Spring 2013 Midterm Solutions (Beta Edition)

. Analysis of Algorithms.

. Analysis of algorithms.

a. OBESPIYWM

b. OBEYSWIMP

c. This graph is not a DAG, and thus there is no topological order.
MSTs.

a. A-B A-H A-F B-E C-G C-I D-E C-E
b. A-B A-H A-F B-E D-E E-C C-G C-I
c. x <120. Givenaloopinagraph, we can always throw away the largest edge. We
know all the rest of the edges are part of the MST from parts a and b.
TSTs.

a. Height of TST (to the right) is 6.

b. Worst case insertion order is to get
SHAMAN or BEWARE to the bottom
level. For example, A, BEWARE, IN,
MAAM, TOWN, SHAMAN. 2

a. Linear: Given

b. G. Each iteration of the inner loop is
quadratic in the outer loop variable.
The simplest way to do this is to realize
we’re just summing Y. i2, which will
just be O(N?) if we use the integration
trick.

c. H. Each iteration spawns two
iterations. Thus by the time we get to the bottom level (where n=1), we’ve produced 2"
total calls to f3.

d. D. This is the similar to the pattern that we saw in Mergesort and Quicksort, except that
each recursive call does only a constant amount of work instead of a linear amount. Itis
the same as the pattern for bottom up heapification. At the top level, we do 1 unit of
work; at the 2" level, we do 2 units of work; at the 3" level, we do 4 units, etc. The total
amount of work is thus givenby 1 + 2 + 4 + 8 + --- 4+ N. This sum is linear in N.

e. E.Thisis the exact same pattern as Mergesort and Quicksort. If you want to think of it as
asum, thenit’s N + N + --- N, where are log, N summands.

f. B. After the first iteration, i = 2. After the second, i = 22. After the third, i = 22°, etc.
This takes Log™* N steps to reach N. If you weren’t totally sure, you could have also
observed that Log* N was the only answer between constant and Log N.

Shortest Paths.

a. 35174

b. Vertex 6 is the next to be relaxed, reducing vertex 4’s distance to 1.0, and setting
edgeTo[4] to 6.

c. Choosing any weight > 10 ensures that vertex 6 relaxes before vertex 4, and thus edge
6 — 4 is guaranteed to get utilized. Alternate answer was to choose any weight < 2, in
which case the edge 6 — 4 is irrelevant.

d. Worksheet: =

a. BBABBCBBABBB
b. No matter how many times you click find next, there’s no need to rebuild the KMP
DFA if things are as optimized to be as fast as possible. Thus we need only construct the
DFA once.
c. This problem was a bit underspecified so we took a number of different answers. The
two things that were not specified in the problem were:
i. Given a text AAAAAAAAAA and a pattern AAA, would the first match start at the
second A, or at the underlined A? Determines if best case is M+F or MF.
ii. Suppose the user clicks find next after the text editor has scanned all the way
to the end, will it start at the beginning of the text file after the next click of the
find next button? Determines if worst case is FN or N.

Given those under-specifications, we accepted:

Best Case: MF + Q, M+F
Worst Case: FN+Q, N+ Q

Here Q is the construction time that you specified in part b. If you omitted Q, that was
fine, since it would be dominated by the search time in all cases.
7. Regular Expressions.
a.

0, 7 n 12 13

CRUEONOSOR SR ORUS=OR G ONe

i. (AB)*
ii. (ABD*)+ or equivalently (ABD*)(ABD*)*
c. The DFA can be exponentially large (which will naturally take exponential time to

construct)
8. MaxFlow, Reductions.
a. 11
b. 12
c.s, B

d.
i. Y.Reduction takes N? time.

ii. N. There could be other solutions to OcToPUSWRANGLING.

iii. N. A lower bound is not a proof of existence. For example, | say that all NP
complete problems can be solved in constant time or better. That is a lower
bound.

iv. N.Reduction doesn’t go backwards. Just because | know how to turn off the
lights at my apartment doesn’t mean | know how to disable the power grid to
the city.

9. True. False. Pain.

a.

F. If you think about how Kruskal’s or Prim’s algorithms work, all that matters is the
relative order.

T. If this was false, then you could use Dijkstra’s algorithm to handle negative edge
weights just fine.

F. Finding a Hamilton path just requires that you find a topological sort. Alternate
answer: There is no such thing as a Hamilton tour on a DAG (since you have to come
back to the start!)

