Testing

“On two occasions I have been asked [by members of Parliament!], ‘Pray, Mr. Babbage, if you put into the machine wrong figures, will the right answers come out?’ I am not able rightly to apprehend the kind of confusion of ideas that could provoke such a question.”

– Charles Babbage
Why Test?

It's hard to know if a (large) program works properly

Ideally: Automatically prove that a program is correct (or demonstrate why it’s not)

```
Specification → General Program Checker → Right or Wrong
```

```
program.c
```

“Beware of bugs in the above code; I have only proved it correct, not tried it.”

– Donald Knuth

Alan M. Turing *38
Why Test?

Semi-ideally: Semi-automatically prove that some programs are correct

- Specification
- `program.c`
- User interaction

This is possible, but
- beyond most current engineering practice
- beyond the scope of this course

Take COS 326, then COS 510 or COS 516 if you’re interested!
Why Test?

Pragmatically: Convince yourself that your program **probably** works

```
Specification  Testing Strategy  Possibly Right (no bugs found) or Certainly Wrong (bugs found)
```

Result: Software engineers spend **at least as much time building test code** as writing the program

- You want to spend that time efficiently!
Who Does the Testing?

Programmers
- **White-box** testing
 - Pro: Know the code ⇒ can test all statements/paths/boundaries
 - Con: Know the code ⇒ biased by code design

Quality Assurance (QA) engineers
- **Black-box** testing
 - Pro: Do not know the code ⇒ unbiased by code design
 - Con: Do not know the code ⇒ unlikely to test all statements/paths/boundaries

Customers
- **Field** testing
 - Pros: Use code in unexpected ways; “debug” specs
 - Cons: Often don’t like “participating”; difficult to generate enough cases
EXTERNAL TESTING
Example: “upper1” Program

/* Read text from stdin. Convert the first character of each "word" to uppercase, where a word is a sequence of letters. Write the result to stdout. Return 0. */

int main(void)
{
 ...
}

How do we test this program?
Run it on some sample inputs?

$./upper1
heLLo there...
^D
HeLLo There...
$

OK to do it once; tedious to repeat every time the program changes
Organizing Your Tests

/* Read text from stdin. Convert the first character of each "word" to uppercase, where a word is a sequence of letters. Write the result to stdout. Return 0. */

$ cat inputs/001
heLLo there...
$ cat correct/001
HeLLo There...
$ cat inputs/002
84weird e. xample
$ cat correct/002
84Weird E. Xample
/* Read text from stdin. Convert the first character of each "word" to uppercase, where a word is a sequence of letters. Write the result to stdout. Return 0. */

$ cat run-tests
./upper1 < inputs/001 > outputs/001
cmp outputs/001 correct/001
./upper1 < inputs/002 > outputs/002
cmp outputs/002 correct/002

$ sh run-tests
outputs/002 correct/002 differ: byte 5, line 1

(this is a "shell script" or "bash script")
/* Read text from stdin. Convert the first character of each "word" to uppercase, where a word is a sequence of letters. Write the result to stdout. Return 0. */

$ cat run-tests
for A in inputs/* ; do
 ./upper1 <inputs/$A >outputs/$A
cmp outputs/$A correct/$A
done
$ sh run-tests
outputs/002 correct/002 differ: byte 5, line 1

You can also write these scripts in python instead of bash. If you know some python already, this might be a better idea than learning bash.
for (;;) {
 test program; discover bug;
 fix bug, in the process break something else;
}

regression

rəˈgresh(ə)n/

noun

1. a return to a former or less developed state.
2. . . .

regression testing: Rerun your entire test suite after each change to the program. When new bugs are found, add tests to the test suite that check for those kinds of bugs.
Bug-Driven Testing

Reactive mode…
• Find a bug ⇒ create a test case that catches it

Proactive mode…
• Do fault injection
 • Intentionally (temporarily!) inject a bug
 • Make sure testing mechanism catches it
 • Test the testing!
Is This the Best Way?

