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Abstract

Understanding the symbolic rhetoric of advertisements
is difficult. An agent must recognize creatively portrayed
objects, their relationships and cultural connotations, and
perform common-sense reasoning. To that end, we will be
tackling a new task defined by the CVPR Automatic Under-
standing of Visual Advertisements workshop. For each vi-
sual advertisement image, we must predict one of the three
correct labels amongst a set of 15 action-reason statements.
An advertisement of a woman squeezing a dog as a perfume
bottle and causing the dog pain would match the follow-
ing action-reason statement: ”I should not buy products
that are tested on animals because it is very cruel.” To at-
tempt this task, we adapt a popular VQA architecture to im-
plement a 2-stream ViSe (Visual Semantic) Network, which
takes an image and candidate action-reason statement and
predicts a probability that the two match; this helps demon-
strate the difficulty of the task and serves as a baseline of
existing techniques. Then, we add a third symbolic stream
to ViSe to construct a novel model, which we coin as the
SymViSe (Symbolic Visual Semantic) Network. We further
demonstrate how applying attention mechanisms can boost
the performance of these two networks. Our best SymViSe
model with attention achieves a 37.62% validation accu-
racy, significantly higher than the naive approach of guess-
ing randomly (20%) and anything found in the literature.
We also further isolate the magnitude of influence of the
symbolic stream and attention mechanisms on task perfor-
mance. We conduct a further error analysis to understand
common failure modes.

1. Introduction
Recent developments in computer vision and natural lan-

guage processing have set the stage for more challenging
AI-complete visual reasoning tasks. Current VQA datasets
primarily contain natural images (e.g. images taken by pho-
tographers in everyday life) that lack the higher level of
rhetorical complexity that is found in other contexts such as
media and advertisements. Thus, while visual question an-

swering (VQA) and other similar tasks have made progress
in visual reasoning, more complex datasets are required to
teach models to learn and leverage higher levels of reason-
ing necessary for understanding images in real world appli-
cations.

Reading visual advertisements requires the inference not
only of the physical contents of an image but also of their
cultural connotations, expectations, and other properties
that contribute to the complex abstract ”message” being
conveyed. For example, an advertisement of a woman
squeezing a dog as a perfume bottle and causing the dog
pain would match the following action-reason statement: ”I
should not buy products that are tested on animals because it
is very cruel.” This type of rhetorical reasoning is challeng-
ing because (1) objects are often portrayed in unorthodox
ways (e.g. dog as a perfume bottle), (2) objects are juxta-
posed in unconventional ways (e.g. human face and dog),
and (3) common knowledge is required (e.g. animal testing
is done on dogs). Additional emotional concepts, such as
the love pet owners have for their pets, are extremely diffi-
cult to understand.

Based on the discussion above, it is apparent that ad-
vertisements expose the types of visual understanding chal-
lenges that could help spur the next wave of computer vision
developments. To this end, CVPR has recently released the
Visual Advertisement Dataset. In this work, we wish to de-
code the messages that ads seek to convey by identifying the
implied action the ad wishes the viewer to take alongside the
reasoning for performing this action that the image depicts.
For each ad, a model must select one of three such correct
action-response1 pairs from amongst a set of 15 choices.

This complex task requires us to explore new ways of
representing visual information so that models can connect
abstract concepts with visual content.

2. Related Work
2.1. Visual Question Answer (VQA)

Developments in natural language processing (NLP) and
computer vision (CV) tasks have enabled new tasks at

1[8] refers to these as “question/answer” pairs.
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the intersection of the two fields. Image captioning has
built upon computer vision developments in object recog-
nition by integrating convolution neural network architec-
tures such as VGG [13] and ResNet[6] for learning image
embeddings [7]. For instance, [4] infers captions from visu-
ally similar images that are clustering nearby in image em-
bedding space. Going further, [9] leverages NLP work on
bidirectional Recurrent Neural Networks (RNNs) to align
image embeddings in sentence embedding space for better
generating image descriptions.

