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Abstract

Recent advances in machine perception motivated the
researchers to tackle more complex problems in this area.
One of the most challenging and interesting tasks that re-
cently attracted the attention of researchers from various
fields of AI is the Visual Question Answering, or VQA. In
this task, the input is an image and an open-ended ques-
tion about the image, and the output is an open-ended an-
swer to the question with respect to the image. In order to
achieve good results in this task, the expertise in various
fields such as computer vision and natural language pro-
cessing is needed. Various datasets have been collected for
QA task. In addition, several methods have been proposed
in the literature in the past recent years. In this survey, we
explain the most famous datasets, as well as the state-of-
the-art methods for VQA task. We compare the results of
different methods, and identify the promising approaches
for future research in this area. Identifying the shortcom-
ings of current methods, as well as the future opportunities
for VQA are also parts of this survey.

1. Introduction
In the recent years, we have witnessed a significant

progress in various fields of AI, such as computer vision,
as well as language understanding. These progresses mo-
tivated researches to address a more challenging problem:
visual question answering. This problem, combines both
aforementioned fields of AI, image understanding as well
as language understanding. This task attracted attention
from machine learning and vision communities greatly.
Essentially, this task is defined as follows: an image along
with a question about that image are the input to the AI
system, and the intelligent system is supposed to output a
correct answer to the question with respect the input image.

Since this task is more open and more complex as
compared to traditional machine perception tasks, such as
classification and segmentation, this introduced a number
of new challenges. As a result, this been a motivation for

researchers in the related areas to approach this problem
from various perspectives. These efforts include collecting
curated datasets, as well as designing various methods
based on different approaches. The authors of [14] iden-
tified a number of challenges which arose in the VQA
task. The challenges identified in this paper are categorized
into three different sections.The first category, vision and
language, deals with scalability of the solution, dealing
with inherent concept ambiguity, and handling attributes of
the objects. The second category of the challenges has to
do with how to use common sense knowledge in answering
the questions. The third challenge comes from defining
a benchmark dataset and quantifying the performance of
different methods.

In this survey, we look at a list of papers which
addressed some of these challenges. We go through
the most well known datasets for the VQA task. We
explain DAQUAR as the first dataset for the VQA, and
the VQA 1.0 dataset as the most used and well designed
dataset in this area. We explain the shortcomings of the
VQA dataset which motivated the design of VQA 2.0.
Moreover, we also explain a number of other dataset for
VQA task, such as Visual Madlibs, Visual 7W, and CLEVR.

In addition, we also investigate various network archi-
tectures which aimed to tackle this challenge. We consider
the methods in three different categories: Non-attention
approaches, modular networks, and attention-based mod-
els. We compare the results from different methods, and
show that the results from dense co-attention network
(DCN) [16] and ReasonNet [8] are better than those of
other methods. We also identify the shortcoming of current
methods such as answering questions that require long
chain of reasoning, or the ones that require short-term
memory such as object counting. We also discuss some of
the future opportunities for VQA.

The remainder of the paper is organized as follows. Sec-
tion 2 explains the most famous datasets for VQA. Section 3
covers some of the most recent methods in this area, as well
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as categorizing those solutions. In section 4, we discuss the
results from current methods, and we identify some possible
future directions of VQA task. Finally, section 5 concludes
the paper.

2. Datasets
2.1. DAQUAR

The authors of [13] collected the first large dataset for
the visual question answering task. This dataset, which
is called DAQUAR, is based on real-world images, and
is built on top of the NYU-Depth V2 dataset. It contains
6794 training, and 5674 test question-answer pairs. The
question-answer pairs are of two types: synthetic and
human. The synthetic question-answer pairs are based on a
few templates. In addition, human question-answer pairs
were collected using 5 human subjects.

2.2. VQA 1.0

One the most important datasets for the task of visual
question answering is the VQA [2] dataset. This dataset is
consisted of 2 parts. The first part includes 123, 287 train
and validation images, and 81, 434 test images from MS
COCO dataset [11]. The second part of the VQA dataset
contains 50k abstract scenes. These abstract scenes are
added to the dataset to attract the researchers who are in-
terested in high level reasoning required by this task, and
not necessarily the low level details of the vision tasks. Fig
1 shows an example of two images in this dataset. For each
image, three questions were gathered by asking human sub-
jects. In addition, 10 different subjects provided answers to
those questions. Moreover, for each question, 18 candidate
responses were created for the task of multiple choice VQA.