True OR False, depending on your interpretation of “algorithm completes”. There is an
infinitely small chance that you may end up never completing, in which case the
statement is false. If you disregard this silly (but technically real) possibility, then the
algorithm works fine, since it’s a most direct application of the cut property.

F. Even if you ignore the silly possibility of getting infinitely unlucky, this algorithm still
won’t work. Consider the case where you have 4 vertices where the minimum spanning
tree would be a Z. The top and bottom pairs of points will pick each other, and there will
never be a case where they are able to reach out to their buddies on the other side. ®
T. Rerunning Dijkstra’s algorithm V times is basically the same thing as Bellman-Ford.
You end up relaxing every vertex V times (once more than you need to in the worst
case).

T. If the answer to “Does there exist a tour of city-set Q of length less than 10,000” is
yes, then the proof (i.e. a putative tour of length less than 10,000) can be verified in
polynomial time, we simply check the length of the proof in the tour. This problem is
thus in NP. Note, it is NOT in P.

F. If the answer to “Is tour X the shortest tour of city-set Q?” is yes, we have no tour to
check to prove that the proposition is true. This problem is not in P or NP (though it is in
yet another complexity class we haven’t discussed called co-NP).

F. It is impossible to create an algorithm for finding the Kolmogorov complexity of a
given string.

F. Reducing problem X to 3SAT just means that the problem can be solved using 3SAT.
To be NP complete, you have to shown that X is in NP and that every problem in NP
reduces to X. Another way of thinking about this is that you have to show that X is as
hard as the hardest problem in NP. Reducing X to 3SAT just says that 3SAT is at least as
hard as X (wrong direction).

10. Recursive Code / BinaryStdin.

NUL

[\
P NUL

11. Compression.
a. CHEEZ
b. 1 million as: LZW (gets shorter once codeword represents more than 8 as)
abacad...fg: Huffman, because no codeword used twice

c. Weobservethatif L =n(n+ 1)/2, then the number of bits used is exactly 8n. In this

case, we have thatn = w. The output of LZW thus uses —4 + 4+/1 + 8L bits. In

ASCIl, we had 8L bits, resulting in a compression ratio order of growth of %

d. Printing out requires only a finite length program (albeit infinite time). Printing out
only 7’s first N digits requires log (N) bits to specify the number of digits of i to print.

12. Graph Algorithm Design. Since we’re looking for shortest paths, it’s pretty clear we’re going to
need to use some sort of BFS.

The first insight in this problem is that we don’t need to worry at all about cycles. Since we’re
dealing with shortest paths, we know that any path involving a cycle will not count as a shortest
path.

Another useful insight is that if we’re using BFS, every incoming edge to vertex X that could
possibly be part of a shortest path to X will be processed before vertex X is dequeued. This
means that we can move on from vertex X as soon as X is dequeued (i.e. there’s no need to wait
for every incoming edge, so we can proceed in normal BFS order).

Given the two insights above, we have a pretty natural (but possibly slow) algorithm that we
can use as a starting point. We simply give every vertex an empty Bag, where each entry in the
Bag represents the length of a particular path to that vertex. We start the source vertex off with
a 0inits bag, and every other bag starts empty. When an edge a — b is processed (using BFS),
the list inside a is incremented by 1 and appended to b’s list. For example, consider the graph
below, where vertices in red have not yet been dequeued, and edges in red have not yet been
processed.

@éQ L2

When this algorithm completes, we’re left with the graph shown below. To determine the
number of shortest paths to a node, we simply count the number of occurrences of the
minimum inside the node.

This algorithm is too slow, because in a fully connected graph, we’d have to build V lists of
length V, which is nonlinear. To improve performance, we can take advantage of the fact that

we don’t really need to keep anything other than the number of shortest paths for each node.
We can accomplish this by adding a third array to BFS called pathCount of length V.