More recently, researchers have turned their attention to
visual question answering (VQA), a more challenging task
that requires higher level reasoning enabled by the integra-
tion of vision and language models. The VQA task aims
to provide a natural language answer (A) to an input visual
image (I) and natural language question (Q). VQA tasks are
more difficult than the aforementioned tasks for many rea-
sons stemming both from the vision and language domains:

1. Vision: Apart from identifying objects, higher level
visual reasoning is required to resolve references to
objects, the physical and functional relationships be-
tween them, and their meaning within a larger cultural
context.

2. Language: Apart from capturing n-gram priors, ad-
vanced semantic reasoning is required to go from
perception (e.g. identifying attributes such as color,
number, and location) to deduction (e.g. how, what,
and why). And, given the many types of questions,
the model must scale to thousands of question types,
which inevitably blurs semantic boundaries to chal-
lenge the model with ever greater levels of semantic
ambiguity.

To facilitate VQA, new datasets have evolved. The first
major dataset was Darquar, which made the first attempt
at establishing a ”Visual Turing challenge.” Building upon
this, the VQA1 dataset provided two orders of magnitude
more data and a wider set of questions across two broad
classes (open-ended and multiple choice) to drive the de-
velopment of a new generation of VQA models, yet even
with this improved dataset, models were able to ignore vi-
sual information and leverage language priors to artificially
predict answers well. This bias-driven accuracy motivated
the creation of VQA2, which balances the probability of an
answer and its logical compliment given an image-question
pair (a.k.a. P (A | Q&I) = P (A′ | Q&I)).

However, VQA still faces considerable challenges, es-
pecially in reasoning over more complex images and ques-
tions reflecting metaphorical and abstract concepts. Many
of these shortcomings become more evident in datasets such
as the visual advertisement dataset, which we’ll focus on
now.

3. Visual Advertisements Dataset

The Visual Advertisements Dataset is a collection of
64,832 image ads and 3,477 video ads organized and anno-
tated by Hussain et al. in [8]. Due to the inherent difficulty
and cost of model development for the video understand-
ing task, we choose to focus only on the still image ads
for this project. These images already are difficult to parse,
requiring a significant amount of prior cultural knowledge
and physical reasoning abilities to understand the multiple
levels of hidden messages they contain. Thus, we believe it
will be worthwhile for us to focus on images. The dataset
contains:

1. 204,340 topical annotations (i.e. the product or idea
being sold or promoted by the advertisement)

2. 102,340 annotations indicating the sentiment an ad
provokes (e.g. “amused” by a joke or “grateful” for
the image subject’s service)

3. 202,090 unprocessed, free-form action-reason re-
sponses to the question “what should I do according
to this ad, and why should I do it?” (e.g. “I should buy
Panasonic cameras because they have facial recogni-
tion software.”)

4. 64,131 symbolic references grounded in bounding
boxes to identify objects which alludes to certain ab-
stract symbolic concepts (e.g. “danger” might be rep-
resented by a rattlesnake, or “ice” might symbolize
freshness in the case of a gum ad)

5. 20,000 strategy annotations (e.g. whether an ad “con-
trasts” the product or idea being promoted with a pop-
ular competitor)

6. 11,130 slogans (e.g. always tea time) 2

3.1. Difficulty

Advertisements pose many difficult visual reasoning
challenges. Take for example 1. The simplicity of the im-
age seeks to persuade the viewer to fly British Airways for
its sophisticated elegance - one of the QA annotations states
that “I should fly this airline because it is simple.” The fo-
cus of the image is a Swiss Army Knife, a symbol for the
nation Switzerland, the country in which Zurich lies. It is
meant to be clever, since the knife is folded out slightly so
as to imitate the silhouette of an airplane, the object sym-
bolizing the services the airline is selling. The knife itself
is known for its versatility and usefulness, both qualities the

2Slogans were developed by the ever-reliable and boundlessly creative
Mechanical Turk workers.
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Figure 1: This British Airways ad promotes a new flight
route “Zurich now from London City.” An analyzing agent
with a strong center bias (commonly seen in image classifi-
cation tasks) would, like one of the careless MTurk annota-
tors, incorrectly believe this ad to be selling a pocket knife.

airline wish the viewer to subconsciously attribute to them-
selves. Current computer vision models struggle to recog-
nize this type of subtext and will continue to be imperfect
even after using this dataset due to the incredible noisiness
of the annotations. One of the annotators responded “BUY
THIS SWISS KNIFE BECAUSE ITS COOL,” failing to re-
alize that the knife isn’t actually the object being sold. Even
careless humans would perform poorly on this task. If the
dataset indeed is well-balanced, any model which performs
well for this challenge would have to learn a broad set of
cultural priors with which to reason about complex mes-
sages.

