorted

3. Analysis of Algorithms and Sorting. (8 points)

Consider the following function that sorts an array of N comparable keys.

public static void sort(Comparable[] a) {
int N = a.length;
for (int i = 0; i < N; i++) // outer loop

for (int j = N-1; j > i; j--)
if (less(a[j], a[j-1]))

exch(a, j, j-1);
}

(a) Which of these invariants does the above code satisfy at the end of each outer i loop? Check all that apply:

Entries a[0] through a[i] are in sorted order.
Entries a[0] through a[i] contain the smallest keys in the entire array.
Entries a[N-i-1] through a[N-1] are in sorted order.
Entries a[N-i-1] through a[N-1] contain the largest keys in the entire array.

(b) Which of the following are properties of the sorting algorithm? Check all that apply.

The sorting algorithm is stable.
The sorting algorithm is in-place.

(c) How many compares does sort() make to sort an array of N keys in the best case?

∼ 0 ∼ N ∼ log2N ∼ 1/4 ·N2 ∼ 1/2 ·N2 ∼ 3/4 ·N2

(d) How does the number of exchanges made by sort() relate to the number of exchanges made by insertion
sort? Check all that apply.

Insertion sort makes strictly more exchanges for some arrays.
Insertion sort makes strictly fewer exchanges for some arrays.
Insertion sort makes strictly more exchanges for all arrays.
Insertion sort makes strictly fewer exchanges for all arrays.
Insertion sort makes exactly the same number of exchanges for all arrays.

4. Red-Black BSTs. (6 points)

Consider the following left-leaning red-black BST.

Midterm, Fall 2014

6

4

12

18

10

red link

8

28

22

20

24

32

26

16

30

2

14

Suppose that you insert the key 23 into this left-leaning red-black BST above.

(a) Which of the following color flips result? Check all that apply.

Color flip 18
Color flip 22
Color flip 23
Color flip 24
Color flip 26
Color flip 28

(b) Which of the following rotations result? Check all that apply.

Rotate 18 left
Rotate 18 right
Rotate 22 left
Rotate 22 right
Rotate 23 left
Rotate 23 right
Rotate 24 left
Rotate 24 right
Rotate 26 left
Rotate 26 right
Rotate 28 left
Rotate 28 right

Midterm, Spring 2015

8

3
rotate 8 right

T3
3

8
rotate 3 left

3

81

color flip 3

T2T1

T1

T3T2

T1 T2 T3 T4

3

81

T1 T2 T3 T4

Midterm, Spring 2015

8

3
rotate 8 right

T3
3

8
rotate 3 left

3

81

color flip 3

T2T1

T1

T3T2

T1 T2 T3 T4

3

81

T1 T2 T3 T4

5. Hash Tables. (6 points)

(a) What is a collision in a hash table implementation of a symbol table? Check the best definition.

Two key-value pairs that have equal keys but different values.
Two key-value pairs that have different keys and hash to different indices.
Two key-value pairs that have different keys but hash to the same index.
Two key-value pairs that have equal keys but hash to different indices.

(b) A linear-probing hash table of length 10 uses the hash function h(x) = x mod 10. After inserting six integer
keys into an initially empty hash table, the array of keys is:

0 1 2 3 4 5 6 7 8 9
42 23 34 52 46 33

Which of the following choice(s) are insertion sequences resulting in the above hash table? Assume that the
length of the hash table does not change during the insertions. Check all that apply.

46, 42, 34, 52, 23, 33
34, 42, 23, 52, 33, 46
46, 34, 42, 23, 52, 33
42, 46, 33, 23, 34, 52
42, 23, 34, 52, 46, 33

(c) Suppose that your hash function does not satisfy the uniform hashing assumption. Which of the following
can result? Check all that apply.

Poor performance for insert.
Poor performance for search hit.
Poor performance for search miss.
Uneven distribution of lengths of chains in separate-chaining hash table.
Large clusters in linear-probing hash table.
Linear-probing hash table can become 100% full.

6. Properties of Data Structures. (6 points)

Check whether each of the following statements is true or false.

(a) Binary heaps.

True False
Let a[] be a max-oriented binary heap that contains the N distinct integers 1, 2, . . . , N in
a[1] through a[N]. Then, key N must be in a[1]; key N − 1 must be in either a[2] or
a[3]; and key N − 2 must be in either a[2] or a[3].

The order of growth of the total number of compares to insert N distinct keys in descending
order into an initially empty max-oriented binary heap is N .

A 3-heap is an array representation (using 1-based indexing) of a complete 3-way tree, where
the key in each node is greater than (or equal to) its children’s keys. In the worst case, the
number of compares to insert a key in a 3-heap containing N keys is ∼ 1 log3N .

(b) Binary search trees.

True False
It is possible to insert any batch of N keys into an initially empty binary search tree using at
most 2N compares.

The height of any left-leaning red-black BST with N keys is always between ∼ 1 log2N and
∼ 2 log2N .

The subtree rooted at any node of a 2-3 tree is itself a 2-3 tree.

7. Algorithm Design. (8 points)

Let a = a0, a1, . . . , aN−1 be an array of length N . An array b is a circular shift of a if it consists of the subarray
ak, ak+1, . . . , aN−1 followed by the subarray a0, a1, . . . , ak−1 for some integer k. In the example below, b is a circular
shift of a (with k = 7 and N = 10).

39

Rotation of sorted array

sorted array a[]

1 2 3 5 6 8 9 34 55 89

circular shift b[]

34 55 89 1 2 3 5 6 8 9

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

Suppose that you are given an array b that is a circular shift of some sorted array (but you have access to neither k
nor the sorted array). Assume that the array b consists of N comparable keys, no two of which are equal. Design
an efficient algorithm to determine whether a given key appears in the array b.

The order of growth of the running time of your algorithm should be logN (or better) in the worst case, where N
is the length of the array.

Briefly describe your algorithm, using either crisp and concise prose or code. Your answer will be graded on
correctness, efficiency, and clarity.

8. Data Structure Design. (9 points)

Design an efficient data type to store a threaded set of strings, which maintains a set of strings (no duplicates) and
the order in which the strings were inserted, according to the following API:

40

Midterm Spring 2015: Threaded Set

public class ThreadedSetpublic class ThreadedSetpublic class ThreadedSet

ThreadedSet() create an empty threaded set

void add(String s) add the string to the set (if it is not already in the set)

boolean contains(String s) is the string s in the set?

String previousKey(String s)
the string added to the set immediately before s
(null if s is the first string added; exception if s is not in set)

Here is an example:

ThreadedSet set = new ThreadedSet();
set.add("aardvark"); // ["aardvark"]
set.add("bear"); // ["aardvark", "bear"]
set.add("cat"); // ["aardvark", "bear", "cat"]
set.add("bear"); // ["aardvark", "bear", "cat"]

// (adding a duplicate key has no effect)

set.contains("bear"); // true
set.contains("tiger"); // false
set.previousKey("cat"); // "bear"
set.previousKey("bear"); // "aardvark"
set.previousKey("aardvark"); // null

Your answer will be graded on correctness, efficiency, and clarity.

(a) Declare the instance variables for your ThreadedSet data type. You may declare nested classes or use data
types that we have considered in this course.

public class ThreadedSet {

}

(b) Briefly describe how to implement each of the operations, using either crisp and concise prose or code.

• void add(String s):

• boolean contains(String s):

• String previousKey(String s):

(c) Under reasonable technical assumptions, what is the order of growth of each of the methods as a function of
the number of keys N in the data structure? Assume that the length of all strings is bounded by a constant.

1 logN
√
N N N logN N2

add()
contains()
previousKey()

