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Abstract

While most existing image enhancement applications of-
fer automatic retouching options, users have unique aes-
thetic preferences that are different enough to warrant per-
sonalization [5]. We investigate the possibility of learn-
ing style transfer patterns for photographers and photo
shoots in order to algorithmically post-process new images
in a way that preserves the natural complexity of individ-
ual styles. We experiment with different models and ulti-
mately contrast the effectiveness of a generalized enhance-
ment vector learning approach with a perceptual feature
loss function approach and a feature difference learning ap-
proach. In all three of our approaches, we use images from
the MIT-Adobe FiveK dataset and a self-collected dataset
drawn from campus photographers. Our best approach in-
volves extracting enhancement parameters from images and
matching new images to visually similar training examples.
We find that by doing so, we are able to make realistic, in-
crementally improving edits.

1. Introduction
Photo editing is becoming an increasingly important part

of modern digital literacy. Professionals have long used dig-
ital retouching and modification techniques to ready their
pictures for sale, but the rise of photo-sharing applications
like Instagram, Snapchat, and VSCO have meant that regu-
lar users are beginning to process their photos as well. Some
of these applications, in an attempt to simplify the user ex-
perience, offer automated retouching options that can apply
basic modifications to photos. However, many users attempt
to create a cohesive ‘aesthetic’ across the photos they edit,
just as a professional might attempt to ensure consistency
in style among post-processed photos from an individual
shoot. Furthermore, these consistent editing decisions often
differ sharply among users—what is pleasing to one may
not be to another. This means that existing, standardized

features like auto-enhance do not successfully meet a core
user need for personalized automated editing.

The central thrust of this work is to develop a model that
can learn and replicate a specific individual’s image pro-
cessing style. The motivation for this is twofold: for one,
regular users of services like Instagram edit many photos to
match their unique styles, but often have to rely on standard-
ized enhancements or filters as a baseline for their approach.
Second, in our conversations with amateur and professional
photographers alike, we discovered that the thousands of
photos taken for individual shoots often end up being edited
in consistent ways. Applying these intended changes algo-
rithmically could dramatically improve this process. Given
the comparative ease of collecting a dataset from the latter
population, we focus on the second question in what fol-
lows.

1.1. Problem Statement

Put more formally, we attempt to study the following
problem: Images are post-processed differently based on
1) their underlying visual components and 2) the aesthetic
preferences of the editor e who is modifying them. Given a
set of images I1 . . . In and their edited versions (tagged by
editor) I ′1,e . . . I

′
n,e, can we create a program that, given a

new image In+1, can propose an edited version in the style
of a particular editor Î ′n+1,e?

We constrain the types of edits we permit in a few ways:

• We focus on per-pixel adjustments. This means we al-
low for edits to tone, saturation, hue, sharpness, etc.,
but not for image crops or rotations that transpose or
remove pixels. This is because the techniques neces-
sary for identifying objects of interest in images (so as
to make transposition decisions) are orthogonal to the
stylistic exploration techniques we hope to use.

• We do not permit constructive edits, meaning we did
not allow for edits that added components to images
or that blended in elements from other images. Again,
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the types of processing required to predict such edits
are unrelated to the scope of this work.

1.2. Overview

We begin in Section 2 by outlining some related works.
Section 3 describes our approach, including our dataset,
each of three methodologies, and our implementation de-
tails. Section 4 overviews our results and evaluation. We
finish in Sections 5 and 6 with a discussion of our future
work and conclusions.

2. Related Work

Our work involves two approaches that are based on
learning personalized image enhancements and a third on
perceptual style transfer.

2.1. Personalization of Image Enhancement

For users who wish to replicate their unique, consistent
styles across post-processed images, automatic image en-
hancement tools are severely lacking as they can only make
generic edits. Kang et al. [5] determined that user prefer-
ences in image enhancement were different enough to war-
rant personalization, and that personalization is an impor-
tant component for improving the subjective quality of im-
ages.

The system in [5] for personalizing image enhancement
learned a user’s preferences by observing her edits on im-
ages. It then enhanced any (unseen) test image by finding
the training image most similar to it and directly apply-
ing the training image’s enhancement parameters. To get
enough training images, [5] required that user edited 25 pic-
tures (those considered the most ‘unique’), and then extrap-
olated those edits to 5000 images. The image enhancement
pipeline extracted 5 parameters associated with contrast and
color correction from the user’s edits: a power curve param-
eter, two S-curve parameters, temperature, and tint.