3.1.1 Dataset Analysis

Advertisers employ a wide-ranging set of strategies in or-
der to push their products and ideas. For instance, in Figure
1, British Airways employs the symbolism of a swiss army
knife to make customers associate their airline with efficient
and elegance. The organizers of the Visual Advertisement
challenge would categorize this ad strategy as “symbolism”.
Figure 3 shows the breakdown of categories into which the
authors have binned the ads.

As seen in 3, about half of the ads employ a straightfor-
ward messaging strategy; they are the most easily decoded
ads and so could be interpreted using traditional object de-
tection and scene parsing models. However, the next most
common category, responsible for about a quarter of the im-
ages, requires comprehending the abstract symbolic mean-
ing of the objects within the image. To drive performance
among these images, we focus our research efforts towards
inferring symbolic meaning from image objects. There are a
total of 46,627 annotated symbols in the ad dataset, though
many of these responses provide multiple symbolic labels
separated by commas or a forward-slash (“/”). If we split
the annotations on the “/”, the total number of annotations
rises to 66,376; however, by grouping similar symbols to-

Figure 2: Strong correlations exist between the the topics of
an ad and the sentiments the advertisers seek to evoke (left)
as well as the strategies used to persuade the viewer (right).
The categories visualized are a smalls subset of those used
for the challenge selected for visualization purposes.

Figure 3: Frequency of common ad strategies in the Visual
Advertisement dataset. Note that the main graph depicts the
annotations from the authors of [8]; the inset shows annota-
tions collected on Amazon Mechanical Turk.

gether, we may decrease the total number of unique labels
from 24,171 to 14,153. Furthermore, we recognize that the
distribution of symbols has an extremely long tail. As figure
4 shows, the 10 most common symbols all have frequencies
ranging from 411 to 863 occurrences, 3 while 9382 symbols
appear only once. We prune uncommon symbol annotations
for .all of our training samples to focus on tactics frequently
employed by advertisers.

3.2. Models

The authors of the challenge proposed a simple VQA
model as a baseline for a related task (221-way symbolic
classification). First, this model concatenates features ex-
tracted by VGG-16 with those encoded from the word em-
beddings of a question processed by a 2-layer LSTM. Then,
it runs this visual-semantic vector through a 1000-way clas-

3The top 10 categories ( “fun”, “beauty,” “nature,” “danger,” “sex,” “ad-
venture,” “health,” “natural,” “love,”, and “power”) appear 863, 806, 749,
666, 606, 524, 493, 450, and 411 times, respectively.
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Figure 4: The most common symbols appear at sufficient
frequencies to use for inference.

sification via a single fully-connected layer followed by a
softmax layer. Each label corresponds to a single word, and
the inference is considered “correct” if the word matches
the word with the highest tf/idf score in any of the three re-
sponses. They obtain an accuracy of 11.96% on this related
but different question-answer task but don’t report results
on the challenge task we tackle in this work. This shows
the degree of complexity involved with understanding vi-
sual rhetoric.

4. Methodology
4.1. Network Proposal Overview

We propose a baseline 2-stream ViSe (Visual Seman-
tic) Network based on existing visual-semantic VQA ap-
proaches and a novel 3-stream SymViSe (Symbolic Visual
Semantic) Network for attempting the visual advertisement
task.