Limitations of whole-program testing:

• Requires program to have one right answer
• Requires knowing that one right answer

• Requires having enough tests
• Requires rewriting the tests when specifications change
Modularity!

- One of the main lessons of COS 217: Writing large, nontrivial programs is best done by composing simpler, understandable components

- Testing large, nontrivial programs is best done by testing simpler, understandable components
Who Does the Testing?

Programmers

- **White-box** testing
 - Pro: Know the code ⇒ can test all statements/paths/boundaries
 - Con: Know the code ⇒ biased by code design

Quality Assurance (QA) engineers

- **Black-box** testing
 - Pro: Do not know the code ⇒ unbiased by code design
 - Con: Do not know the code ⇒ unlikely to test all statements/paths/boundaries

Customers

- **Field** testing
 - Pros: Use code in unexpected ways; “debug” specs
 - Cons: Often don’t like “participating”; difficult to generate enough cases

Exploiting structure of code makes this strategy more efficient
INTERNAL TESTING WITH ASSERTIONS
The assert Macro

#include <assert.h>

...

assert(expr)

• If `expr` evaluates to TRUE (non-zero):
 • Do nothing
• If `expr` evaluates to FALSE (zero):
 • Print message to stderr: “line x: assertion `expr` failed”
 • Exit the process
• Many uses…
1. Validating Parameters

At beginning of function, make sure parameters are valid

```c
/* Return the greatest common
divisor of positive integers
i and j. */

int gcd(int i, int j)
{
    assert(i > 0);
    assert(j > 0);
    ...
}
```
2. Validating Return Value

At end of function, make sure return value is plausible

```c
/* Return the greatest common divisor of positive integers i and j. */

int gcd(int i, int j)
{
    ...
    assert(value > 0);
    assert(value <= i);
    assert(value <= j);
    return value;
}
```
3. Checking Invariants

At function entry, check aspects of data structures that shouldn't vary; maybe at function exit too.

```c
int isValid(MyType object)
{
    /* Code to check invariants goes here.
       Return 1 (TRUE) if object passes
       all tests, and 0 (FALSE) otherwise. */
    ...
}

void myFunction(MyType object)
{
    assert(isValid(object));
    ...
    /* Code to manipulate object goes here. */
    ...
    assert(isValid(object));
}
```
4. Checking Array Subscripts

Check out-of-bounds array subscript: it causes vast numbers of security vulnerabilities in C programs!

```c
#include <stdio.h>
#include <assert.h>

#define N 1000
#define M 1000000
int a[N];

int main(void) {
    int i, j, sum=0;
    for (j=0; j<M; j++)
        for (i=0; i<N; i++) {
            assert (0 <= i && i < N);
            sum += a[i];
        }
    printf("%d\n", sum);
}
```
5. Checking Function Values

Check values returned by called functions (but not with `assert` – this is not a programming bug)

Example:
- `scanf()` returns number of values read
- Caller should check return value

```c
int i, j;
...
scanf("%d%d", &i, &j);
```

Bad code

```c
int i, j;
...
if (scanf("%d%d", &i, &j) != 2) /* Handle the error */
```

Good code
UNIT TESTING
Testing Modular Programs

Any nontrivial program built up out of modules, or units.

