
Hierarchical Parsing of 3D Scenes via Recursive Context Propagation

Allen Wu
Princeton University
Princeton NJ 08540

zhelunw@princeton.edu

Abstract

Many tasks in 3D scene analysis and synthesis involve
learning and inference of contextual information. Contex-
tual analysis faces the coupled problems of object extrac-
tion and relation inference. Context can be defined only
when objects are accurately detected. Object extraction,
on the other hand, is best be conducted with the help of
context. A natural solution thus seems to be interleaving
the two problems and iteratively improving object detection
and contextual relation inference. We propose a method
for inferring a hierarchical parse of a 3D scene. We then
utilize a recursive neural network (RvNN) architecture that
leverages these hierarchical parses to aggregate and prop-
agate contextual information, refining the object identities
and their relations in an iterative process. With this ap-
proach, we demonstrate that we can improve object detec-
tion performance in both reconstructed and synthetic 3D
scenes relative to baselines that use hand-crafted hierarchy
construction algorithms, or no hierarchical information.

1. Introduction
In the real world we need to identify physically present

objects to successfully navigate. As humans, we rely on our
understanding of both the 3D shape and the semantics of the
environment to interact with the objects in the environment.
For autonomous robots, an understanding of real 3D scenes
is essential to perform common tasks such as turning on a
TV, or bringing a bottle from the kitchen table.

With such examples as motivation, our goal is to demon-
strate that addressing the two problems of object detection
and relation inference jointly can lead to improved perfor-
mance. The two problems of object extraction and relation
inference are often viewed as sequential tasks, but they are
actually deeply correlated. A key observation was made in
our paper on the dataset we studied, SUNCG [5], a large-
scale dataset of 3D scenes with dense occupancy and se-
mantic annotations. For many rooms, there are patterns of
how the objects are arranged. They often aggregate in pairs

or groups. Some are obvious, such as table and sofa; desk
and chair; toilet and bathtub; computer and shelves etc. (see
Figure 2) So naturally, there are relations between groups of
objects that can be utilized for us to identify objects and in
this paper, we are trying to describe those relations in a hi-
erarchical way.

Such a hierarchical representation is useful in two ways.
First, we can group furniture and other objects in the room
in an organized, hierarchical way. This is useful if we
want to further classify objects by adding extra annotations
in the room to different functional roles and relationships
(e.g., dining table or bedside lamp). Second, we are able to
guess unknown or partially observed objects in the dataset
by learning relationships between the hierarchical structures
and spatial relations.

We wish to build such a hierarchical structure of a scene
where frequently co-occurring objects are grouped into sim-
ilar sub-hierarchies, even across different scenes. How-
ever, this task is quite challenging, especially for real world
scenes where the objects are partially observed and their
categories are unknown. Without knowing object cate-
gories, how can we build a scene hierarchy and utilize its
contextual information to help scene analysis? In this work,
we achieve this in two stages. First, we train a model that
can predict the co-occurrence probability between any two
objects without knowing their category labels. Second, we
leverage the model to build a scene hierarchy in a greedy
manner.

This prediction model is learned from the dataset with-
out any heuristic rules. After the hierarchical structure has
been built, we combine it with a recursive neural network
based object detection method to improve object detection
performance. The results indicate that hierarchies built by
our method are not only meaningful and explainable, but
also beneficial for context propagation and object detection.

This paper is structured as follows. We start by dis-
cussing related work (Section 2) and how we find the start-
ing point of this research project. In Section 3, we explain
how to build the co-occurrence model. Then in Section 4,
we show how our model can be combined with a recursive

1

Figure 1: An overview of our pipeline. We train an one-class SVM (b) to predict co-occurrent probability for a pair of
objects. During training (a), training samples are collected by randomly selecting object pairs from rooms in SUNCG (e).
Each object pair is represented by a feature vector (f). The bar in orange and blue represent the PointNet feature of the two
objects, respectively, while the bar in green represents their spatial layout feature. During inference (c), object proposals are
extracted from the input scene (g). Feature vectors are computed (h) and co-occurrent probability for every two objects are
predicted by the learnt SVM (b). A scene hierarchy is generated by using the SVM predictions in a greedy manner.