• ViSe Network This network is composed of distinct
visual and semantic streams that take an image and a
candidate action-reason sentence, respectively, as in-
put to extract visual and semantic features. This builds
on the visual-semantic VQA framework that won the
2017 VQA challenge; the traditional ”question” phrase
used as input in a VQA formulation here is taken to be
the concatenated “action-reason” statement [15]. The
visual stream extracts visual features using bottom-up
attention, as proposed in [2] and further explained in
Section 4.1.4. The semantic stream looks up and pro-
cesses word embeddings for each word in the input
sentence, as explained in Section4.1.2. At a high level,
the network jointly embeds visual and semantic fea-
tures into a joint space used to infer two output prob-
abilities for the 0 and 1 classes. The output indicates
the level of correspondence between the textual label
and the image. This approach optionally can use the
text embeddings to attend to the image features in a

manner similar to [12].

• SymViSe Network As shown in Figure 5, this network
integrates a third symbolic stream with the ViSe Net-
work, which takes the image as input and outputs sym-
bolic features using a second deep visual network con-
structed like the one used in the visual stream. This vi-
sual encoding network is fine-tuned to infer symbolic
meaning from objects in the image using the sym-
bolic annotations in the Visual Advertisement dataset.
These symbolic features are combined with the visual
and semantic features extracted from the other streams
and projected into a joint-embedding space. The vi-
sual and symbolic streams both are multiplied with
the semantic stream, concatenated, and sent to a lin-
ear fully-connected classification layer to infer a con-
fidence score for agreement between the image and
input sentence. This approach also can have the text
embeddings attend to the visual and symbolic embed-
dings in a manner similar to [12].

4.1.1 Visual Stream

One way to represent a visual advertisement is through
its objects. Since no objects are annotated in the ads dataset,
we pre-train a Faster R-CNN model to detect the 80 ob-
jects in the COCO [10] dataset. We then directly apply this
model as an image encoder using the methods presented in
Section 4.1.4 to produce K = 100 feature vectors of 1024
dimensions. These vectors are L2 normalized to be scaled
into a standard range to facilitate cross-modal transfer learn-
ing.

4.1.2 Semantic Stream

As shown in figure 5, we choose to model each action-
reason sentence as a 20x300 feature vector composed of
concatenated GloVe embeddings for each word, where sen-
tences of lengths less than 20 words are zero-padded to
maintain a constant size. For sentences longer than 20
words, only the first 20 words are used. These textual fea-
tures are encoded using a two-layer LSTM network and pro-
jected into a joint-embedding space via a fully connected
non-linear layer.

4.1.3 Symbolic Stream

Visual advertisements contain abstract semantic mes-
sages that cannot be captured directly by the objects they
contain. We wish to teach our model to understand the
symbolic meanings of objects and the importance of their
position within the image. We train a Faster R-CNN model
identical to that used in Section 4.1.1 to extract image re-
gions that correspond to the 1000 most frequent symbols
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Figure 5: The proposed SymViSE network to attempt the symbolic multi-choice VQA task on the visual advertisement
task. SymViSe extracts a visual, semantic, and symbolic feature vector from three different streams before combining and
projecting them into a joint-embedding space for ultimate binary classification.

in the Visual Advertisement dataset. To select the candi-
date symbol classes, we first preprocess the free-response
symbol annotations. We attempt to correct misspelled sym-
bol names using an auto-correct tool. 4. Words are lem-
matized to disambiguate different conjugations of a single
symbol. In order to count the total number of instances of
each at symbol, we map each word in the training set to its
corresponding stem before obtaining the tf/idf scores of the
words. We select the 1000 words with the highest rate of
occurrence in the training set as the candidate set. We wish
to associate each bounding box with a single valid symbol
name, so for each box, we select the symbol with the highest
tf/idf score as its associated symbol. We drop all bounding
boxes that cannot be mapped to a valid symbol class.

We train this model separately using the ground-truth
symbolic bounding box annotations present in the ads
dataset. This task is more difficult than normal object detec-
tion since symbol labels such as “fun” or “dangerous” are
ascribed to objects with very different visual appearances.

In the ViSe and SymViSe models, the R-CNN outputs
K = 100 symbolic feature vectors of 1024 dimensions,
which are L2 normalized to be scaled into a standard range
to facilitate cross-modal transfer learning.