Example:

Homework 2.
Homework 2

str.h (excerpt)
/* Return the length of src */
size_t Str_getLength(const char *src);
/* Copy src to dest. Return dest. */
char *Str_copy(char *dest, const char *src);
/* Concatenate src to the end of dest. Return dest. */
char *Str_concat(char *dest, const char *src);

stra.c (excerpt)
#include "str.h"
... you write this code ...
size_t Str_getLength(const char *src);
char *Str_copy(char *dest, const char *src);
char *Str_concat(char *dest, const char *src);

replace.c (excerpt)
#include "str.h"
/* Write line to stdout with each occurrence of from replaced with to. */
size_t replaceAndWrite(
 char *line, char *from, char *to) {
 ... you write this code ...
 char *Str_getLength, Str_copy,
 Str_concat, etc.
}
int main(int argc, char **argv) {...}
Unit Testing Harness

Write a new program that combines one module with additional code that tests it

Scaffold: Temporary code that calls code that you care about

Stub: Temporary code that is called by code that you care about
/* Test the Str_getLength() function. */

static void testGetLength(void) {
 size_t result;
 printf(" Boundary Tests\n");
 { char src[] = {'\0', 's'};
 result1 = Str_getLength(acSrc);
 assert(result == 0);
 }
 printf(" Statement Tests\n");
 { char src[] = {'R', 'u', 't', 'h', '\0', '\0'};
 result = Str_getLength(src);
 assert(result == 4);
 }
 { char src[] = {'R', 'u', 't', 'h', '\0', 's'};
 result = Str_getLength(src);
 assert(result == 4);
 }
 { char src[] = {'G', 'e', 'h', 'r', 'i', 'g', 's'};
 result = Str_getLength(src);
 assert(result == 6);
 }
}
Should stress the program or module with respect to:

- **Quantity** of data
 - Large data sets
- **Variety** of data
 - Textual data sets containing non-ASCII chars
 - Binary data sets
 - Randomly generated data sets

Consider using computer to generate test data

- Avoids human biases
enum {STRESS_TEST_COUNT = 10};
enum {STRESS_STRING_SIZE = 10000};

static void testGetLength(void) {

 ...

 printf(" Stress Tests\n");
 {int i;
 char src[STRESS_STRING_SIZE];
 for (i = 0; i < STRESS_TEST_COUNT; i++) {
 randomString(src, STRESS_STRING_SIZE);
 result = Str_getLength(acSrc);
 assert(result == strlen(acSrc));
 }
 }
}

Is this cheating? Maybe, maybe not.
printf(" Stres Tests\n");
{
int i, j;
char src[STRESS_STRING_SIZE];
for (i = 0; i < STRESS_TEST_COUNT; i++) {
 randomString(src, STRESS_STRING_SIZE);
 result = Str_getLength(acSrc);
 assert(0 <= result);
 assert(result < STRESS_STRING_SIZE);
 for (j = 0; j < result; j++)
 assert(src[j] != '\0');
 assert(src[result] == '\0');
}
}

Think of as many properties as you can that the right answer must satisfy.
You can . . .

. . . combine unit testing and regression testing

. . . write your unit tests (teststr.c) before you write your client code (replace.c)

. . . write your unit tests (teststr.c) before you begin writing the code that they will test (stra.c)

. . . use your unit-test design as a way to refine your interface specifications (i.e., what’s described in comments in the header) another reason to write the unit tests before writing the code!

. . . avoid relying on the COS 217 instructors to provide you all the unit tests in advance

(We have more unit tests in our grading system than we give you in the homework assignments. It’s your job to test your own code!)
TEST COVERAGE
Statement Testing

(1) **Statement testing**

- “Testing to satisfy the criterion that each statement in a program be executed at least once during program testing.”

From the *Glossary of Computerized System and Software Development Terminology*
Statement Testing Example

Example pseudocode:

```java
if (condition1)
    statement1;
else
    statement2;
...
if (condition2)
    statement3;
else
    statement4;
...
```

Statement testing:

Should make sure both `if` statements and all 4 nested statements are executed
iClicker Question

Q: How many passes of testing are required to get full statement coverage?

A. 1
B. 2
C. 3
D. 4
E. 5
How can you measure code coverage?

Use a tool!

Q: Are we allowed to use code coverage tools in the homeworks?

