
COS 226 FINAL SOLUTIONS, FALL 2014 1

COS 226 Algorithms and Data Structures Fall 2014

Final Exam Solutions

1. Digraph traversal.

(a) 8 5 7 6 1 0 4 2 3

(b) 0 4 2 3 1 5 6 7 8

2. Analysis of algorithms.

(a) N

(b) logN

(c) N logN

(d) RN

(e) (N + R) logN
For a given value of i, the j loop is executed ∼ (N + R)/i times. Thus, the total is
(N + R)(11 + 1

2 + 1
3 + . . . + 1

N ) ∼ (N + R) lnN .

3. String sorting algorithms.

0 initial order

2 MSD radix sort after the first call to key-indexed counting

3 3-way radix quicksort after the first partitioning step

3 3-way radix quicksort after the second partitioning step

1 LSD radix sort after 3 passes

1 LSD radix sort after 2 passes

1 LSD radix sort after 1 pass

2 MSD radix sort after the second call to key-indexed counting

4 sorted order



2 PRINCETON UNIVERSITY

4. Substring Search.

(a)

0 1 2 3 4 5 6 7
A 0 2 0 4 0 4 0 2
B 0 0 0 0 0 6 0 8
C 1 1 3 1 5 1 7 1

(b)

Final, Fall 2014

Y B R O T H E R T H A T F A T H E R W A S M Y F A T H E R T

M Y F A T H E

Y B R O T H E R T H A T F A T H E R W A S M Y F A T H E R T

M Y F A T H E

M Y F A T H E

M Y F A T H E

M Y F A T H E

M Y F A T H E

M Y F A T H E

M Y F A T H E

5. Minimum spanning tree.

(a) Kruskal only

(b) Prim only

(c) Prim only

(d) Neither

(e) Neither

(f) Both

6. Maximum flow.

(a) 3
To satisfy flow conservation at C, we need the flow on edge C → D to be 3.

(b) 15 The net flow arriving at t is equal to the net flow leaving s. This implies that the flow
on edge D → J is 2.

(c) A→ G→ B → C → I → J

(d) 18

(e) {A,B,C, F,G}.



COS 226 FINAL SOLUTIONS, FALL 2014 3

7. Properties of algorithms.

(a) Shortest paths.

F Consider an edge-weighted digraph with these edges and weights: s→ v (1), v → w
(2), w → t (3), s → t (4). Then, the shortest path is s → t, which excludes the
lightest edge.

F In the example above, the shortest path excludes the second lightest edge.

F In the example above, the shortest path includes the heaviest edge.

F Consider an edge-weighted digraph with these edges and weights: s → v (1), v → t
(2), s→ t (3). Then there are two shortest paths: s→ v → t and s→ t.

(b) Minimum spanning trees.

T Apply the cut property to either endpoint of the lightest edge.

T Let e = v-w be the lightest edge and f = x-y be the second lightest edge. Apply the
cut property to either the vertex x or y (pick x or y so that it is different from both
v and w).

F Consider an edge-weighted graph with these edges and weights: v-w (1), w-x (2),
x-v (3), x-y (4). Then, the unique MST contains the heaviest edge x-y.

T As asserted in lecture/textbook, if the edge weights are distinct, then the MST is
unique.

(c) Burrows-Wheeler transform.

F No string s has x = 0 AB as its Burrows-Wheeler transform.

T Otherwise, we wouldn’t be able to uniquely decode the message.

F There are two valid Burrows-Wheeler transforms of s = AA: x = 0 AA and y =
1 AA. Thus, the inverse transforms of x and y are equal even though x 6= y.

F Computing the Burrows-Wheeler transform is slower because it involves a circular
suffix array computation, whereas the Burrows-Wheeler inverse transform is a com-
pact loop.

8. Huffman trees.

First, construct a frequency table of the characters.

frequency characters

4 A T

3 R S -

2 U D

1 C E G H I L M N O

Then, for each tree, weight the frequency of each letter by the depth in the tree, and sum up.