4.1.4 Bottom-Up Attention for Visual/Symbolic Fea-
ture Extraction

One common technique for modeling visual features is
to extract the activity maps from a model trained on a basic
task like image classification. This method retains represen-
tations of the background class and can become dominated
by features are less representative of the salient objects in
the image. When a human examines a scene, s/he may fo-
cus on objects consciously using high level attention, and

4https://github.com/phatpiglet/autocorrect/

s/he also may be drawn to regions based on low-level char-
acteristics. Bottom-up attention attempts to model this latter
effect by extracting features corresponding with the objects
in an image. We adapt the bottom-up attention model pro-
posed by [2] to encode image features in the visual and sym-
bolic streams. We adapt a Faster-RCNN [11] model with
a 101 layer ResNet feature extractor to the task. We rank
bounding box predictions based on the model’s confidence
in the presence of an object or symbolic feature. For each
of the top K predictions, we mean-pool the feature vectors
in the upsampled activity map within the region enclosed
by the corresponding box. Thus, each prediction is associ-
ated with a single feature vector representing the semantic
content of the salient region. We use extraction modules
fine-tuned to detect different types of semantic content.

4.1.5 Top-Down Attention Mechanism

The model described in section 4 does more than vote
based on a set of visual, semantic, and symbolic features
we have selected. While it does exclude image regions
of low importance using a bottom-up attention mechanism,
this representation is generic. It would be better if the model
could attend to certain extracted features conditioned on the
semantic content of the action-reason statement. To accom-
plish this, we incorporate a top-down, text-guided attention
mechanism via gating to select the visual and symbolic fea-
tures that best correspond with the correct label. We adapt
the attention mechanism described in [12] and [14] to at-
tend to image features based on linguistic cues. Concretely,
we concatenate the language embedding qi to each spatial
image embedding vi and use a two-layer CNN f with 1x1
kernels and a gated tanh activation function to output a bi-
nary attention map normalized with the softmax function.
This is used to compute a weighted sum over the feature

5
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map. Formally:

ai = fa([vi{qi, ri}])

α = softmax(α)

v̂ = Σiαivi

The attention function here fa is modeled using a nonlin-
ear gated tanh module, the main non-linearity used through-
out the ViSe and SymViSe networks,5 composed with a
1 × 1 convolution. The gated tanh module’s output y is
calculated for a given input x as defined below:

ỹ = tanh (Conv1(x))

g = σ(Conv2(x))

y = ỹ � g

Here, both Conv1 and Conv2 are 1× 1 convolutions. This
module is used in highway networks to improve gradient
flow and allow the network to select different regions to re-
tain for further computation. Many existing attention-based
VQA models pool image features to reason about the entire
image. We choose to let the linguistic features separately
attend to different features of the two image-based repre-
sentations of the input: the visual and symbolic features.

If running either model without the top-down atten-
tion mechanism, directly average the K different 1024-
dimension vectors extracted by the R-CNN for the visual
and symbolic stream without incorporating the top-down at-
tention weights at all.

4.1.6 Multi-modal Fusion: Combining the Streams

After applying another non-linear layer of weights to the
visual, semantic, and symbolic streams, we get a 512-dim
vectors from each of the three streams. We have the seman-
tic stream act to gate the other two streams by element-wise
multiplying (a.k.a. taking the Hadamard product) the se-
mantic features with each the visual and symbolic feature
vectors and then concatenating the two product vectors for
a final 1024-dim vector that is linearly mapped via a fully-
connected layer to a binary class output.

4.2. Training Methodology

We update the weights of the model using an Adam opti-
mizer with a learning rate of 1e-3, using a batch size of 512
image-sentence pairs. We train for 20 epochs.

5The Visual and Symbolic streams use rectified linear units in their base
ResNet structures.

4.3. Evaluation Metrics

When determining model performance, accuracy is a
clear starting point. For each candidate image, we con-
sider 15 action-reason statements. If one of three correct
statements are chosen, a hit is recorded in favor of accu-
racy. Otherwise, it is a miss. Thus, the naive baseline of
randomly guessing a statement will return an accuracy of
20%. Yet, accuracy fails to capture information about the
false positives and false negatives, which is why we com-
pute the model’s precision and recall. Precision communi-
cates the number of action-response pairs predicted to de-
scribe an image that are correct. Recall displays the portion
of the true action-response pairs that are correctly identi-
fied by the model. One may combine these two scores in a
single summary metric, the F1 score. This is the harmonic
mean of the precision and recall. We denote the number of
true positives, false positives, true negatives, and false neg-
atives as TPs, FPs, TNs, and FNs respectively. Using these
values, we can calculate the accuracy, precision, recall, and
F1 score using the following equations:

accuracy =
TP + TN

TP + FP + TN + FN
(1)

precision =
TP

TP + FP
(2)

recall =
TP

TP + FN
(3)

