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Abstract

Our paper introduces the novel task of image caption
validation and a first attempt towards achieving high per-
formance on this task using deep learning models trained
on MS COCO and ReferIt. Image caption validation is the
task of classifying whether an image caption correctly de-
scribes the contents of the image. Image captions capture
information about objects, their attributes and their rela-
tionships with other objects in the image. Our system parses
this textual information using a GloVe word embedding and
an LSTM network and compares it against the visual fea-
tures extracted from the image using a convolutional neural
network to realize whether the textual features match the
contents of the image or of a portion of the image. Our
best model achieves 88.62% accuracy on MS COCO. How-
ever, our qualitative analysis shows that the development of
a dataset tailored for image caption validation is needed for
the training of a model that is able to handle the more nu-
anced caption validation cases. Our codebase developed in
Python using Tensorflow can be found by clicking here.

1. Introduction
Recent tasks in computer vision, such as Visual Ques-

tion Answering (VQA) [2, 13], Caption Grounding [7], and
Binary Image Segmentation guided by Image Captions [6],
use text in the form or captions or questions in addition to
images as input. The models developed for these tasks at-
tempt to leverage the extra information provided by these
natural language expressions, but in doing so, they make
one implicit assumption: the textual input correctly repre-
sents the image. In a VQA model that takes an input ques-
tion “Are these people family?”, the model assumes that the
question is associated with an image that depicts more than
one person [13]. However, if there are no people in the im-
age, the expected behavior of the model is undefined, as it
is trained to produce an answer to the question, even when
the question has no relevance to the paired image.

As computer vision models that work at this boundary of
language and image understanding get more accurate, we

Figure 1: Example of how the iBOWIMG VQA model
gives back meaningless output in questions that do not cor-
rectly describe the contents of the target image, such as
“How many elephants are next to the giraffe?” [13].

want to make sure that is because the models are truly un-
derstanding the relationship between the input text and im-
age. As a motivating example, consider the question “Is the
kid riding the bicycle?” We would want a VQA model to
differentiate between the two types of “no” responses that
can be given for this question: is it because the kid in the
image is not riding the bicycle or because there is no kid
and no bike?

The tendency of VQA models to assume some truthiness
in their textual inputs is encapsulated in the work performed
by Ganju et al. [3], whose model leverages secondary ques-
tions about an image to infer information about what the
image is depicting and better answer the main question at
hand. Their findings indicate that the questions used to train
modern VQA models are almost always relevant to the im-
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Figure 2: Example of an image and a caption that is highly
related to the image. Figure borrowed from [7].

age, which leads to models expecting such questions as in-
put. When a VQA model like iBOWIMG [13] is fed the im-
age in Figure 1 and the question “How many elephants are
next to the giraffe?”, the output returned by the model is not
only nonsensical, but the model might also try to draw re-
lationships between the image and irrelevant question. Ide-
ally, VQA models will understand the nonsensical relation-
ship of the question in the context of the target image and
will generate a more appropriate response as a result.

This desired behavior of understanding the relationship
between text and images further extends to caption-related
tasks. Figure 2 depicts an image and its corresponding cap-
tion that were used as inputs to a Caption Grounding model
developed by Karpathy and Li in [7]. The caption describes
very precisely the objects present in the image, their at-
tributes, and some of the core relationships between them.
However, given a caption that is a bad description of the
image, how should models like [6, 7], that aim at draw-
ing connections between the textual and visual inputs, be-
have? What should the expected output of the system be
when a user inputs a completely unrelated caption of the
form “A human riding a horse”? Even more importantly,
what should the grounding be if the caption has more nu-
anced differences from the ground truth, like “A black cat
leaning on an iron table with both paws on a laser mouse”?
A human would clearly realize that this is a bad caption of
the image, but would a Caption Grounding or Caption Seg-
mentation model realize that and return no groundings and
no foreground segmentation, respectively?

Our research introduces the task of Image Caption Val-
idation: given an image and a textual input (in the context
of this paper, an image caption that may or may not de-
scribe the image well), validate whether the textual input is
a good description of the image with a binary output. A
good description in the context of this research is one that
is correctly paired with its respective image in the datasets
that are used. Whereas the caption provided in Figure 2
would be seen as a valid caption with its paired image, we

would want a model to understand that variants such as “a
dog”, “a black cat” or “a cat under a wooden table” are not
valid due to object, object attributes, or object relationships
inconsistencies.