The main problem with the VQA dataset was in its
inherent bias. Although the authors of [2] showed that the
models perform much better in answering the questions
when given the image, language priors had a very signifi-
cant effect on the answers of the questions in VQA dataset.
In fact, the simple baseline of always predicting ”yes” as
the answer was achieving the accuracy of 70.81% on VQA
dataset for the ”yes/no” questions. In addition, the baseline
method which only used a LSTM representation for the
question, and did not have the image as input, achieved
the overall accuracy of 48.76%. This bias in the dataset,
and the huge impact of the language priors on the answers
motivated the design of the second version of the VQA
dataset.

2.3. VQA 2.0

VAQ 2.0 [6] has been created to address the problem
mentioned above. As the results showed, turned out that the

Figure 1. An example of the real images and abstract scenes in
VQA dataset, alongside the question-answer pairs. The green an-
swers were given by looking at the image, while the blue answers
were given without looking at the image [2].

models were ignoring most of the visual information. In
VQA 2.0, for each (I,Q,A), where the three tuple are the
image, question, and answer, another image I ′ were found,
where question Q makes sense for the image I ′, however
the answer for the question will be something different,
A′. Understandably, for some of the images finding this
counter example image-question pair was not possible.
However, by adding these new images to the dataset, the
imapct of language priors on the models were mitigated to
a great degree, as compared to first version of VQA dataset.
For example, always answering ”yes” to yes/no questions
would result in accuracy of 61.20% in this case.

2.4. Visual Madlibs

There are several other datasets for the VQA tasks
as well. Visual Madlibs dataset [20] has been collected
using fill-in-the-blank templates, which aimed to collect
a wide range of descriptions for the visual content in the
image. Fig 2 shows an example of an image from Visual
Madlibs dataset, alongside its thorough descriptions. The
descriptions in this dataset go beyond just the objects that
are present in the image, and are basically more detailed
than a generic description of the image as a whole. This
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dataset also contains a multiple choice question answering
task for the images. In order to collect this dataset, a subset
of 10738 images from MS COCO dataset, which were
human-centric, were used.

Figure 2. An example of the image from Visual Madlibs dataset
[20].

2.5. Visual7W

Visual7W [21] is a QA dataset which has dense annota-
tions and localization of objects in the image. Fig 3 shows
an example of images in this dataset alongside other in-
formation provided. The visual7W dataset contains seven
types of questions: what, where, when, who, why, how, and
which. As compared to VQA, the questions in this dataset
are richer, and the answers are longer in average. In this
dataset, to obtain the object groundings in the image, AMT
workers were asked to draw these bounding boxes. In total,
there are 561, 459 object groundings in this dataset. Fur-
thermore, to make the QA pairs make diverse, this dataset
does not contain binary questions.

Figure 3. An example of the image from Visual7W [21].

2.6. CLEVR

CLEVR [9] has been created with the aim of better un-
derstanding the visual reasoning capabilities of VQA meth-
ods. In order to achieve this goal, the authors decided that

it is better to use synthetic images, and to use automatically
generated questions. The ground-truth of object locations,
as well as their attributes are alongside each image. The
images in the dataset are consisted of three shapes (cube,
sphere, and cylinder), of two different sizes, two different
materials, and in 8 different colors. Scenes in each image
are represented as a collection of objects, their attributes,
and their positions relative to each other. Images are gen-
erated by sampling the scene graph space (consisted of all
possible combinations of the object in the image). In addi-
tion, questions are in the form of functional programs that
can be executed on the image’s scene graph. Furthermore,
to address the problem of choosing the best functional pro-
grams to consider as questions, the authors used question
families. Question families contain templates to construct
functional programs. In addition, they also come with a
way of expressing the functional programs in natural lan-
guage. Figure 4 shows an example of a synthetic image in
this dataset.

Figure 4. An example of the image from CLEVR [9].

3. Methods
In this section we go through several recent architectures

that have been proposed for the VQA task. We categorize
these proposal into three main sections: non-attention
models, modular networks, and attention-based models. In
the following, we discuss each section in more details.