O 114 bits

O 114 bits

N 115 bits

N 115 bits



4 PRINCETON UNIVERSITY

9. LZW compression.

42 81 82 43 41 81 43 83 80

10. Burrows-Wheeler transform.

(a) 1 C A D D B B D A

Below are the sorted circular suffixes:

i suffixes[i] t

-------------------

0 A A D D B D B C

* 1 A D D B D B C A

2 B C A A D D B D

3 B D B C A A D D

4 C A A D D B D B

5 D B C A A D D B

6 D B D B C A A D

7 D D B D B C A A

(b) B C D C A A C D

Below are the sorted cyclic suffixes and the next[] array:

i suffixes[i] t next[i]

-----------------------------

0 A ? ? ? ? ? ? C 1

1 A ? ? ? ? ? ? A 4

* 2 B ? ? ? ? ? ? D 5

3 C ? ? ? ? ? ? D 0

4 C ? ? ? ? ? ? A 6

5 C ? ? ? ? ? ? B 7

6 D ? ? ? ? ? ? C 2

7 D ? ? ? ? ? ? C 3



COS 226 FINAL SOLUTIONS, FALL 2014 5

11. Algorithm design.

We use a 4-way trie, but extend it so that each node also stores the number of strings that
have been added to the trie that start with the corresponding prefix. In addition to the integer
instance variable for the count, we need four node references (either an array of length four
or four separate variables).

(a) private Node root;

private static class Node {

private int count;

private Node a, c, t, g;

}

(b) Insert the fragment into the trie as usual, but increment the count field in each node
along the insertion path (but no special code is needed to deal with duplicate keys).

public void add(String fragment) {

root = add(root, fragment, 0);

}

private Node add(Node x, String fragment, int i) {

if (i == fragment.length()) return x;

if (x == null) x = new Node();

x.count++;

char c = fragment.charAt(i);

if (c == 'A') x.a = add(x.a, fragment, i+1);

else if (c == 'C') x.c = add(x.c, fragment, i+1);

else if (c == 'G') x.g = add(x.g, fragment, i+1);

else if (c == 'T') x.t = add(x.t, fragment, i+1);

return x;

}

(c) Find the node corresponding to the given prefix and return the count in that node.

public int prefixCount(String prefix) {

Node x = root;

for (int i = 0; i < prefix.length() && x != null; i++) {

char c = prefix.charAt(i);

if (c == 'A') x = x.a;

else if (c == 'C') x = x.c;

else if (c == 'G') x = x.g;

else if (c == 'T') x = x.t;

}

if (x == null) return 0;

else return x.count;

}

(d) The prefixCount() operation takes time proportional to W in the worst case.



6 PRINCETON UNIVERSITY

12. Reductions.

(a) Create a new graph G′ that is identical to G. Then add a source s′ and an edge from s′

to s with weight = 1 + maxewe. We claim that finding a shortest teleport path from s′

to t in G′ yields a shortest path from s to t in G. To see why, observe that every shortest
teleport path in G′ must begin with the edge s→ s′ (because it is the only edge leaving
s′) and it must teleport across it (because it is the heaviest edge in G′).

Final, Fall 2014 Solution

v

s w t

u

weight

1
5

2

6

9987

destinationsource s' 100

(b) Create a new graph G′ that contains two copies of G, which we will call G0 and G1. For
each edge v → w in G, add an edge from v0 to w1 with weight 0. We claim that finding
a solution to Shortest-Path in G′ yields a solution to Shortest-Teleport-Path in
G. More precisely, the shortest path from s0 to t1 in G′ provides the shortest teleport
path. Any path from s0 to t1 must follow an edge from a vertex v0 in G0 to a vertex w1

in G1, which corresponds to teleporting across edge v → w.Final, Fall 2014

v0

s0 w0 t0

u0

1

5

2

6

99

87

source

v1

s1 w1 t1

u1

1

5

2

6

99

8

7

destination

G0

G1
0

0

0

00

0

0

(c) T T T T



13. Problem identification.

P You can use DFS to find a (simple) directed cycle.

P You can solve using BFS. For each edge v → w that has weight 2, add a vertex x and
replace the edge by the two edges v → x and x→ w.

P This is equivalent to finding the shortest path from s to t using weights = -log of the
original weights. Since the digraph is a DAG, this can be done in linear time.

O Using the same log trick, this is equivalent to finding an MST. There is no known linear-
time algorithm of the problem.

O Using the same log trick, this is equivalent to finding the longest path in a graph, which
is NP-complete.

O There is no known linear-time reduction from maxflow to mincut.

P Radix sort the strings; then look at consecutive entries in the sorted array.

P Radix sort the 64-bit integers; maintain two scanning pointers, one that indexes negative
integers and goes from left to right and one that indexes positive integers and goes from
right to left, checking for integers and their negations.

P Treat each integer as a string of length 2 over an alphabet of size R. Sort the resulting
strings using LSD radix sort.

7