Inspired by [6], we introduce a model with two legs: a
convolutional neural network for visual feature extraction
and a word embedding layer followed by a Long-Short-
Term-Memory (LSTM) network [5] for textual input encod-
ing. Our model combines the signals from the two legs and
then produces a binary output for whether or not the given
expression correctly describes the image.

2. Related work
Visual feature extraction: Our work, like much

research that intertwines text and images, premises itself on
having a strong model for image feature extraction. Recent
work has shown a trend towards pre-trained Convolutional
Neural Nets (CNNs) on large image repositories, such
as ImageNet [3, 13]. Earlier layers of the CNN weights
are frozen to accelerate training, while the final layers are
fine-tuned during training with the rest of the model to
improve accuracy of image feature extraction on a per-
application basis. Deep CNN architectures, such as the one
proposed by the ImageNet Challenge 2014 winning model
VGG-16 [11], has shown that architectures with many
small convolutional layers can boost accuracy without
losing generalisability across datasets. Our model utilizes
VGG-16 for image feature extraction for this reason.

Segmentation using natural language: Research per-
formed by Hu et al. [6] explores the intersection of im-
age and text by using a natural language expression to in-
form its model on which objects to segment within the pro-
vided image. The model developed by this group uses the
two-legged approach that inspired our architecture: a CNN
for visual feature extraction paired with a word embed-
ding layer and Long-Term-Short-Term-Memory (LSTM)
network for textual encoding, which are then concatenated
and classified to produce outputs that take signals from each
of the two legs.

To the best of our knowledge, models that perform seg-
mentation over natural language are designed to optimize
segmentation behavior for natural language expressions
that accurately describe a portion of the image, but they do
not account for when an expression weakly describes the
image or is not relevant to the image at all. In the situation
of an irrelevant caption, these models will produce an
erroneous segmentation that can be corrected if the model
were to check for caption relevancy.

Visual question answering: Recent work by Ganju et
al. has looked to use information from visual questions to
better inform a model in the VQA task and, as a result, has
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shown that providing multiple questions for a single im-
age can improve performance in the VQA task [3]. While
we conjecture a similar behavior of improved performance
in using multiple natural language expressions for a single
image, we note the danger of assuming the truthfulness of
a question paired with an image. For a question such as
“What breed of dog is that?”, the model may erroneously
learn an image feature to be a dog when there is no dog
present in the image.

This sort of image caption validation has been partially
implemented by Goyal et al. in their dataset that attempts to
elevate the role of image understanding in VQA [4]. The re-
search performed by this group sought to counter language
biases in VQA by collecting complementary images such
that each question in the dataset is associated with pairs of
images that result in different answers to the question. For
questions that ask about the presence of a set of objects in
an image (e.g. “Is there a cat playing with a red ball?”),
this approaches image caption validation in that the model
learns to detect whether or not the set of objects is a valid
caption for the image (e.g. “A cat plays with a red ball.”).
However, this model still fails for when a question assumes
the presence of an object, such as “Is the TV turned on?”,
when there is, in fact, no television present in the image.

3. Model Architecture
Our model borrows heavily from the architecture de-

scribed by Hu et al. in [6], with several important changes.
Given an image and an image caption, the goal is to pro-
duce a binary output that validates whether or not the given
caption accurately describes the image. We seek to achieve
this goal with two of the same components and a modified
third component used in [6]: 1) a natural language expres-
sion encoder based on a pre-trained GloVe word embedding
[10] and a recurrent LSTM network [5], a convolutional net-
work to extract local image descriptors and generate a spa-
tial feature map, and a fully-connected network to classify
the concatenated encoded expression and image descriptors.
Figure 3 is a graphical representation of our model.

3.1. Spatial feature map extraction

Given an input image, we want to produce a feature map
that accurately and uniquely represents the image, such that
the important objects are easily identified. In our model,
we adopt VGG-16, which uses a series of convolutional and
pooling layers to take an image of dimension W × H and
produce a spatial feature map with dimensions w × h [11].
In this representation, each position of the feature map has
Dim channels, which are theDim local descriptors for each
position in the map. For the VGG-16 implementation used
in our model, we set Dim = 1000, W = H = 224, and
w = W/s and h = H/s, where s = 32 is the pixel stride
on the output of fc8 layer. Like Hu et al., we perform L2-

normalization on the Dim dimensional vector at each posi-
tion in the extracted feature map [6]. This produces a fea-
ture map of dimension w × h×Dim.

