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Abstract

We address the semantic labeling of neuronal shapes.
Contemporary efforts in connectomics generate fragments
of neuron shapes which have qualitatively recognizable
forms (e.g. axon, dendrite, soma). We develop a machine
learning model to predict these forms, and analyze the per-
formance on this model to understand the constraints of its
performance. We use PointNet, a deep learning model de-
signed to handle unordered point clouds, and train it to use
the mesh vertices of reconstructed neuronal fragments. De-
spite significant dataset bias, we achieve perfect segment
classification performance on a held out test set for single-
compartment meshes. We extend this approach to neuron
meshes with multiple compartments, and plan future work
to fully address this challenge.

1. Introduction
Connectomics is a subfield of neuroscience in which

researchers extract neuron shapes and their connections
(synapses) from very high-resolution (∼ 5nm) electron
microscopy (EM) images, which are stacked to make up a
3D volume [7]. In this project, we explore the applicability
of a recently published semantic segmentation approach
to neuron reconstructions from these data. We see a high
potential for this approach in the field of connectomics.
Specifically, while the extraction of the connectivity
between cells is usually of primary concern, additional
information is often needed to draw biologically useful
conclusions. For instance, the location of an individ-
ual synapse (an informational connection between two
neurons) on a receiving cell can reveal insight about its
function [4]. Hence, the segmentation of a cell into its
biologically functional parts is of great interest.

Qi et al. [12] created PointNet, a neural network which
directly operates on point clouds to classify and semanti-
cally segment 3D objects. This stands in stark contrast to
prior approaches which either rely on dense volumes [10]
or 2D views [16]. Compared to these other representations,

using a mesh point cloud provides the benefits of a very
sparse representation without losing crucial information
about an object’s shape. This compressed representation
makes PointNet significantly faster and allows it to consider
a larger context of an object when the object is very large
[12].

Here, we apply variants of PointNet to meshes extracted
from automatic reconstruction that were acquired by our lab
(Seung Lab). Our results indicate that this approach works
well for classifying subparts of an object at a time. In ad-
dition, we find that taking an extreme strategy to combat
dataset bias yields robust performance across artificially dif-
ficult versions of the task. However, despite our continued
success on segmenting subparts, more analysis needs to be
done to investigate the applicability to cells with multiple
components.

2. Background
Classically, cells in the neocortex can be partitioned into

three parts: axon, dendrite and soma (cell body). Figure 5
shows an example cell from our dataset. In a simplified
view, information from other cells is received on dendrites,
the accumulated electrical signals travel to the soma, and
an output signal propagates through the axon, exciting or
inhibiting other cells.

Partitioning a cell into these three compartments is
important as it provides information about the flow of
signals within the network. Due to the small size of current
EM datasets in comparison to the size of the brain, all cells
are only partially contained in each dataset and most cells
do not have their soma within its bounds. We refer to these
cells with cut off processes as orphans.

The sheer number of cellular processes in contemporary
connectomics datasets makes manual annotation of their
types infeasible. In addition, neurons have extremely
long-range connections across the brain [1], which can be
much longer than the scale at which current connectomics
datasets exist [11]. These observations suggest that we
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require an automated method to label features of interest
across both orphans and full cells. We see this work as first
steps toward this eventual goal.

To a human eye, the three classical compartments are
readily distinguishable (Figure 2 and Figure 5). Dendrites
are often much thicker than axons, and many feature
‘dendritic spines,’ which are small protrustions from the
main shaft. Axons tend to have simpler shapes, and instead
feature bulbous compartments along the main process.
Exceptions exist to these simple criteria. For example,
inhibitory cells commonly feature dendrites with few
or no spines. Nonetheless, these compartments remain
qualitatively distinguishable in general.

Furthermore, neurons can be partitioned into cell types
based on the shapes of their processes [2]. Distinguishing
cells by their type is of such outstanding importance that it
was mentioned as the first of seven goals of the NIH Brain
Initiative for 2025 [9]. Besides genetics and function, mor-
phology is one of the different ways to classify the type of
a cell.