The learning component of the system applied to each
new, unseen photo the same enhancement parameters previ-
ously applied to the ”closest-looking” manually-edited pic-
ture. Thus, the central contribution of this system is in
defining the ”closest” picture via a distance metric. The
model proposed learned its metric through minimizing a
convex objective function that examined all pairs of images
and measured how much the distance in image space dif-
fered from the distance in a ”parameter space.” This param-
eter space incorporated many visual features, including his-
tograms in RGB, HSL (hue, saturation, lightness), and in-
tensity channels. The training images for the distance met-
ric were automatically enhanced, but it is assumed that the
learned distance metric using these proxy parameters leads
to reasonable estimates of the relevant distance metric in the
image space. Once the distance metric was learned, given

test image In+1, the model found the closest training image
Ik and applied the enhancement parameters of Ik to it.

Caicedo et al. [2] built upon the work of Kang et al. [5]
by proposing a probabilistic graphical model for jointly pre-
dicting enhancement preferences. This work explicitly en-
codes similarity across images, and groups users into clus-
ters. In other words, the model showed that similar users
have similar enhancement parameters for similar images;
therefore, new images could be enhanced based on similari-
ties to existing images edited by the cluster to which a given
user belonged. The enhancement space was determined
by the same 5 enhancement parameters as [5]. However,
unlike in [5], Mahalanobis distance was used as the dis-
tance metric to measure similarities between images. Maha-
lanobis distance, applied to the visual feature space, learns a
parametrized square matrixA, which encodes weights asso-
ciated with different features and correlations amongst them
in order to reflect the disparity in the enhancement param-
eter space. Then, a probabilistic model was trained to en-
code dependence of enhancement parameters on image con-
tent, as well as the clustering of users based on their editing
styles. To enhance images from a new user, the new user
was asked to enhance a subset of images from the training
set to determine the user’s cluster membership, which is the
similar to the approach used in [5].

Bychkovsky et al. [1] refined this problem to three prac-
tical cases: 1) reproducing the adjustment of a single pho-
tographer given a large collection of examples 2) learning
adjustment personalization using a carefully chosen set of
training photos like in [5], and 3) introducing difference
learning to free the user from using predetermined photos
for training. To do so, they attempt to learn the remap-
ping curve between input and output color luminances on
the CIE-Lab color space. They then use supervised learning
with a number of features (including intensity distributions,
scene brightness, and equalization curves) to learn the ad-
justment of brightness, saturation, and contrast associated
with various unique editing styles. Though they focus on
tonal adjustments, they find that such modifications explain
most of the variance between the edits made by different
photographers in their set. Bychkovsky et al. [1] also con-
tributed to the space of image enhancement by developing
and releasing the MIT-Adobe FiveK dataset (see Figure 1
and Section 3.1).

2.2. Style Transfer with Perceptual Losses

The power of CNNs has been applied successfully to
many image processing tasks, and has driven research in
style transfer modules. The key insight of Gatys et al. [3] is
that CNNs could separate the content and style of images.
The result was a system that was able to synthesize images
that combine the content of one photograph with the style
representation of another. This model was trained by exam-
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(a) Expert A (b) Expert C

Figure 1: An example of edited images from the MIT-
Adobe FiveK dataset. Each original photo is edited by 5
different professional photographers.

ining features extracted from a pre-built VGG-16 Network,
but is computationally expensive since each step of the op-
timization problem requires both a forward and a backward
pass.

The neural network in Johnson et al. [4] is less computa-
tionally expensive because it trains feed-forward networks
to quickly approximate the solutions to each optimization
problem. Like [3], [4] utilizes perceptual loss functions in-
stead of per-pixel loss functions. In other words, rather than
looking at the per-pixel differences between images, the
loss function uses the difference between high-level image
feature representations extracted from pre-trained CNNs.
By combining the benefits of perceptual loss functions and
feed-forward transformation networks, the style transfer re-
sults they achieved were similar to those in [3], but three
orders of magnitude faster.