A: Yes, but if you do,
• You’re on your own: don’t ask the preceptors or Lab TAs for help with the tool
• Describe in your README how you used the tool
(2) **Path testing**

- “Testing to satisfy coverage criteria that each logical path through the program be tested. Often paths through the program are grouped into a finite set of classes. One path from each class is then tested.”

From the *Glossary of Computerized System and Software Development Terminology*
Path Testing Example

Example pseudocode:

```c
if (condition1)
    statement1;
else
    statement2;
...
if (condition2)
    statement3;
else
    statement4;
...
```

Path testing:
Should make sure all logical paths are executed
Q: How many passes of testing are required to get full path coverage?

A. 1
B. 2
C. 3
D. 4
E. 5
Path Testing Example

Example pseudocode:

```java
if (condition1)
    statement1;
else
    statement2;
...
if (condition2)
    statement3;
else
    statement4;
...
```

Path testing:
Should make sure all logical paths are executed

- Simple programs ⇒ maybe reasonable
- Complex program ⇒ combinatorial explosion!!!
 - Path test code fragments

Some code coverage tools can also assess path coverage.
(3) **Boundary testing (or corner case testing)**

- “A testing technique using input values at, just below, and just above, the defined limits of an input domain; and with input values causing outputs to be at, just below, and just above, the defined limits of an output domain.”

From the *Glossary of Computerized System and Software Development Terminology*
Boundary Testing Example

How would you boundary-test this function?

```c
/* Where a[] is an array of length n, return the first index i such that a[i]==x, or -1 if not found */
int find(int a[], int n, int x);
```

```c
int a[10];
for (i=0;i<10;i++) a[i]=1000+i;
assert (find(a,10,1000)==0);
assert (find(a,10,1009)==9);
assert (find(a,9,1009)== -1);
assert (find(a+1,8,1000)== -1);
```
POST-TESTING
Leave Testing Code Intact!

Examples of testing code:
- unit test harnesses (entire module, teststr.c)
- assert statements
- entire functions that exist only to support asserts (isValid() function)

Do not remove testing code when program is finished
- In the “real world” no program ever is “finished”

If you suspect that the testing code is inefficient:
- Test whether the time impact is significant
- Leave assert() but disable at compile time
- Disable other code with #ifdef...#endif preprocessor directives
Efficiency of Testing Code

Doesn’t that slow it down?

How much slower does the assertion make the program?

$ gcc217 -O2 test.c

$ time a.out

0.385 seconds ± .02

$ gcc217 -O2 test_without Assert.c

$ time a.out

0.385 seconds ± .02

Why?

There's a better way – stay tuned!
The assert Macro

If testing code is affecting efficiency, it is possible to disable `assert()` calls without removing them

- Define `NDEBUG` in code...

```c
/*------------------------------------*/
/* myprogram.c                        */
/*------------------------------------*/
#include <assert.h>

#define NDEBUG
...
/* Asserts are disabled here. */
...
```

- ... or when compiling:

```
$ gcc217 -D NDEBUG myprogram.c -o myprogram
```
Beyond asserts: using `#ifdef...#endif`

```c
...  
#define TEST_FEATURE_X  
/* Code to test feature  
    X goes here. */  
#endif  
...  
```

- To enable testing code:
  ```sh
  $ gcc217 -D TEST_FEATURE_X myprog.c -o myprog
  ```

- To disable testing code:
  ```sh
  $ gcc217 myprog.c -o myprog
  ```
Or just piggyback on NDEBUG

```c
... #ifndef NDEBUG /* Code to test feature
    X goes here. */ #endif ...
...
```

- To enable testing code:
  ```bash
  $ gcc217 myprog.c -o myprog
  ```

- To disable testing code:
  ```bash
  $ gcc217 -D NDEBUG myprog.c -o myprog
  ```
Testing is expensive but necessary – be efficient

- External testing with scripts
- Internal testing with asserts
- Unit testing with harnesses
- Checking for code coverage

Test the code—and the tests!

Leave testing code intact