3. Related work
3.1. In connectomics

Biological analysis usually relies on manual classifi-
cations of subcelluar parts (e.g.[17, 15]). This has been
feasible because studies were limited to a small number
of neurons. However, increasing dataset sizes make an
automation of this task necessary[3]. A recently pub-
lished paper showed that much of this information can
be classified automatically using Random Forest Classi-
fiers (RFC)[3]. However, this work relied on additional
information besides the morphology of the cell, required
hand-designed features within a limited field of view, and
was computationally expensive.

3.2. Semantic segmentation of point clouds

Prior to PointNet, semantic segmentation of point
clouds relied on a transformation of the the point cloud
into a feature representation known to be consumable by
classifier such as a neural network. These approaches can
be partitioned into hand-crafted feature generation and
volumetric representations.

Hand-crafted features typically resemble certain statis-
tics of the mesh that are of particular interest to the desired
segmentation [14, 8, 3]. While intrinsically limited and not
generalizable, this approach showed good performance for
specific applications.

Figure 1. Rendering of the EM image volume. The brighter blobs
are cell nuclei that reside in a cells’ soma. The white elongated
strip on the top is a cut through a blood vessel. The rest of the vol-
ume is densely packed with neural wiring (axons and dendrites).

Volumetric approaches either represent the mesh as a
dense 3D volume or extract multi-views that can be clas-
sified by 2D CNNs. Using dense volumes and 3D CNNs
does not sacrifice information but has limited scale [10].
For small enough volumes this approach reaches the best
performance. View approaches represent the volume with
2D X-ray like images that are then fed into a multi-channel
2D CNN [16].

PointNet [12] introduced the possibility to use unordered
meshes for segmentation and was followed by many similar
approaches such as PointNet++ [13]. PointNet++ uses a
hierarchical approach which emphasizes the local context
of each mesh point.

We decided to use PointNet for this work, as it is the
only approach that promises to scale to very large objects
and does not require hand-designed features. While it has
been shown that the particular task at hand could be solved
by classifying small cutouts at a time [3] follow up tasks
such as the classification of cell types require large large
spatial contexts.

4. Experiments

We created three separate datasets in order to explore
the semantic segmentation problem. Two of these datasets
contain only orphans (Figure 2), while the other dataset has
full cells with axon, dendrite and soma (Figure 5). Each
dataset was generated from an automated segmentation of a
196 µm× 130 µm× 40 µm volume from the primary visual
cortex of a mouse (Figure 1). The automated segmentation
was designed to be an over-segmentation, but mergers
(segments that contain parts of multiple different neurons)
still exist.

The first orphan dataset was intended to be small, yet
pristine. Axons and dendrites join together at synapses, and



Figure 2. Examples for orphan dendrites (gray) and axons (red)
(taken at different scales).

some prior work had been done within the reconstruction
volume to locate synapses between many reconstructed
segments. So, in order to get a balanced sample of both
axons and dendrites, we selected synapses at random
from these locations, and checked whether the associated
segments had any mergers or obvious errors. After this
check, segments at each synapse were added to the dataset
if they possessed over 5000 mesh vertices. In total, we
collected 182 axons and 200 dendrites. Approximately 50
of each class were randomly selected for both validation
and test sets.

The large orphan dataset was generated from the same
segmentation as the small one. However, we only applied
certain heuristics to remove false examples and did not
ensure 100% correctness. This trade-off allowed us to
quickly generate 73383 examples for this dataset. It should
be noted that only examples with enough mesh points can
be used for a given training. For the common case of 5000
points, the dataset shrinks to 56360 examples. We estimate
that less than 5% of these are falsely labeled or contain
both classes (through mergers or full cells).

The last dataset contained only full cells (those with
a cell soma). It was acquired by splitting each cell
into its branches and labeling all branches individually
(ncells = 109). Since some cells lie at the dataset boundary
not all of these samples contain an axon. In general, this
dataset is highly-unbalanced in terms of mesh points (Axon:
3.4%, Dendrite: 83.1%, Soma:13.5%). Oftentimes, the ex-
act boundary between classes is ambiguous. To circumvent
this, we assigned some mesh points to the “no label” group
(Figure 5) which are excluded when computing the loss.