3. Approach

In developing an image enhancement algorithm to solve
our specific problem statement (personalized processing
over small sets of ground truth examples), we built off of the
past research described above. Many algorithms that focus
on image enhancement or style replication, though, require
in-feasibly large datasets for training or are too expensive
to run efficiently. We offer three possible architectures to
tackle this problem, but ultimately find that only the third
method is sufficiently efficient and effective.

3.1. Dataset

We rely on two sources of data for testing this project.
First, we use the MIT-Adobe FiveK Dataset.1 This is a
collection of 5,000 photos that are each manually anno-
tated and edited by 5 trained photographers [1]. Figure 1
shows an example of the images in this dataset. Because
each photo included has both a baseline and various edited
versions, we are able to compute perceptual or stylistic dis-
tance metrics across edits to identify the unique tendencies
of individual editors.

In addition, we collected our own data set by compil-
ing 250 pairs of pre- and post-edited photos from two cam-
pus photographers. In this dataset, split into different photo
shoots (each with consistent internal editing styles), we are
again able to map editing decisions for individual photos
conditioned on editor.

These two datasets, in conjunction, allow us to test our
work on two different scenarios. Using MIT-Adobe FiveK,
we are able to assess if our methods can adequately cap-
ture the differences in processing that individual editors use
for the same photo. Using our campus dataset, we can
test how our algorithms perform on different pictures from
photo shoots with consistent styles. More generally, though
we have access to relatively large sets of images, we also
evaluate our approaches on smaller subsets to assess perfor-
mance for real-world photographers who may not be able to
supply large training sets.

When training method 2, below, we also rely on a subset
of images from the MS-COCO dataset.

3.2. Approaches

We propose three candidate approaches. First, we ex-
perimented with generating processing masks for indi-
vidual photo shoots to then use in the perceptual style
transfer module from [4]. Second, we attempted to di-
rectly learn feature differences between pre- and post-
processed images, mapping image features to suggested
stylistic changes. Finally, we learn image modification pref-
erences for individual photographers by applying modifica-
tions from similar pictures that they had previously edited.
This method is inspired by the approach in [5].

3.2.1 Perceptual Style Masking

Johnson et al. [4] released a Torch-based implementation of
their feed-forward style transfer network based on percep-
tual losses. Their implementation takes as input a photo-
graph and a piece of art, and outputs an image that matches
the content representation of the photograph and the style
representation of the piece of art.

In our first attempt, we iterated on this model. Intu-
itively, if an editor’s typical post-processing behavior could

1https://data.csail.mit.edu/graphics/fivek/
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(a) Photo A (b) Photo B

Figure 2: An example of two different images from our
campus dataset. These photos were taken from the same
shoot, and thus share many stylistic similarities. Each is
edited by the original photographer (in this case, Bharath).

be represented as an artistic ‘style,’ it could then be applied
directly to new images through the style transfer network.
This implementation had three stages:

1. Style mask generation: First, we needed to generate
stylistic ‘mask’ representations of the post-processing
that individual artists performed. We experimented
with two kinds of mask representations:

(a) Pixel-difference mapping: This approach cal-
culated per-pixel differences between pre- and
post-processed images in a shoot and represented
these differences visually, in the hopes of captur-
ing specific processing steps to apply en masse in
a style transfer.

(b) Output mapping: This approach blended out-
put images from a given shoot, in the hopes
of retaining broad image characteristics (center-
sharpness, background-brightness, etc.) that
were common to post-processed images.

2. Perceptual loss-based training for model generation:
Once a style mask was generated, we needed to build
a style application model that could then be applied
to images. As in [4], we used a perceptual loss func-
tion that assessed stylistic loss against various features
of a pre-trained VGG-16 net to learn optimal stylistic
transforms for a large subset of the MS-COCO dataset.

3. Style transferal: Finally, we used the pre-trained model
and a new content image to generate a combined image
output.

(a) Shoot Image: Pre-Editing (b) Shoot Image: Post-Editing

(c) Generated Mask (d) Mask Applied to Image

Figure 3: An example of an image from one of the photo-
shoots in our campus dataset (pre- and post-processing), the
composite mask generated by averaging output image pixel
values from all photos in the shoot, and the same image with
the mask applied to it by the perceptual style transfer mod-
ule. As 3c visually indicates, the mask seems to capture the
dark-foreground, white-background style of the images in
the shoot

For each mapping type, we experimented with different spe-
cific implementations, using various combinations of pixel
and feature proportional averages. See Figure 3c for an ex-
ample of this process applied to one shoot.