F1 = 2
precision ∗ recall
precision+ recall

= 2
TP

2TP + FP + FN
(4)

4.4. Code Implementation

The code is implemented using PyTorch, a python deep
learning library optimized for GPU utilization. The code for
this project is publicly available on GitHub and will remain
open-sourced [5]. It adapts an existing VQA implementa-
tion [1] based on the approach of the first place winner of
the 2017 VQA challenge [15].

5. Results
5.1. Accuracy

We report the evaluation metrics of the ViSe and
SymViSe models on the visual advertisement task in table 1
with and without top-down attention. The results show that
both of our novel contributions—(1) the symbolic stream in
SymViSe and (2) using the semantic embeddings to guide
top-down attention on visual and symbolic embeddings—
are effective at improving the models’ ability to interpret
visual rhetoric.

First, we see that SymViSe outperforms ViSe both with-
out top-down attention (34.58% vs 30.84% accuracy) and
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Model Metrics (%)
Acc Precision Recall F1

ViSe 30.84 32.35 27.34 29.64
ViSe w/ Attention 32.24 34.39 32.19 33.25

SymViSe 34.58 36.11 30.08 32.82
SymViSe w/ Attention 37.62 36.94 31.95 34.26

Table 1: Accuracy, precision, recall, and F1 scores for
the ViSe Network (2-streams: visual and semantic) and
SymViSe Network (3-streams: visual, semantic, and sym-
bolic) with and without top-down attention mechanisms

with top-down attention (37.62% vs 32.24% accuracy).
Thus, the introduction of a symbol stream results in a per-
formance boost of roughly 3 to 5%. This implies that the
symbolic stream allows the model to correlate relevant sym-
bolic image features with other visual and semantic features
for greater higher-level reasoning ability on the symbolic vi-
sual rhetoric.

Second, when comparing models that incorporate top-
down attention with those that directly predict correspon-
dences, we find that the attention improves scores across the
board (32.24% vs 30.84% accuracy for ViSe and 37.62% vs
34.58% accuracy for SymViSe). It appears top-down atten-
tion gives roughly a 3% accuracy boost.

5.2. Error Analysis

We examine images where the ViSe and SymViSe net-
works differ in their predictions to understand common
modes of error and the unique behaviors of each model.
Take for example Figure 6 . ViSe incorrectly predicts: ”I
should drink Cerveza Sol because somebody will get my
tab if I drink this beer.” It was unable to interpret the text
in the image and furthermore does not have the cultural un-
derstanding that the 401 is a road with a high rate of traffic
accidents. While the allusion to Cerveza, a form of alco-
hol, is correctly hinting at the true meaning of the advertise-
ment since this poster is meant to steer young people away
from drinking and driving, the network fails to understand
the symbolic meaning behind the bruised face and appear-
ance of intoxication. Figure 6 summarizes the symbol an-
notations that the symbolic stream attempts to capture, such
as “accident,” or “danger.”’This perhaps helps explain why
SymViSe was able to predict correctly: ”I shouldn’t drink
and drive because it is dangerous.” It appears that SymViSe,
unlike ViSe, was able extract and reason over the symbolic
meaning of the bruised and bloodied face.

To explore the predictive relevance of each of SymViSe’s
branches, we trained a network using top-down attention
and added a simplified classification head. We replace
the final combination of each stream’s feature vectors via

Figure 6: An ad incorrectly identified by ViSe, along with
incorrect action-reason statements (red) and one of the cor-
rect statements. Symbol predictions are shown in bounding
boxes, with the categories listed at the bottom of the light
grey box.

element-wise multiplication with a direct concatenation of
the features extracted from the visual, semantic, and sym-
bolic streams. We then classify using a linear layer. This
predicts a confidence score on the likelihood that a single
action-reason sentence corresponds with an image. Each
prediction is independent of any other sentence in the
dataset. The L2-norms of the weights connecting these
three feature vectors to the output tensor are 5.0378, 1.4754,
and 1.5540 respectively. This indicates that the majority of
the predictive power of the model is derived from the fea-
tures yielded by the visual stream; thus, the language and
symbol features are given a lower priority.