3.2. Encoding captions with LSTM network

For each caption associated with an input image, we
want to represent the expression as a fixed-size vector. To
achieve this, we follow the model described in [6]: we em-
bed each word into a vector through a word embedding ma-
trix, and then use a recurrent Long-Short Term Memory
(LSTM) [5] network to scan through the embedded word
sequence. For a given natural language expression with T
words, at each time step t, the LSTM takes vectorized word
wt from the word embedding matrix as input and updates its
hidden state, which is Dtext-dimensional. When t = T , we
use the hidden state hT of the LSTM as the encoded vector
representation of the caption input. Following the proce-
dure described in [6], the Dtext dimensional vector hT is
L2-normalized, with Dtext = 1000.

For the word embedding matrix, we initially adopted
the method used by Hu et al. in [6], where the weights
of the embedding matrix are randomly initialized and then
trained with the rest of the model. The alternative we con-
sidered was to use a pre-trained word embedding matrix,
the Global Vectors for Word Representation (GloVe) matrix
[10]. Given the latter approach yielded significantly bet-
ter performance during our initial experiments, we decided
to use the pre-trained word embedding for the textual input
encoding.

3.3. Feature concatenation and caption validation

To perform a classification over both the encoded natu-
ral language expression and extracted feature map, we con-
catenate the encoded expression hT to the local descriptor
at every location in the spatial grid. The spatial map is now
w×h× (Dim +Dtext) dimensional and contains informa-
tion from both the image and the language expression. This
will be the input to a fully-connected classifier to produce a
binary image caption validation output.

The classification network is a 2-layer fully-connected
network separated by a ReLU activation, similar to the net-
work used in [6], though ours is fully-connected rather than
convolutional. The classification network is applied over
the w × h feature map, with a ReLU nonlinearity between
them and a hidden layer with dimensionality Dcls = 500.
Our 2-layer fully-connected network outputs a single value,
representing whether or not the encoded language expres-
sion accurately captions the given feature map.

During training, each training instance exists as a tuple
(I, S,B), where I is the image, S is the natural language
expression that may or may not describe the image well,
and B is a binary value 0 or 1, where B = 0 means the
expression does not describe the image, and B = 1 implies
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Figure 3: Our proposed model for image caption validation. The model has three main coponents: a caption encoder based
on a recurrent LSTM, a convolutional network to generate a spatial feature map, and a fully connected classification network
to produce our binary validation output.

that it does. The loss function is the binary logistic loss:

L = −z log(σ(x))− (1− z) log(1− σ(x))

where z is an image/caption label (1 if the caption accu-
rately describes the image and 0 if it does not), x is the
model prediction, and σ(x) is the logistic function on x:

σ(x) =
1

1 + e−x

The word embedding matrix is initialized using the
GloVe pre-trained weights and remains frozen through-
out training. The parameters in the image feature map
extraction network are initialized from a VGG-16 model
pre-trained on ImageNet [11]. We freeze the convolutional
layers of the VGG architecture and fine-tune only the fully
connected layers of the architecture during training. The
LSTM weights and fully-connected classification layer
weights are randomly initialized and are also fine-tuned
during training. We use L2-regularization to control the
magnitude of the weight vectors. The network is trained
end-to-end with standard backpropagation using SGD with
momentum.

4. Experiments and Evaluation

4.1. Dataset Selection

Since we introduce a novel task, there is no established
dataset for Image Caption Validation. Thus, we resort to
two datasets with a large number of image-caption annota-
tions: ReferIt and MS COCO [8, 9].

ReferIt contains nearly 20k images of natural scenes
with a total of approximately 130k expressions that refer to
different objects in the scenes [8]. We use ReferIt because
its image captions are expressions referring to part of the
image, which allows us to train models that can better vali-
date captions that partially describe images. However, some
ReferIt captions, such as “sky” and its variants, are repeated
across a large number of images, making negative examples
of non-related images and captions difficult to generate, as
it will be analyzed in the next section.

Given the above limitation of Referit and the fact that
many captions are not grammatically complete and lexico-
graphically correct, we need an alternative training set [8].
As a result, our model is also trained on MS COCO, which
contains 328k images, each with five unique captions that
are grammatically complete and lexicographically correct
phrases [9].
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Figure 4: Performance summary of the four core models across all experiments.