In this improved algorithm we start by setting pathCount inside each node to 0. When
processing an edge a — b, if distTo[b] = distTo[a] + 1, we increment pathCount[b] by
pathCount[a] (since vertex a provides a new set of shortest distTo[a]). If distTo[b] <
distTo[a] + 1, we've found a new shortest path, and set pathCount[b] to pathCount[a]. If
distTo[b] > distTo[a] + 1, we do nothing since the path(s) under consideration is too long
to be considered.

s

For example, for the first graph above, our graph state would be given by:

distTo edgeTo pathCount
v0 0 (don’t care) 1
vl 1 (don’t care) 1
v2 1 (don’t care) 1
v3 2 (don’t care) 2
va 3 (don’t care) 2
v5 1 (don’t care) 1
v6 0o (don’t care) 0

As an example, when the edge from v4 — v6 is processed, the algorithm will see that
distTo[v4] < distTo[6] + 1, and thus pathCount[v6] will be set equal to pathCount[v4].

13.F

Only Rabin-Karp can be generalized nicely. Attempts to build a KMP DFA that inhabits
multiple states results in a run time identical to just searching for K patterns
independently. Attempts to build a Boyer-Moore like algorithm that individually tracks
matches with each pattern also have runtime equal to searching for K patterns
independently.

The simplest approach is to simply pre-hash all the patterns and store hash in a set. This
set can be implemented either as a hash set or as an LLRB. In Java, we could do this by
creating a Set<Integer>.

The procedure is precisely the same as normal Rabin-Karp, except that instead of
checking equality, one checks to see if the Set contains the hash of the current M
characters.

Calculating K hashes takes KM time. If we use a hash set, then storing these K hashes
takes K time on average under the uniform hashing assumption. Construction thus takes
a total of KM time. If you stated worst case performance, then K log K + KM was also
acceptable for a hash table.

When processing the string, assuming that N > M, we have to perform N set accesses.
If we’re using a hash set, this results in a total run time of N, or N log K if you consider
the worst case under the uniform hashing assumption.

If using an LLRB of hashes, then the build and process time are KM + K log K and
N log K respectively.

14. Legume grime pop.

A hash table originals that maps strings to Bags of strings.

Also acceptable: any symbol table with string keys that can be constructed in time linear in the
number of strings, e.g., an R-way trie. A red-black tree or TST would take O(N log N) time to
construct.

Key idea: avoid generating every permutation of each word (which is O(L!)).

* Read each word word from input, insertion sort it to generate dorw, and add dorw to the
Bagoriginals[w] (create the Bag if it doesn’t exist). Keep track of the maximum Bag
length. O(NL?2).

* |terate through originals. Stop when you find a Bag whose length equals the maximum.

Print the words in this Bag. O(N).

Sorting each word using key-indexed counting is asymptotically faster at O(NLR), where R is the
alphabet size, but insertion sort which is O(NL?) is likely faster in practice for typical English

words.

C. Key idea: avoid an exponential search for all possible word ladders. Here are two solutions with
varying tradeoffs between simplicity, speed and generalizability.

Both solutions use a subroutine neighbors (dorw) that assumesoriginals already exists —
Given a dorw of length k, generate the k dorws of length k-1 and return the ones that are valid

(i.e., those that are keysinoriginals). O(L?).

Solution 1.
* Create a DAG where nodes are dorws and there is an edge from each dorw to each of its
neighbors. Ninvocations of neighbors, O(NL?).
* Find the longest path in this DAG.
o This can be done by creating a virtual root node with an edge to every root (finding the
roots is O(N)), assigning a weight of -1 to each edge, and computing the shortest paths
from the virtual root using topological sort. O(N).
* Look up the dorws on this longest path (in reverse) in originals and print a sequence of

original words.

Solution 2.

* Initialize a hash table rung_height from dorws to ints with all values set to 0. The
rung_height of dorw is the max rung height of dorw in any anagram ladder that it can appear
in. Lowest rung is 0.

* Create a sorted array of dorws in increasing order of length. O(N) by key-indexed counting.

* For each dorw dorw In this array:

rung_height[dorw] = max(rung_height[nbr] for nbr in
neighbors[dorw])

//ifneighbors[dorw] is empty do nothing, as dorw must be the bottom rung in any
ladder. Note that the neighbors have already been processed because of sortedness.
Ninvocations of neighbors, O(NL2).
* Find the dorw with maximum rung_height, and iteratively find a sequence of neighbors with

rung_height of each neighbor one less than the previous. O(N + poly(L)).

Look up the dorws in this ladder (in reverse) inoriginals and print a sequence of original

words.

Solution 1 is more elegant is but probably slower in practice (and consumes more memory) due

to graph creation, despite having the same asymptotic runtime as Solution 2.