Figure 2: Some Co-occurrent Patterns in SUNCG dataset

neural network architecture and trained for improving ob-
ject detection. Section 5 concludes the work.

2. Related Work
Hierarchical representation has always been a hot area

in indoor scene context understanding, and we are trying to
apply it with a different flavor of interweaving in order to
better solve the indoor object recognition problem.

Originally, we were inspired by [6], which used Gaus-
sian Mixed Model(GMM) and a Siamese network both pro-
cessed by PointNet to jointly train a retrieval and embedding
network, which is then used for identifying the probability
of two parts of an object next to each other and thus recon-
struct an object from partial pieces of an object.

Our hierarchical parsing and object detection approach
is based on the GRASS [2] model which was applied to
hierarchically parse and reconstruct 3D object geometry.

This is a really illuminating point by using both positive
samples and negative samples as this will help the network
differentiate samples with higher confidence as there is a
larger margin when training on both positive samples and
negative samples as opposed to only positive samples. Also
sharing weights across these two networks means fewer pa-
rameters to train for, which in turn means less data required
and less tendency to overfit.

In our paper, we also use PointNet to extract features and
retrieve relations between different objects instead of object
parts. Additionally, we are trying to learn the pattern and
thus help us reconstruct the missing or unidentified objects
in the scene. However, we are not using negative samples
to train our network.

3. Method

We define scene hierarchy generation as the problem of
taking as input the set of detected objects and the output
is a binary tree representing a hierarchical grouping of the
objects (see Figure 1). The leaves of the output tree are
the detected objects and the internal nodes represent sub-
groupings of the objects. The root of the tree represents the
entire room.

To form the hierarchy, we define an affinity score
A(ni, nj) between two nodes ni and nj . We want this affin-
ity score to capture the co-occurrence probability of two
nodes. To do so, we build an object-object co-occurrence

2

Figure 3: Details of the co-occurrence model

model (Section 3.1) by training a one-class SVM to es-
timate the co-occurrence probability of two object nodes
P (ni, nj). Then, for any two nodes ni and nj , we com-
pute the affinity as the average of all pairs of objects in the
two nodes:

As(ni, nj) =
1

|ni||nj |
∑

oi∈ni,oj∈nj

P (oi, oj)

. Using the affinity score between nodes, we greedily build
the hierarchy bottom-up (see Section 3.3).

3.1. Co-occurrence Model

In order to build the co-occurrence model, we take
as input pairs of objects that appear in the same room.
Each object is represented as a 3D point cloud with an
axis-aligned bounding box (AABB), and a category label.
The 3D point cloud is essentially a set of points {pi} =
{xi, yi, zi, ri, gi, bi} with their 3D (x, y, z) position and
color (r, g, b). In addition, we also want the co-occurrence
model to take into account the spatial relationship between
the two objects. Thus, the input will be composed of three
parts: features for the two objects, and features capturing
the spatial layout of the two objects. The output of the
model will be a value between 0 and 1, indicating the prob-
ability that these two objects co-occur in the room.

Based on the above, we design a one-class SVM that
takes as input an object descriptor for the two object nodes
Do(ni) and Do(nj) and a spatial relationship descriptor
Ds(ni, nj) between the two objects. Using a one-class
SVM allows us to estimate the probability that a given ob-
ject pair is expected to co-occur using only positive sam-
ples for training. Figure 3 shows the architecture of the co-
occurrence model. Given two objects, the PointNet features
[4] are extracted. We concatenate these two vectors along
with a layout descriptor [3]. We then use the concatenated
feature vector to train an one-class SVM that outputs the co-
occurrence probability between two objects (see Figure 1b).

We consider two variants for the feature descriptor of an
object Do: i) an one-hot vector representation of the cat-
egory label, and ii) features extracted using PointNet [4].
PointNet is a neural network model that is designed to con-
sume a raw point cloud (set of points) and learn both global
and local point features. PointNet has been shown to ef-
fectively learn the informative features from a point cloud

and use these features for segmentation and labeling. So
with the ability of summarizing an input point cloud, we
are motivated to use the feature extracted by PointNet. The
one-hot vector allows us to see how well our model can per-
form if we had access to the category label, while using the
PointNet features allows us to estimate the co-occurrence
probability of two objects by appearance only (e.g. without
access to the category label).