4.2. Baseline Models

Since we found no previous work on Image Caption Val-
idation, there is no benchmark against which we can com-
pare our model. Thus, we train two baseline models using
the Section 3 architecture to compare against one another.

The first model, cls coco glove, is trained using the 50-
dimensional GloVe embedding [10] on a subset of the MS
COCO 2017 training set [9] comprised of 90,000 image-
caption pairs. Only 9,000 images are used from the MS
COCO training set, each of which is paired with 10 cap-
tions. The positive examples are the 5 captions paired with
the image in MS COCO and the remaining five are negative
examples that are generated by randomly sampling captions
from the rest of the MS COCO training set. We do not train
on the full MS COCO training set because of computational
resource limitations.

The second model, cls referit glove, is trained using
the 50-dimensional GloVe embedding [10] on a subset of
the training set of ReferIt [8] comprised of 90,000 image-
caption pairs. The number of images in the training set are
9,789. This is not 9,000 because Referit images have a vari-
able number of captions [8]. The negative examples are
generated by randomly sampling captions from the rest of
the ReferIt training set so they match the number of posi-
tive examples per image. We do not train on the full ReferIt
training set because of computational resource limitations.

The method of generating negative captions is not ideal,
as there is always the risk of sampling a negative caption
that actually describes the target image well. This results in
noise in the negative training samples, which hinders test-
time performance. Given COCO captions provide a very
detailed description of the image they are paired with, it is
highly unlikely that a randomly sampled caption describes
well the target image [9]. In the case of the second model
though, the noise in the negative captions is more signifi-
cant. This is because ReferIt captions refer to a portion of
the image, which make certain captions appear across im-
ages, such as the most prevalent “sky” caption and its vari-
ants [8].

4.3. Test-time Evaluation

The results of our experiments are summarized in Figure
4. For this section, focus on the first two rows. All test-time
experiments are performed on the MS COCO 2017 valida-

tion set, comprised of 5,000 images. We use MS COCO
over ReferIt since the MS COCO captions are much better
resemble spoken English and encode more complex rela-
tionships about the objects present in the image, than the
much shorter and simpler referring expressions of ReferIt
[8, 9]. This also allows for the generation of much less noisy
negative examples. Here is a breakdown of each experiment
we run:

1. Simple Captions: We use the 5 image captions of
each image as positive examples and we generate 5
negative examples using the method described above.
This is the key comparison metric, as it tests the mod-
els on instances similar to the ones they are trained on.

2. Irrelevant Captions: We use only 1/10 of the images
in the test set and we assign 50 negative examples to
each image, resulting in 25,000 pairs of images and
negative captions. This a sanity-check of the extent to
which our models can correctly identify captions that
are obviously unrelated to the image as negative, which
is one of the two fundamental goals of Image Caption
Validation.

3. Concatenated Captions: We evaluate the ability of
our models to validate more complex captions. We do
so by forming for each image four types of complex
captions: 1) two positive captions concatenated into
one, 2) two negative captions concatenated into one,
3) one positive and one negative caption concatenated
in this order, 4) same as (3) but reverse order. The
captions are concatenated using the -and- conjunctive.

4. Object Class: MS COCO has 80 object classes [9]. In
this experiment, we evaluate the ability of our models
to identify the object classes present in the image, sim-
ulating the traditional image classification task [11].
For each image, we form positive captions by using
the COCO object class definition of the object classes
present in the image and we form negative captions by
randomly sampling an equal number of the remaining
object classes.

cls coco glove outperforms cls referit glove in almost
all experiments, which is not surprising given the former
has been trained on captions more similar in structure and
vocabulary to the ones found in the test set. As shown in

5



Figure 5: Logit scores and caption validation labels produced by cls coco glove for various captions for the black cat and red
bridge images presented in Figure 6.

Figure 6: Black Cat image from MS COCO 2017 [9] and
Red Bridge image from ReferIt [8] that were used for the
qualitative analysis.

Figure 4, the accuracy for both Simple Captions and Ir-
relevant Captions is high, indicating that we successfully
differentiate between relevant and irrelevant captions at a
very satisfactory level. However, once the queries become
more complex, performance drops significantly, as seen in
the Concatenated Captions experiment. This is an indica-
tion that our models struggle at invalidating more nuanced
captions that only partly describe the image correctly, since
we observe the main source of error are concatenated cap-
tions of type (3) and (4).