3.1. Non-attention Models

3.1.1 Norm I+ deeper LSTM

One of the first architectures that have been proposed in the
VQA paper [2] is shown in fig 5. In this architecture, the
image embedding is done using the `2 normalized activa-
tions from last layer of VGGNet, which leads to 4096-dim
image embedding. The question is embedded using an
LSTM with two hidden layers. The image and question
embeddings are combined to get a single embedding, and
then passed to an MLP. The results for this architecture
showed an overall accuracy of 57.75% on open-eneded
answers challenge of VQA dataset. Note that the human
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accuracy for the same challenge is 83.30%, which means a
great room for improvement.

3.1.2 Learning by Asking Questions (LBA)

In this work [15], the authors investigate the problem of
active learning in the context of VQA. In the learning by
asking setting, the learner has a limited budget of the num-
ber of questions that can ask, and there is an oracle to an-
swer the questions asked by the learner. Therefore, the main
difference of this problem with standard VQA training is
that most questions are not observed in training time, and
the learner must decide which question to ask about the
image. The LBA architecture is consisted of three parts:
question proposal module, question answering module, and
question selection module. Question proposal module gen-
erates a diverse set of questions, and it is consisted of two
sub-components: question generation model, and question
relevance model. The former has to do with generation of
a question, while the latter filters the irrelevant questions.
The question selection module aims to select the most in-
formative question, using the current state of the question
answering module (current accuracy), as well as the diffi-
culty of each of the question proposals. This module keeps
track of how fast the answering module is improving (the
improvement in accuracy). The training is divided into three
parts: initialization phase, online learning by asking phase,
and an offline phase. In the initialization phase the modules
are pre-trained on a small bootstrap set. The offline train-
ing is for evaluating the quality of the generated questions.
The model is trained on the union of bootstrap set, and the
set of questions generated in the LBA online phase. This
method has been evaluated on CLEVR dataset. The results
showed the effectiveness of the questions generated in the
LBA phase.

3.2. Modular Networks

There are a few approaches that used modular design of
the network to address the VQA challenge.

3.2.1 Neural Module Networks (NMN)

The authors of [1] proposed an architecture that is con-
structed using several pre-defined modules, which will be
jointly trained for the VQA task. In this design, question
is analyzed with a semantic parser with the aim of deter-
mining the basic computational units that are needed. This
is the mapping from questions to layouts, which specifies
both the modules needed to answer the question and the
connections between them. Fig 7 gives an example of lay-
out designed by this model. The final model combines the
result from neural module network with a LSTM question
encoder. In addition to the neural module network, this

paper also collected a synthetic dataset, SHAPES, which
includes different shapes in various positions. Fig 6 shows
an example of an image in this dataset, and a layout to
answer a particular question. The NMN approach achieved
accuracy of 90.8% on this dataset. In addition, NMN was
also trained and tested on VQA dataset, which resulted in
overall accuracy of 58.7%.

3.2.2 End-to-End Module Networks (N2NMN)

One of the problems with the NMN is the fact that it uses
off-the shelf parsers. In addition, NMN does not try to
learn the needed modules. End-to-end module networks
(N2NMN) [7] aims to address these problems by both learn-
ing to parse the language into linguistic structures, and com-
position into proper layouts. In N2NMN, the first part is the
predection of layout policy using a deep representation of
the question. This will result in a modular neural network,
alongside a series of attentive actions which extracts param-
eters for these neural modules. It is worth mentioning that
the functionality of each module is not restricted based on
its name, such as find or describe, and these modules are
just functions with a set of parameters. The main difference
between this work and NMN is in the textual component.
While hard coded textual components are used in NMN,
such as describe [”shape”], in N2NMN, the textual
components are extracted using soft attention over question
words. The textual component for module m, x(m)

txt , is ob-
tained using following formula:

x
(m)
txt =

T∑
i=1

α
(m)
i ωi

which essentially means predicting an attention map
α
(m)
i over the T question words. Then, multiply the val-

ues by ωi, which is the word embedding vector for word i
in the question, and sum the values to compute the textual
component for module m.