The spatial relationship descriptor Ds captures the spa-
tial relationship between the bounding boxes of two object
nodes ni and nj . Following [3], we define Ds(ni, nj) be-
tween two nodes ni and nj as a 7-dimensional vector:

Ds(ni, nj) = [ni.zmin − nj .zmin,

ni.zmin − nj .zmax,

ni.zmax − nj .zmin,

‖ni.box.center− nj .box.center‖,
Dist(ni.box, nj .box),
Vol(ni.box ∩ nj .box)/Vol(ni.box),
Vol(ni.box ∩ nj .box)/Vol(nj .box)]

Intuitively, the first three components describe the rela-
tive height of the two objects and capture the vertical rela-
tionship between them. The fourth component is the Eu-
clidean distance between the centroids of ni and nj . The
fifth is the distance between the two bounding boxes de-
fined as the closest distance between all pairs of points on
those two bounding boxes. The last two components repre-
sent the amount of overlap between the two regions.

The overall co-occurrence model can be written as,

P (ni, nj) = f(Do(ni), Do(nj), Ds(ni, nj))

. whereDo(ni) andDo(nj) are the features of object ni and
object nj , respectively. Ds(ni, nj) is the spatial descriptor
of the layout between the two objects (ni, nj). P (ni, nj)
is the co-occurrence probability of the object pair (ni, nj).
If P (ni, nj) > 0.5, we will take it as ”inlier”, indicating
these two are likely to be co-occurrent, otherwise, it is an
”outlier” indicating they are not co-occurrent.

3.2. Training the Model

To train the one-class SVM, we use individual rooms ex-
tracted from the SUNCG dataset [5]. In our experiments,
we focus on four types of rooms: bedroom, living room, of-
fice, and toilet. We follow the train/test split used in [5]. For
each room type, we filter out bad rooms whose floor area is
larger than 50m2 and randomly select 9000 rooms for train-
ing and 1000 rooms for testing from the rest. We further
randomly select 45,000 object pairs from the 9000 rooms
for training and 5000 object pairs from the 1000 rooms for
testing. Table 1 shows the number of objects that occur in
the different room types.

3

average # of
objects per room

min # of
objects per room

max # of
objects per room

bedroom 17.7 7 45
office 19.3 4 43
toilet 7.9 1 44

living room 17.4 5 56

Table 1: Number of objects for different room type

Given the variety of data in SUNCG, we might learn
some infrequent co-occurrences between objects, but the ef-
fect is marginal because the one-class SVM is capable of
fitting into the majority pattern of the training and ignoring
those deviant sample points.

To create the training data, we first sample points from
the SUNCG object models to create point clouds of all
SUNCG models. Since real-world scans are often incom-
plete, we create incomplete versions of the models by ran-
domly sampling a plane and remove all points on one side
of the plane. This is intended to approximate occlusions in
real scans. A completeness degree is assigned to each in-
complete point cloud (e.g. a point cloud with 20% of points
discarded will have a completeness degree of 80%). We use
point clouds with a completeness degree of 80% to 90% for
training so that our network can handle incomplete scans.

There is no restriction on the distance or any other spa-
tial alignment restraints between the objects, we sample the
pairs randomly from all rooms, so the patterns we learn
from the SVM is unprejudiced and general.

We used sklearn.svm.SVC as our one-class SVM
to train over the entire training set, and we simply use
SVC.score to churn out the score for each test data de-
scriptor. The score will pass through sigmoid function
σ(x) = 1

1+e−x and return us a value between 0 and 1. We
then take this value as the likelihood of the pair co-occurring
in the same room. All SVM parameters are default values.

3.3. Scene Hierarchy

Once we have trained the object-object co-occurrence
model, we can compute the affinity score between any two
nodes by taking the average of the co-occurrence probabil-
ity between all pairs of objects across the two nodes. To
build the scene hierarchy of the room, we cluster nodes
greedily in a bottom-up fashion, starting with the detected
objects as the leaf nodes, until only one node remains.

The algorithm for building the hierarchy is as follows:

1. Compute the affinity of every two nodes. Initially,
those are the co-occurrence probabilities based on the
point clouds of the objects.