For training and testing we split the dataset in a 80 / 20 ratio.

Our goal is to identify the subparts of all meshes
correctly. Therefore, we choose to formulate the problem
of classifying axons and dendrites of the orphans as a
semantic segmentation problem although it could be seen
as a classification problem. This experiment is meant to be
the first step of segmenting the full cells. We hope to be
able to leverage the orphan datasets for the segmentation of
the full cells.

5. Model architecture
The fundamental challenge in handling a point cloud

representation is that point clouds are unordered [12].
Creating a model that learns shape features from point
clouds thus requires generating a function which is able to
learn based on the context of multiple points while being
invariant to a permutation of the input points. PointNet
circumvents this challenge by using a symmetric function
(e.g. max pooling) to consolidate information across the
entire point cloud in a bottleneck layer, and combining this
global information with local features extracted from each
point (Figure 3). The size of the bottleneck layer b is a
tunable parameter.

Prior to the bottleneck layer (blue part in Figure 3),
PointNet processes the input points with a Multi-Layer
Perceptron (MLP) to extract local point features (n x 64).
To align points from different point clouds to a canonical
space, Qi et al. use a transformer net [6] that mimics a
three dimensional transformation. They include a second
transformer network to align the extracted point features
to a global feature space with a feature alignment matrix
A. This point feature representation is significantly larger
than the coordinates handled by the spatial transformer
net, making it difficult to optimize. Qi et al. solve this
by adding a regularization term to the network loss which
penalizes the L2 norm of AAT to the identity matrix. This
encourages A to be close to orthogonal.

Finally, the global features are appended to the local
point features (n x 64) leading to a feature vector of size
n x (64 + b). The final segmentation is accomplished using
another standard MLP with shared weights producing a
prediction for each point.

We implemented PointNet in PyTorch along with a
datahandler and trainer and added multiple data augmen-
tations such as rotation and scaling. During training a
random subsample of the pointcloud is used according to a
predefined parameter (5000-20000 in our case). We train in
batches of size 4-20 cells per iteration. Our loss is weighted



Figure 3. PointNet architecture. Figure taken from [12].

with the inverse frequency of each class to incentivize
good performance for each class. The weights are either
extracted globally before training or depend on the class
frequency within the current batch (batchwise weights). As
the larger orphan dataset is highly biased towards dendrites,
we also experimented with only sampling batches from an
equal number of axons and dendrites for training a network
on orphan data (i.e. “even sampling”). In this case, we
applied no weighting to the loss function. For the full cells,
we also tried gradient masking, where we only considered
an even number of points for each class from a larger
prediction.

6. Analysis
In addition to accuracy in semantic segmentation or

classification, there is significant value in having a model
to cluster neuronal shapes into meaningful clusters. This
could simply consist of the descriptions we’ve described
(e.g. axon, dendrite), or it could also represent specific
types of these processes as well. PointNet features a
global feature vector for each mesh that passes through the
network (Figure 3), and thus provides an embedding of the
shape.

Here we perform a simple analysis of these represen-
tations to probe whether these global features represent
meaningful patterns. Specifically, we perform K-Means
clustering (with 100 restarts) and linear SVM classification
on the global feature vectors for each orphan mesh in order
to see whether we can recover the axon/dendrite distinction.

There are two prominent parameters we can tune to
stress the performance of the PointNet architecture. The
first is the bottleneck feature vector dimension, which
constrains the complexity of the representation the network

uses to describe the global shape of a point cloud. The
second is the amount of point we allow the network to
see at a time. We vary these attempting to draw some
connections between the orphan and full cell segmentation
tasks.

7. Challenges
Preliminary results featured significant overfitting to

the training set. We took several steps in order to yield
good performance. First, we noticed that the open source
implementation of PointNet which we’d used for some
time was incorrect. Notably, it was missing the second
transformer network which operates on point features. We
then reimplemented the model from scratch (as well as the
PartNet extension) to ensure that all of the desired parts
were accounted for.

From the outset of this project, we were also unsure
about whether data quality might sabotage our generaliza-
tion performance. This motivated the creation of separate
datasets under different levels of size and cleanliness.