We ultimately found that this approach was not suited for
the problem at hand. As we discovered, [4]’s perceptual loss
function learns to apply style representations in a complex
way. Rather than picking out simple image features from
the proposed style in isolation, the loss function is trained
to represent output images that encapsulate a combination
of features and how they manifest in concert. We suspect
that this is why, for instance, in Figure 3d, the output im-
age uses the dark-light image boundaries and the fuzziness
of the foreground to generate images that abstract various
vital content features and preserve boundaries instead. Fur-
thermore, the style reconstruction loss used in [4] penalizes
differences in colors and textures. As a result, the compos-
ite mask that we believed was an accurate representation
of a given photo shoot was unsuited for this loss, as the
colors and patterns of the original image were lost. This
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(a) Image from Different Shoot (b) Mask Applied to Sample

Figure 4: An example of an image from a different photo
shoot with the same mask from 3c applied to it. As 4b
demonstrates, applying masks from different shoots gener-
ates unintelligible results

explanation might also account for the unexpectedly varied
results generated by applying masks to images from differ-
ent shoots (see Figure 4b)—though poor performance was
expected, the particular output (with its colors and patches)
was not.

3.2.2 Feature Difference Learning

Our second approach attempted to directly map various in-
put image features to an enhancement vector that could rep-
resent the changes made during processing. In this way,
we intended, we could create a model for each user that
would incorporate both the visual features of an image and
the stylizations that a given editor typically performed when
deciding on how to process it.

More specifically, we wished to represent an image
based on its visual features and/or per-pixel CIE-Lab data
to train a model that could predict pixel-by-pixel CIE-Lab
transformation suggestions. Given that this was a structured
prediction problem, we investigated both a structured-kNN
and a structured-SVM as candidate enhancement-prediction
models. Unfortunately, both methods were difficult to train
and neither successfully converged on the data at hand. This
was unsurprising, as the dimensionality of the possible out-
put space was almost as large as the input vector informa-
tion available.

To reduce output feature dimensionality, we attempted
to use a simplified enhancement vector that consisted of
parameters for image-wide transformations instead. This
way, we could learn a few values for brightness or satu-
ration transforms that could represent the processing steps

that needed to be taken. Unfortunately, this was not able to
solve the issue—neither model converged on this problem
setup either.

3.2.3 Generalized Enhancement Vector Learning

Based on the issues we found above, we settled on a third
approach. This method aimed to build a reference set
that learned a generalized enhancement feature vector for
each image. Then, for each new (test) image, this module
found the ‘nearest’ images in the historical set and gener-
ated a composite version of the enhancements applied to
them. Thus, this process applied specific image modifica-
tions (rather than masks for entire photo shoots as in section
3.2.1) but did so without making the problem space too open
ended (as was the issue with directly learning enhancements
in section 3.2.2).

This approach is similar to [2], [5] but addresses short-
comings in both implementations. In [2], a editor cannot
belong to multiple editor clusters, and is therefore limited
to one image enhancement style over all images. We found
that in the dataset we created, professional photographers
varied their editing styles dramatically based on different
photo shoots. Therefore, our approach can more optimally
apply different enhancement transformations depending on
the type of input image. Furthermore, since we can lever-
age an editor’s current set of pre- and post-processed im-
ages, we do not need to generate the kind of training set
used by [5]. Finally, though [5], [2] developed a system
where each user enhanced < 25 carefully-chosen images,
this small number of examples may not properly represent
the kind of photos that each editor most commonly works
with. By contrast, our methodology theoretically improves
in accuracy as a user edits more photos.