2. Select the two nodes with the highest co-occurrence
probability to form a merged node and delete those two
nodes.

3. Compute the affinities of the newly generated node
with other existing nodes.

4. Repeat step 2 and 3 until there is only one node left.

Examples of output hierarchies are shown in Figure 6.

4. Experiments and Results

4.1. Co-occurrence model

To validate that the one-class SVM works well for both
positive and negative examples, we create two groups of
test data: a positive set that is drawn from pairs of objects
that occur in the rooms, and a negative set that is created
by swapping out an object from a room with another object
from another room of the same type. When replacing the
object, we make sure that the bounding box center of the in-
serted object is aligned with the object that is switched out.
While it is possible that the switch will result in a reasonable
placement, this switching procedure will most likely intro-
duce unreasonable pairs, which can serve as good contrast
examples.

Qualitative examples To qualitatively evaluate our co-
occurrence model, we visualize co-occurrence probabili-
ties predicted by our model. We show high and low co-
occurrence object pairs for each of the four room types in
Figure 4. For each pair, visualize the bounding boxes of the
objects as seen from the top, and two sides.

Now let us go through those four types of rooms and see
if our SVM can distinguish between high and low proba-
bility object pairs. In Figure 4a where it shows bedroom
objects with high co-occurrence probability, we found bed
and pendant light are paired together with 79% confidence,
two lamps juxtaposed together with 66%, a bedside lamp
with a bed of 74% and bed with cupboard of 68%. They are
all kind of reasonable.

For bedroom objects with low co-occurrence probabil-
ity in Figure 4b, we have sofa and plant, bed with camera,
cradle with dress table and laptop with books.

For living room in Figure 4c, sofa and table, television
and TV stand, big sofa by a small sofa, and sofa with TV are
highly co-occurrent. In Figure 4d, it shows that lamps are
not usually placed near the window, stereo is not common
to be 2 meters by 2 meters sideway placed from a TV stand.
Also the trash can should not be placed near the dresser.

In an office, desk and chair are usually placed together,
computer usually on top of the desk, two chairs close to
each other and chair with an laptop are highly co-occurrent
objects as shown in Figure 4e. On the other hand, in Figure
4f, the sofa is not placed near a piano, and the dining table
not near desk and so on.

4

(a) Bedroom Objects With High Co-occurrence Probability (b) Bedroom Objects With Low Co-occurrence Probability

(c) Living Room Objects With High Co-occurrence Probability (d) Living Room Objects With Low Co-occurrence Probability

(e) Office Objects With High Co-occurrence Probability (f) Office Objects With Low Co-occurrence Probability

(g) Restroom Objects With High Co-occurrence Probability (h) Restroom Objects With Low Co-occurrence Probability

Figure 4: Predicted co-occurrence probabilities for different room types

5

Figure 5: Precision-Recall Curve Comparison

In restrooms, the toilet is usually placed along with the
sink, standing toilet and flushing toilet together, and light-
sink pair as in Figure 4g. Likewise, it is uncommon to have
a chair in the restroom, or washing machine as in Figure 4h.

Quantitative evaluation For a quantitative evaluation,
we compute the precision-recall relation of the trained SVM
on the prepared test set (see Figure 5). With a one-hot en-
coding (not shown), we are able to distinguish between high
and low probability cases perfectly. Using PointNet fea-
tures, including the spatial layout features can improve the
overall precision at lower recall.

We took a positive set of 5000 pairs and a negative set
of 5000 pairs. As we can see on Figure 5, when recall rate
goes to 1, the precision goes to 0.5. In order to generate the
graph, We used the trained SVM to score test data. And then
we scan the threshold from 0 to 1 with step 0.01 by specify-
ing those object pairs with higher likelihood than threshold
be taken as positive and negative otherwise. Then we com-
pare the predicted labels with the ground-truth labels as we
know which are from the positive sets and which are from
the negative set. In this way, we get to know the true posi-
tives(TP), false positives(FP), true negatives(TN) and false
negatives(FN), and further we get the PR curve. Just for
reference,

Precision =
TP

TP + FP

Recall =
TP

TP + FN

So this explains why when threshold is 0, we just predict
all pairs as true, so the precision rate is 0.5 and the recall
rate is 1.