Lastly, we also explored several different dataset aug-
mentation strategies. These strategies included random
scaling, rotation, and shifts of the point cloud coordinates,
as well as random cropping of contiguous pieces. The
current results only include random scaling, where the
coordinates are scaled by a factor randomly determined by
a clipped normal distribution between 0.5 and 1.5.

The PointNet architecture applies batch normalization
to several layers [5, 12]. Batch normalization standardizes
each target feature map of the network by its mean and
variance across the batch during training, and attempts
to measure a global set of these statistics to apply after



training. In our case, this global set of statistics performed
very poorly at test time (data not shown). This suggested
that the network may base a considerable part of its
inference on a segment’s feature map values relative to the
rest of a batch from the training set. However, abandoning
the global statistics introduces some uncertainty into our
inference estimates.

Fortunately, incorporating “even sampling” (creating
batches from an equal number of axons and dendrites),
allowed us to train networks without batch normalization.

We observe a large performance difference between or-
phan processes and full cells. The magnitude of this differ-
ence was unexpected, and lead us to hypothesize that our
model wasn’t powerful enough to flexibly handle multiple
classes within the same shape. Full cells often have many
more vertices than orphan processes (10x more on average),
and it might be more difficult to consolidate the shape of
full cells into a global representation. However, this means
that we could explore whether the network wasn’t power-
ful enough by training less powerful models on the orphan
processes - in a sense simulating the full cell task by an ab-
lation study. Specifically, we trained models with either (1)
a smaller bottleneck feature vector dimension or (2) fewer
points shown to the network, varying these variables sys-
temically to see where performance would break down.

8. Results

8.1. Semantic classification and segmentation

The basic PointNet model with no modification achieves
perfect accuracy in terms of semantic classification trained
on either dataset (Table 1). This encourages further study
of other tasks.

Dataset / Accuracy % Axon Dend
Small 100 100
Large 100 100

Table 1. Segment semantic classification performance over 20 it-
erations. Row delineates the dataset used for training.

If we instead inspect performance on a single node
basis, we can analyze a small step towards the more general
semantic segmentation task on full cells. In addition, these
results show more interesting patterns. Specifically, we find
that the small and pristine dataset performs worse than an
imperfect and much larger training set using the PointNet
model with no modification (Table 2). The large training
set performance is near perfect, though performance across
both datasets for dendrites is slightly worse. Notably, this
difference also arises in the small dataset, which has more

dendrites than axons. Thus, we expect this difference
to arise from dendrites having more complicated shapes,
which are more difficult to summarize with a set number of
mesh nodes.

However, using even sampling during training and re-
moving batch normalization reached perfect performance.
This finding also negates the dataset effect. Specifically,
training a model on either dataset yields perfect node-wide
classification performance.

Training Procedure / Accuracy % Axon Dend Overall
Orphans (small set) 88.7 86.6 87.6
Orphans (large set) 100 94.3 97.1

Orphans (even) 100 100 100
Full cells (batch weights) 63.5 53.5 10.1

Full cells (gradient masking) 25.2 74.0 17.5
Table 2. Semantic mesh vertex classification performance on the
respective test sets over 20 iterations. Row delineates the dataset
used for training. All orphan networks are tested on a held out
orphan test set. Full cell networks were trained on full cells alone,
and tested on a held out set of full cells. even: either training set,
even sampling, no batch normalization.

8.2. Global feature vector analysis

Visualizing the global feature vectors for the even sam-
pling model trained on the large training set shows clear
separation between axon and dendrite meshes (Figure 4).
There is significantly more variation across the represen-
tations of dendrites than axons. This spread disrupts a
naive clustering of the feature vectors. Using a simple
K-Means procedure yields an Adjusted Rand Score of
0.78, despite the clear separation between the two classes.
Nonetheless, we’re still able to recover the class separation
perfectly using a linear SVM. This suggests that the feature
vectors are linearly separable by a hyperplane, despite
being difficult to cluster by a simple clustering.