The even more surprising result is that cls referit glove
outperforms cls coco glove in the Object Class experiment.
We could not pinpoint the exact reason why this happens, so
this is definitely an area of future work. However, we iden-
tify that the relatively low performance of the models in this
experiment is a result of the models overwhelmingly classi-
fying object class captions as positive, especially the more
similar the negative captions are in nature to the ground-
truth, as our qualitative analysis in the next section shows.

To further understand the lower performance of the models
in the last two experiments, we perform some qualitative
analysis on carefully crafted pairs of image-caption.

4.4. Qualitative Analysis

Despite MS COCO being a very comprehensive dataset,
it is not one tailored for Image Caption Validation. This is
because there are no carefully crafted negative captions for
its images, which forces us to use the method described in
Section 4.2 to generate them. The issue with this approach
is that a caption will either be perfectly describing the im-
age or be completely unrelated to it. No negative caption
will have nuanced differences from what its image is de-
picting. For example, if we consider Figure 2, a nuanced
negative caption would be “A black cat leaning on an iron
table with both paws on a laser mouse”. Such a caption
correctly identifies the core objects int he image (“cat”, “ta-
ble”, “laptop”, “laser mouse”), but does not correctly iden-
tify their attributes (e.g. “tabby” vs “black”) and the rela-
tionships between them (e.g. “both paws on” vs “one paw
on”). Given such captions are not present in MS COCO
and, thus, our test set, some manual qualitative analysis is
required to check the extent to which our models can cor-
rectly validate such more nuanced captions.

The qualitative analysis is performed using the
cls coco glove model. The summary of our qualitative
analysis is presented in Figure 5. It shows that our model
is very good at validating captions whose object classes are
present in the image. It is also very good at invalidating cap-
tions whose object classes are not present in the image and
are dissimilar from the object classes depicted, such as “cat”
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Figure 7: Logit scores and caption validation labels for cap-
tions irrelevant to the images depicted in Figure 6.

vs “bridge”. However this is not the case for object classes
that are similar to the ones depicted in the image, such as
“tunnel” vs “bridge” and “cat” vs “dog”. Thus, it seems our
models are able to identify correctly the general nature of
the main objects depicted (e.g. animal, structure) and not
their specific object class. What is very interesting though
is that our model is able to do that even for item categories
that are not one of the 80 object classes of MS COCO, such
as “bridge” and “hill” [9].

This qualitative analysis also validates our hypothesis.
The models are not able to validate correctly nuanced neg-
ative captions that identify the objects depicted correctly
but misidentify object attributes and relationships, such as
color, relative position, context, and number of object in-
stances. According to this, it seems our models are vali-
dating any caption that references the objects present in the
image, regardless of whether the attributes and relationships
of those are correctly identified. This is justified from the
highly similar high confidence-logit scores that captions in
the color, relative position and counting semantic category
receive as long as they identify the main image object (i.e.
“bridge” or “cat’), regardless of whether they are negative or
positive captions. This hypothesis is further supported from
Figure 7, which shows that our models succeed in invali-
dating negative captions with high confidence-logit scores
when those captions make no references to the core object
classes presented.

4.5. Higher Dimensionality Word Embedding:

So far our models have succeeded in two ways: 1) they
are invalidating negative captions that are completely unre-
lated to the target image, which was one of our core goals
and 2) they are correctly identifying the general nature of
the objects depicted in the image, even if those are not one
of the core object classes of the training set. However, (2) is
not sufficient, as it leads to the limitations identified through
our qualitative analysis. To tackle this limitation, we need to
differentiate more effectively between concepts that lie very
close to each other in the GloVe embedding parameter space
due to being used in very similar sentence contexts, such as
the words ”dog“ and ”cat“ (or any other domestic animal
in this case) [10]. To do so, we introduce cls coco glove+,

which is the same model as cls coco glove, but is trained
on the 300-dimensional GloVe word embedding [10].

We re-run the experiments introduced in section 4.1 to
evaluate our new model. cls coco glove+ outperforms the
other two models in all categories, but Object Class, accord-
ing to the results summarized in Figure 4. Since it gains a
significant improvement over cls coco glove across all ex-
periments, the higher dimensionality embeddings indeed al-
low for a better encoding of the textual input. In fact, our
new model better differentiates across object classes than
the original COCO model due to the better performance of
cls coco glove+ over cls coco glove in the Object Class ex-
periment. However, the fact our latest model still loses to
cls referit glove in the Object Class experiment is an indi-
cation that there is still room for improvement in the way
the model identifies the object classes present in the image.