4.2. Hierarchy Results

Figure 6 shows example hierarchies for different room
types generated by our method (using PointNet features and
the layout features). When generating the hierarchy we ex-
clude objects that are supported by the walls (e.g. doors and
windows) and ceiling (e.g. ceiling lights and ceiling fans).
As shown in Figure 6, the generated hierarchies have rea-
sonable groupings such as the grouping of laptop with desk,
and then with chair (2nd row left, and 4th row right). The
network also learns to give high co-occurrence probabilities
to pairs of objects that are the same such as two nightstands
(1st row left), four bar stools (2nd row right), and two chairs
(4th row right). An example of a less ideal grouping would
be the grouping of the two chairs (2nd row right) with the
couch area instead of the desk area.

4.3. Integration with Object Detection Model

To further validate the usefulness of our hierarchy, we
investigate whether it can be used to improve object detec-
tion. We hypothesize that by leveraging an RvNN (recursive
neural network) based encoder and decoder that can capture
the hierarchical organization of the room, we can effectively
capture contextual cues for improved object detection.

To do so, we propose a novel hierarchical object detec-
tion model based on RvNNs that will take as input an hierar-
chy of incomplete object point clouds and output predicted
categories for each object and bounding box offsets (to cor-
rect for noisy/incomplete input objects).

4.3.1 Hierarchical object detector

The architecture of the RvNN object detection model is il-
lustrated in Figure 7 (a). There are two components: an en-
coder to aggregate information in a bottom-up manner and
a decoder to parse the aggregated information in a top-down
manner.

For the encoder, the hierarchy generated by our method
is applied. Each node (both leaf node and internal node)
contains a fixed-length feature vector. The leaf nodes are
nodes for detected objects. The input of leaf nodes for the
encoder is a feature vector containing both PointNet fea-
tures and the AABB parameters for the object. The Point-
Net features contain the descriptor of the object itself, while
the AABB parameters encode its location in world coordi-
nates as well as its physical size. Internal nodes are aggre-
gated nodes for multiple objects with a latent fixed-length
feature vector that is learned. We compute this feature vec-
tor by using the network shown in Figure 7 (b). The net-
work takes as input both the feature of the two children and

6

Figure 6: A gallery of the hierarchies generated by our method

Chair Table Cabinet Cushion Sofa Bed TV mAP
No hierarchy 0.67 0.50 0.10 0.85 0.19 0.81 0.33 0.49

Random hierarchy 0.72 0.63 0.16 0.85 0.36 0.79 0.42 0.56
Hierarchy with pre-defined rules 0.75 0.60 0.13 0.90 0.37 0.84 0.40 0.57

Our hierarchy 0.78 0.68 0.23 0.91 0.47 0.78 0.43 0.61

Table 2: Average Recognition Precision on Matterport3D

their spatial descriptor (as described in Section 3.1) and out-
puts a merged feature vector. The complete encoding is ac-
complished by repeatedly collapsing pairs of nodes into a
merged node. The final output of the encoder is a root node
with a fixed-length feature vector which contains the con-
textual information of the entire scene.

For the decoder, the same hierarchy is applied. Start-
ing from the root node, we recursively parse the root node
feature into a set of leaf nodes. During decoding, internal
nodes are split into two children using the network in Fig-

ure 7 (c). For leaf nodes, we use an object classifier and an
AABB parameter regressor, as shown in 7 (d), to predict the
object category label and to compute the size and location
of the object, respectively.

4.3.2 Evaluation

We tested the object detection method by using our hier-
archy on two dataset: Matterport3D [1] and SUNCG [5].
Matterport3D contains 3D scene data captured throughout
90 properties with a Matterport Pro Camera. For Matter-

7

Figure 7: Our model for object detection based on RvNN and autoencoder

Chair Table Cabinet Cushion Sofa Bed TV mAP
No hierarchy 0.68 0.38 0.22 0.69 0.71 0.58 0.68 0.56

Random hierarchy 0.72 0.47 0.46 0.76 0.88 0.85 0.94 0.73
Hierarchy with pre-defined rules 0.73 0.54 0.38 0.82 0.90 0.84 0.96 0.74

Our hierarchy 0.81 0.58 0.43 0.88 0.93 0.88 0.95 0.78

Table 3: Average Recognition Precision on SUNCG

port3D, we train our object detection model on 225 rooms
and test on 60 rooms following the train/test split in [1].
SUNCG includes a large amount of synthetic 3D houses
manually designed by people. For SUNCG, we randomly
select 5000 rooms whose floor area is smaller than 50 m2.
4000 rooms and 1000 rooms are used for training and test-
ing, respectively.