8.3. Full cells

We applied PoinNet to the full cell dataset with different
weighting approaches and data augmentations (scaling
and rotation) to address the over fitting problems that we
encountered prior to the milestone report. Using batchwise
gradient weights or gradient masking prevented overfitting;
the performance on the training set was comparable to the
performance on the test set. As a result, the prediction of
PointNet is less biased towards the dendrite class (Table 2).

When examining the prediction we found that PointNet
is able to learn coarse spatial features but appears to lack
the ability to extract subcomponents of a cell. For instance,



Figure 4. PCA Projection of each bottleneck feature vector of the
“Large” dataset network with even sampling and no batch normal-
ization. orange:dendrite, blue:axon

Figure 5. Prediction using batchwise gradient weights (left) and
ground truth (right) of a cell from the test set. red: axon, green:
dendrite, blue: soma, yellow: no label.

in the example (Figure 5) PointNet correctly identified the
axon but also included points belonging to other branches.

We tested different parameters for the bottleneck dimen-
sion and the number of points within reasonable ranges but
where not able to improve the performance further. We
settled with 150000 points and a bottleneck dimension of
size 1500.

We tried to use a PointNet trained on orphan cells to
classify axon and dendrite parts of the full cells. Interest-
ingly, this net failed by classifying everything as belonging
to a single class. This might be due to the classification like
overfitting that we encountered on the orphan cells.

8.4. Ablation Studies

The ablation studies revealed a surprising resilience
of the orphan segmentation performance to both sparser
mesh samples and global feature vector representations.
The global feature vector dimension in fact had no effect
on the performance on the test set (data not shown). Even
training a network with feature vector dimension of 1

Figure 6. Node-wise semantic segmentation accuracy as a func-
tion of number of points used to represent an orphan mesh. Per-
formance on the test set is perfect for any model using more than
20 points.

yielded perfect performance.

Decreasing the number of points used to represent a
mesh held stable performance all the way to 20 points
(from the original 5000; Figure 6). Performance below
this point still remained above chance performance, which
suggests that very simple relationships between a small set
of points still holds considerable information about the task.

9. Discussion
We’ve implemented a framework to semantically clas-

sify mesh points of neurons using PointNet. We showed
that we are able to predict meshes from orphan segments
with very good performance. We also show that, in some
regimes, an imperfect yet data hungry strategy performs
best.

The robust success of even sampling suggests that
dataset bias is a core difficulty in addressing this problem.
Even sampling can be seen as an extreme form of balancing
a dataset, which seems different to approaches which
weight the gradient signals by class instead of by sample.
We’ve also extended this balancing to full cells, by only
allowing the gradient to see the same number of examples
across each class at a time.

The ablation studies showed a high resilience of the
orphan segmentation performance, which sheds some light
onto it’s apparent success. First, dendrites and axons differ
even in extremely sparse samples of their shapes (between
0.001 and 0.4%). This suggests that the network can at
least partially makes use of simple relationships between
a small subset of points. This makes some intuitive sense,
as the presence of dendritic spines would likely offset an
otherwise smooth curve of points.

In addition, we observe that the bottleneck feature
vector dimension has no effect on the orphan segmentation



performance. This observation, paired with the separability
of the axon and dendrite representations, strongly suggests
that the networks trained on orphan data finds a way to
effectively perform classification of the orphan meshes
by that point. Upon doing this, the network likely finds a
simple strategy to label each vertex with the label corre-
sponding to the identified class.

While we were able to balance PointNets perfor-
mance on full cells through different gradient weighting
schemes, the performance is still poor. This difficulty is
non-trivial since, by the results of the ablation study, the
full cell network should have enough points to classify
each dendrite or axon individually (requiring roughly
10× 20 = 200 vertices). Instead, we suggest that PointNet
lacks the ability to identify contiguous subcomponents
of a cell. Therefore, we might add a regularization term
to the loss function that informs PointNet about compo-
nents such as branches where all points have the same label.

A few possible avenues remain to be explored as future
work. While we suspected that expanding our approach to
PointNet++ might have taken more time than the project
would allow, a hierarchical approach may work well to ex-
tend the single class performance of our model to multiple
classes. In addition, we should be able to gather a larger
dataset in the coming months.
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