The prediction of layout to answer a particular ques-
tion is done by predicting a probability distribution over
the space of all possible layouts. To do so, the authors
formulized the layout prediction problem as a sequence-to-
sequence learning problem from questions to modules. The
problem is solved using attention recurrent neural network.
During training, this method jointly trains the layout policy
as well as parameters in each neural module. N2NMN is
evaluated on VQA, and in the best case, it achieved the
accuracy of 64.9%.
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Figure 5. The architecture proposed in VQA paper [2].

Figure 6. An example of an image in SHAPES dataset, and a layout to answer Is there a red shape above a circle? [1].

Figure 7. An example of a layout designed by NMN model [1].

3.2.3 Multimodal Learning and Reasoning for VQA
(ReasonNet)

This work [8] proposes a modular design, which is the mul-
timodal and multifaceted representation of the question im-
age pair. ReasonNet is consisted of a number of modules:
question-specific visual attention module, object-specific
visual attention module, face-specific visual attention mod-
ule, object-classification module, scene classification mod-
ule, and face analysis classification module. In Reason-
Net, the question representation is used to learn an atten-
tion probability distribution over the visual feature tensor.
Furthermore, ReasonNet uses a fully convolutional network
(FCN) for object detection. The output of the object detec-

tion module is a set of bounding boxes. ReasonNet uses
residual network to classify the image inside each bounding
box. In order to obtain the multimodal understanding, this
method learns the interaction of each representation. This
is formulated as below:

g = ||rh∈H(rThW
s
hr

q+bsh) H = {rv, ro, rc, rs, rf , ra}

Note that W s
h is a learned bi-linear tensor, H is the set of

representations from various modules that have been men-
tioned above, and || shows the concatenation of vectors.
ReasonNet achieves accuracy of 67.9% on VQA dataset,
and 64.61% on the VQA 2.0 dataset.

3.3. Attention-based Models

There are a number of attention-based architectures in
the literature as well. These methods are based on generat-
ing spatial maps to highlight image regions that are relevant
to answering the question. This is shown in figure 8. In the
following we discuss some of these methods.

3.3.1 Where to Look

The authors in this paper [17] aim to combine the text fea-
tures and the image features in order to find the relevant
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Figure 8. An example that shows the goal of attention-based meth-
ods [17].

regions of the image. To do so, there is a region selection
layer in the architecture. In this part of the system, the first
step is to find the relevance. To do so, this layer first projects
the image features and the text features into a shared space.
Subsequently, inner product is computed for each question-
answer pair and all regions. With a feed-forward pass, the
relevance weighting for each region is computed. The au-
thors used 100 regions per image, which means 100 region
weights for a question-answer pair. The region selection
layer directly concatenates the text features with the image
features for each region. This will lead to 100 different fea-
ture vectors. Then, the weighted average feature is com-
puted, and passed through a 2-layer MLP. Figure 9 shows
an overview of this architecture. For the language represen-
tation, Stanford Parser [4] is used to bin the question into
semantic bins. There are 4 bins in total, which are related to
type of question, subject of question, nouns in the question,
and all the remaining words in the question. In addition,
each bin contains 300-dimensional representation, which
is the result of word2vec encoding. This is concatenated
with a bin for the words in the candidate answer to pro-
duce a 1500 dimensional embedding for question-answer
pair. Moreover, image features are fed directly into region
selection layer. Overall, this method achieved the accuracy
of 62.43% on VQA dataset.

3.3.2 Question-guided Spatial Attention (SMem-VQA)

Many of the questions in the VQA challenge can be an-
swered using the information from various spatial regions
and comparing their contents and locations. This motivated
the authors of [19] to use a memory network with spatial
attention for the VQA task. In this method, the the words
in the question are used to compute attention over the vi-
sual memory. The visual memory contains extracted im-
age features, which are the result of processing the image
by pre-trained GoogleNet. The authors used bag-of-words

question representation to guide the attention. To do so, the
correlation matrix is computed as follows:

C = V.(S.WA + bA)
T

where V is word vector, and S is the visual features, and
WA contains the attention embedding weights. In addition,
two different embeddings are used in this work: attention
embeddingWatt, and evidence embeddingWE . The spatial
attention weights Watt are calculated by taking maximum
over the word dimension T , of the correlation matrix C:

Watt = softmax(maxi=1...T (Ci))

The evidence embedding projects visual features to pro-
duce high activations for certain concepts. The selected vi-
sual evidence vector Satt is computed based on the Watt

and WE according to following formula:

Satt =Watt.(S.WE + bE)

To give the answer for a given question, and image pair, the
sum of this evidence vector Satt and question embeddingQ
is used as follows:

P = softmax(WP .f(Satt +Q) + bP )

where P is the prediction and and f is the ReLU activation
function.