Our processing phase learned four kinds of image-wide
enhancements for each pair of Ik, I ′k,e: color (saturation),
brightness, contrast, and sharpness. We used the Python
Pillow module to compute each enhancement ‘factor’ ac-
cording to the formulas below:

αcolor =
I ′ − Igreyscale
I − Igreyscale

αbrightness =
I ′ − Iblack
I − Iblack

αcontrast =
I ′ − Igreyscale,avg
I − Igreyscale,avg

αsharpness =
I ′ − Iblur
I − Iblur

where Igreyscale is a greyscale (unsaturated) version of I ,
Iblack is a black image of size I , Igreyscale,avg is a greyscale
version of I with the average pixel value placed throughout
(no contrast), and Iblur is I with a blur filter applied to it.
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Once we had, for each editor, a mapping of each of their
input images to enhancement feature vectors α:

α =


αcolor

αbrightness

αcontrast

αsharpness


we then could generate enhancement vectors for new im-
ages. We do so by developing a distance metric to group
images by visual content and by using a lightweight clus-
tering algorithm to identify the closest past images for each
test picture. We decided to use a color histogram similarity
metric due to color histogram importance in distinguishing
between photos from different shoots. This distance metric
methodology differs from both [5], [2].

Once a proposed enhancement vector was generated for
a test image, we then applied each image enhancement se-
quentially to the pre-processed picture using built in meth-
ods from Pillow. Select results from this approach are
shown in Figure 5.

3.3. Implementation

All of our code was run on an AWS p2.xlarge Deep
Learning AMI (Ubuntu) Version 8.0 instance, which is pre-
installed with popular deep learning frameworks. For our
feature difference learning approach with style transfer, we
use open-sourced implementations by Johnson et al. and
antlerros.

4. Results and Evaluation
We evaluated our generalized enhancement vector ap-

proach in three ways.

1. We assessed the quality and ‘naturalness’ of our post-
processed images by surveying 20 amateur photogra-
phers

2. We assessed whether our images fit with editor aesthet-
ics by surveying our campus photographers

3. We assessed our images’ conformity to an editor’s spe-
cific stylizations by computing color space differences
to ground truth post-processed pictures

We used three metrics because we wanted our output im-
ages to at the very least be high quality and seem natural,
and ideally match an editor’s general preferences (if not the
exact modifications that they would have made).

First, we attempted to evaluate our output images by ask-
ing 20 amateur photographers to rank the pre-processed,
ground truth (editor post-processed), and generated ver-
sions of a randomly-selected subset of images. Each re-
spondent picked the image they liked the best and least from
each set of three. If our generated images were regularly

selected over the ground truth versions, that would suggest
that we had created natural-looking images. If, on the other
hand, our images were the worst of the three, it would sug-
gest that we had applied ‘enhancements’ that had in fact
lowered the baseline aesthetic of the image. If our enhance-
ment ability was perfect, our images would be selected in
equal measure as better than/worse than the ground-truth
versions.

We found that across 95% of images surveyed, our post-
processed version was preferred as least as much as the
original image (ie. it was voted ’worst’ no more than the
baseline version). Furthermore, we found that 40% of our
generated images in the survey won more votes for ’best’
than their ground truth post-processed versions. Taken to-
gether, these findings imply that we broadly have success-
fully enhanced images naturally and without massive imper-
fections. Oddly enough, 100% of generated images based
on the MIT-Adobe FiveK dataset were ranked as better than
the versions edited by Retoucher C.

Our second evaluation metric was intended to assess
whether our post-processed images broadly fit with an ed-
itor’s aesthetic. Even if an image was objectively ranked
as decent, if its particular editor found that they’d prefer
the baseline version to it, we’d likely have generated im-
ages that substantially diverged from their unique styles.
To evaluate this, we asked both campus dataset contribu-
tors to indicate for a subset of images whether they thought
our generated outputs were ”closer to their ideally enhanced
versions” than the pre-processed images.

This time, we found that 86% of our post-processed im-
ages were preferred to the originals. This suggested that
most of our edits did not stray sharply from the unique styles
of editors. When asked about some examples (c.f. figure
5k) that seemed to exhibit worse-than-baseline performance
but were still selected as closer, one of our campus photog-
raphers noted that these images were more in line with the
intended features of their output, and in fact exhibited inter-
esting tendencies of their own.

Finally, we attempted to quantitatively assess regenera-
tion accuracy by computing color space differences to the
ground truth edited versions. We did so by computing the
L1-norm difference between the CIE-Lab color space vec-
tors of our output images and the ground truth (editor post-
processed) versions.