4.6. Larger Effective Vocabulary:

COCO images and, by extension, their captions focus on
80 object classes, which leads to 80 words dominating the
caption vocabulary [9]. By contrast, in ReferIt there are no
explicit object classes. It is a dataset that aims for breadth
over possible objects one can encounter in natural scenes
and, thus, there are way more object concepts/classes that
appear in its image captions [8]. This results in a much
richer set of objects that the network learns by training on
ReferIt rather than MS COCO.

Given the 5 captions of a COCO image are fairly sim-
ilar in content to one another, we now use 1 positive and
1 negative caption per image. This allows us to train on a
much larger set of images, which implies a wider set of cap-
tions in terms of their semantic content. We hope that this
will increase the richness of the textual and visual elements
of our training set in such a way, so that the trained model
will be able to distinguish between objects of similar nature.
The resulting model trained on 45,000 images from the MS
COCO 2017 training set is cls coco glove++.

Our quantitative analysis shows that cls coco glove++
does not achieve better performance than cls coco glove+
in a statistically significant way, despite a small boost in
experiments 3 and 4. Even if we increase the variance in
semantic and visual content in the training set, there is min-
imal change in performance. Thus, given our architecture,
it does not seem we can do much better at capturing the
difference between semantically similar object classes by
training on the MS COCO dataset.

This is further supported from the second stage of our
qualitative analysis performed this time on cls coco glove+
and cls coco glove++. The summary is presented in Figure
8. We observe that the labels are almost identical to
the ones of the original qualitative analysis presented in
Figure 5, which implies that both the higher and the lower
dimensional model are able to validate correctly the same
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Figure 8: Logit scores and caption validation labels produced by cls coco glove++ for various captions for the black cat and
red bridge images presented in Figure 6. Results were similar for the cls coco glove+ model, so they are omitted.

types of captions. In that sense, we have not overcome the
difficulty of our models in invalidating nuanced negative
captions by increasing the embedding dimensionality or
increasing the effective vocabulary size.

However, the logit scores for the negative examples
are now in most cases significantly smaller than the logit
scores of the corresponding positive examples. Thus,
since these results are similar across cls coco glove+ and
cls coco glove++, it is the higher dimensionality embed-
dings that allow the model to diffrentiate more effectively
between semantically similar captions, such as ”bridge“ vs
”tunnel“ and ”one cat“ vs ”two cats“. However, the quali-
tative analysis still shows that our models suffer when hav-
ing to validate captions that differ not in the object classes
present but in the attributes of and relationships among
those object classes.

5. Conclusions and Future Work

Although we have developed a model that can differ-
entiate with 88.62% accuracy between highly relevant and
highly irrelevant captions for an image, our model is far
from perfect as it struggles at handling more nuanced cases.
Our qualitative analysis has shown that our models do not
invalidate more cleverly formed negative textual inputs,
which correctly identify the objects present in the image
but misidentify object attributes, such as color, or object
relationships, such as relative position. Higher dimension-
ality word embeddings and a wider set of captions and
images in the training set do improve performance, but they

cannot solve this problem. Thus, we propose the following
two areas of future work:

Alternative baselines - iBOWIMG: While there is no
established research for image caption validation, there are
existing models that can act as a baselines, given slight
modifications. An example is iBOWIMG, a model widely
used as a VQA baseline [1, 3, 12]. By editing each caption
C to be a question ”Is there a C?“, we can reliably get
reliable yes/no responses from iBOWIMG, which can be
interpreted as image caption validation outputs. Given the
ability of VQA models to answer yes/no questions with
high success as seen in [3, 13], this could overcome the
limitations of our current model.

Image Caption Validation Dataset: MS COCO and
ReferIt are fairly rich datasets in image captions. However,
neither of them has carefully crafted negative captions for
each of its images. This implies that it is very hard for im-
age caption validation models to learn to invalidate nuanced
negative captions, as they are never presented such captions
during training. Thus, the development of a dataset tailored
for image caption validation models can lead to a signifi-
cant boost in the ability of our models to invalidate nuanced
negative captions. This could be done by expanding the MS
COCO dataset to include negative captions for each image,
such as those captions correctly identify the object classes
present in the image, but misidentify object attributes and
relationships, such as context, relative position, number of
instances, color and texture.
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