When we run the SymViSe model without the top-down
attention mechanism on the same image, we find that the
L2-norms of the visual, semantic, and symbolic classifier
weights are 0.8108, 1.5355, and 1.1223, respectively. Note
how visual and symbolic features decrease in priority, but
the semantic embeddings increase in priority. The seman-
tic embeddings are no longer attending to the other two
streams, so the only way for the semantic content to con-
tribute to the final inference is through this final classifier.
This information isolation forces the network to increase the
overall weight assigned to the semantic stream.

5.2.1 Confusion Matrix

We wish to understand the network’s points of failure by
analyzing the positive and negative instances of each action-
reason independently agreeing with the image. Table ??
depicts a confusion matrix for the test predictions for the
SymViSe Network with top-down attention. Note how the
model was far more likely to predict a positive instance as
a negative sample than vice versa. In other words, most of
the positive samples (image and sentence agree) are mis-
classified as not agreeing, so the recall of positive examples
is low. This can be attributed to how there are 4x as many
negative samples as positive samples. After all, training im-
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Testing Confusion Matrix for the SymViSe Model with At-
tention

ages come with 12 incorrect action-reason statements for
every 3 correct action-reason statements. So the model is
unintentionally applying a biased prior resulting in a high
frequency of false negatives.

5.2.2 Over-fitting

It appears the model may be over-fitting the training data,
resulting in lower generalized performance on the valida-
tion dataset. For instance, as we see in Figure 7, after
roughly 15 epochs, the training accuracy converges to 1.
This causes the network’s total loss to converge to 0, as
shown in Figure 8. It appears that our network might be
over-parametrized, enabling it to over-fit the small 10K im-
age training dataset. In other words, our model has enough
degrees of freedom and weights to ”memorize” the training
dataset. This reduces the ability of our model to generalize
to new data.

There are a number of steps we can take to address this.
First, our network could train on a larger dataset (e.g. on the
order of magnitude of the VQA dataset, which has roughly
60 times as many training images as the Ads dataset). Sec-
ond, the network could reduce the number of trainable pa-
rameters by removing unnecessary layers and weights or by
using bottleneck functions similar to ResNet. We also could
use a regularization technique such as Dropout.

6. Conclusion
In this paper, we have shown that the use of top-down

attention and the explicit encoding of symbolic content in
images greatly assists computer vision systems in their abil-
ity to reason about visual rhetoric, especially as found in
visual advertisements. Our proposed SymViSe network us-
ing attention, which leverages three processing streams (vi-

Figure 7: Training accuracy curve for 2/3-stream model
with/without attention mechanisms

Figure 8: Training Loss Curve for 2/3-stream model
with/without attention mechanisms

sual, semantic, and symbolic), performs surprisingly well
on the multiple-choice VQA task for the visual advertise-
ment dataset, achieving a 37.62% accuracy rate on the val-
idation set, out-performing baseline models without top-
down attention or without the symbolic stream.

However, many straightforward modifications to the in-
ference pipeline are likely to bring about large improve-
ments.In order to strengthen the signal captured in the se-
mantic stream, we plan on incorporating the Stanford sen-
tence parser ([3]) to bin classes in a manner similar to [12].
This may give us more expressive representations of the text
input than what we are getting by padding and cropping
variable length sentences. This will build on the accuracy
gains we already see from our top-down attention module,
since more semantically meaningful word embeddings will
be used to attend to specific image features.

We additionally would like to extend the cross-domain
fusion techniques proposed above to incorporate direct su-
pervision of ad topics and strategies. It seems intuitive that
conditioning the model’s inference on an understanding of
the product or company behind an ad would help the model
learn richer features and allow it to better discern between
appropriate action-response statements.
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