The metric for evaluation is average precision with in-
tersection over union (IOU) at 0.25 for each category and
mean average precision for all categories. We demonstrate
the improved performance of object detection using hierar-
chies produced by our method relative to three baselines: 1)
No hierarchy: We directly use PointNet features to predict
object category and AABB without using the RvNN based
model. We add four FC layers in the network to increase the
number of network parameter to make the comparison fair;
2) Hierarchy (random): We use our object detection model
with randomly generated hierarchies; 3) Hierarchy (rules):
We use our RvNN-based scene parsing model with hierar-
chies generated by pre-defined rules. The pre-defined rules
encourage objects with a close distance and similar size to

group first.
The results are shown in Table 2 and Table 3. It is clear

that using our hierarchy outperforms all baselines on both
datasets. The reason is that our method is able to detect fre-
quently co-occurring object pairs and organize them with
a meaningful representation. Another observation is that
the baseline object detection method with no hierarchy is
significantly inferior to the ones that incorporate some hi-
erarchy. This demonstrates that hierarchical representation
is useful in aggregating contextual information and helpful
for object detection.

5. Conclusion
In this paper, we presented a method to learn how to

group detected objects into a scene hierarchy. We showed
that by using an one-class SVM, we can learn to predict the
co-occurrence probabilities for pairs of objects and form a
meaningful hierarchy. By incorporating the hierarchy into
a novel RvNN-based model for object detection, we show
that our hierarchy performs better than simpler baseline hi-
erarchies. By leveraging hierarchical context, we are able

8

to improve over just using PointNet features for object de-
tection in 3D point clouds.

Acknowledgements
This project was done as part of a larger project, in col-

laboration with Yifei Shi and Angel Chang.

References
[1] A. Chang, A. Dai, T. Funkhouser, M. Halber, M. Nießner,

M. Savva, S. Song, A. Zeng, and Y. Zhang. Matterport3D:
Learning from RGB-D data in indoor environments. arXiv
preprint arXiv:1709.06158, 2017.

[2] J. Li, K. Xu, S. Chaudhuri, E. Yumer, H. Zhang, and
L. Guibas. Grass: Generative recursive autoencoders for
shape structures. ACM Transactions on Graphics (TOG),
36(4):52, 2017.

[3] T. Liu, S. Chaudhuri, V. G. Kim, Q. Huang, N. J. Mitra, and
T. Funkhouser. Creating consistent scene graphs using a prob-
abilistic grammar. ACM Transactions on Graphics (TOG),
33(6):211, 2014.

[4] C. R. Qi, H. Su, K. Mo, and L. J. Guibas. PointNet: Deep
learning on point sets for 3D classification and segmenta-
tion. Proc. Computer Vision and Pattern Recognition (CVPR),
IEEE, 1(2):4, 2017.

[5] S. Song, F. Yu, A. Zeng, A. X. Chang, M. Savva, and
T. Funkhouser. Semantic scene completion from a single
depth image. In Proc. Computer Vision and Pattern Recog-
nition (CVPR), IEEE, 2017.

[6] M. Sung, H. Su, V. G. Kim, S. Chaudhuri, and L. Guibas.
ComplementMe: weakly-supervised component suggestions
for 3D modeling. ACM Transactions on Graphics (TOG),
36(6):226, 2017.

A. PointNet + Layout vs. PointNet Score Com-
parison

On the next page, there are some results comparing how
specifically layout feature could give us a boost in evaluat-
ing co-occurrence scores.

9

(a)
(b)

(c) (d)

(e) (f)

(g)
(h)

Figure 8: Visualization of predicted object co-occurrence probabilities with PointNet features

10