In doing so, we found an average difference of 4.74 for
a randomly selected subset of images. For context, an av-
erage CIE-Lab difference of 2.3 is a just-noticeable differ-
ence, while the difference between black and white images
is 100 [1]. While it is difficult to definitively benchmark
our results, this suggests that these are perceptible yet not
excessive differences.

This, though, is an imperfect metric. While CIE-Lab dif-
ference serves as a functional numerical metric, comparing
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(a) MIT-Adobe - Pre-Processed (b) MIT-Adobe - Own Processing (c) MIT-Adobe - Ground Truth

(d) Wedding (Vincent) - Pre-Processed (e) Wedding (Vincent) - Own Processing (f) Wedding (Vincent) - Ground Truth

(g) Travel (Bharath) - Pre-Processed (h) Travel (Bharath) - Own Processing (i) Travel (Bharath) - Ground Truth

(j) Dance (Vincent) - Pre-Processed (k) Dance (Vincent) - Own Processing (l) Dance (Vincent) - Ground Truth

Figure 5: Sample results from our third approach. The first column shows pre-processed images, the second column shows the
results of our module, and the third column contains the ground truth edited versions (by the editor whose style we attempted
to emulate). The first three rows demonstrate successful attempts (to varying degrees), while the final row exemplifies a failed
shoot (see discussion of structural masks in section 5)

tonal representations does not allow for more holistic as-
sessments of image identity. There is a lot to enhancement
quality that may not be captured by this approach.

5. Discussion and Future Work

Our generalized enhancement vector learning model was
much more successful at creating subjectively better en-
hancements on the MIT-Adobe FiveK dataset than on the
dataset that we created from campus photographers. From
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observation, the enhancement of images in the MIT-Adobe
FiveK dataset by the 5 trained photographers seemed more
muted and conservative than the enhancements made by
campus photographers. This suggests that our enhancement
parameters improved upon muted images to the tastes of our
survey respondents but could not do so for more heavily-
stylized enhancements.

Furthermore, our applied enhancement parameters typ-
ically over-exaggerated the contrast and brightness of im-
ages. Since we predicted enhancement parameters indepen-
dently of each other, and since photo post-processing often
increases each of the parameters, the over-exposure of im-
ages in our post-processing can likely be attributed to the
fact that our parameters interface with one another but are
learned separately.

We also identify that the biggest shortcoming of our gen-
eralized enhancement feature vector approach is that it per-
forms poorly on images that were heavily post-processed
based on image structure and semantics. For example, in
Figure 4a, the background of the dancer is made all white,
while the saturation of the main subject of the image is en-
hanced. Here, different modifications were made to differ-
ent structural components of the image; our image-wide en-
hancement parameters could not capture this nuance. To
resolve this issue, we could have further limited edits in our
dataset by permitting only generalized adjustments, rather
than masks that applied only to specific components of pic-
tures. This would still have allowed for isolated processing
of particular colors or tone curves.

Future work ought incorporate more versatile mecha-
nisms to adapt to these sorts of enhancements. Yan et al. [6]
recognized that artistic enhancement is typically semantics-
aware. They trained a deep neural network (DNN) on im-
age descriptors that accounted for the local semantics of an
images when generating enhancements. Although this ap-
proach is limited to learning only one enhancement style, it
provides a good example of effective image descriptors and
their applications to this space.

6. Conclusion
In this paper, we present and detail three approaches

to learning the post-processing styles of different photog-
raphers and photo shoots. In our perceptual style mask-
ing approach, we discovered that our approach of applying
a perceptual loss function for minimizing mask style loss
was not suited for preserving the integrity of original im-
ages. During our feature difference learning approach, we
were unable to train a model that could predict enhancement
vectors with per-pixel transformation suggestions given our
data and the scale of the optimization problems it created.

Our third and most successful approach involved gen-
eralized enhancement vector learning. We learned the en-
hancement feature vectors for each image in our dataset.

Then, given a test image In+1, we found the closest train-
ing image Ik and applied its enhancement feature vector
to the test image. To locate the closest training image, we
used a distance metric based on the color histograms of im-
ages. We found that this approach yielded natural images
that were preferred in most cases to pre-processed versions
by both a set of surveyed photographers and our original
campus dataset contributors. We suggest that mechanisms
to improve the robustness of our enhancement feature vec-
tors be explored in future work.
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