SMem-VQA can also have a two-hop model to promote
deeper inference. In the second hop, the final answer is
predicted according to following formula, which shows the
use of output from the first hop as an input feature to the
second hop.

P = softmax(WP .f(Satt2 +Ohop1) + bP )

SMem-VQA is evaluated on VQA dataset, and the two-hop
model achived the accuracy of 57.99%.

3.3.3 Human attention in VQA

The authors of [3] aimed to answer an interesting question:
how close are the attention maps generated from VQA mod-
els to human attention regions. Figure 10 shows an example
of human attention regions. To answer the aforementioned
question, the authors designed a set of game inspired inter-
faces to collect human attention maps. The basic approach
is based on asking AMT workers to de-blur the related re-
gions of the image. In total, they managed to collect human
attention maps for 58475 train and 1374 val question-image
pairs in the VQA dataset. In order to compare the spatial
attention generated by models to the ones generated by hu-
man, first, the authors scale both maps to same size, rank

6



Figure 9. The region selection layer proposed in [17].

pixels based on their spatial attention, and compute the cor-
relation between these two ranked lists. The results showed
that the correlation between humans is around 0.63. Based
on their result, among various models, the one proposed in
[12] shows the most correlation to human attention, which
was around 0.26. This showed there is still a huge room for
improvement of spatial attention generated by VQA mod-
els.

Figure 10. An example of human attention regions [3].

3.3.4 Hierarchical Question-Image Co-Attention

The authors of [12] argued the importance of question
attention alongside visual attention. This paper proposes
an architecture which aims to jointly reason about visual
attention as well as question attention. The proposed
solution is a hierarchical architecture which co-attends the
question and the image in three different levels: word level,
phrase level, and question level. This means that for each
question, its word level, phrase level, and question level
embeddings are extracted. Subsequently, at each level,
co-attention is applied to both image and question. The
authors proposed two co-attention mechanism: parallel
co-attention, where question and image attentions are gen-
erated simultaneously, as well as alternating co-attention
, which refers to sequentially alternating between image
and question attentions. The proposed model is evaluated
on VQA and COCO-QA datasets. The results showed the

accuracy of 62.1% on the open-ended answers for the VQA
dataset.

3.3.5 A Strong Baseline for VQA

The authors of [10] investigated different combination of
hyper-parameters in an attention-based VQA method to set
the best baseline based on common approach in this area.
These different configurations are different word embed-
ding size, LSTM state size, attention size, classifier size,
to name but a few. Although the architecture here is not
novel, but with optimizing the configuration, the authors
managed to set a strong baseline, which showed the state-
of-the-art at the time. The accuracy of the model pro-
posed in this paper on the VQA dataset is 64.6%, which
showed 0.4% improvement over state-of-the-art at the time.
Furthermore, the accuracy achieved on VAQ 2.0 dataset is
59.67%, which showed 0.5% improvement over the best
previously reported results.

3.3.6 Dense Symmetric Co-Attention

The authors of [16] propose the dense co-Attention network
architecture, or DCN. Figure 11 shows the golabl structure
of DCN. This architecture is consisted of stack of dense co-
attention layers, which fuses the language and visual fea-
tures repeatedly. This is followed by an answer predic-
tion layer. The questions and answers are encoded using
a bi-directional LSTM. Visual features are extracted from a
pre-trained ResNet. Specifically, the visual features are ex-
tracted from the outputs of four conv layers before the last
four pooling layers. The main part of DCN is the dense co-
attention layer. Essentially, this layer takes the image and
question embedding as input, and outputs the updated ver-
sions (as shown in figure 11). The co-attention mechanism
is dense in a sense that it considers every interaction be-
tween any word and any region. In DCN, one attention map
is created on regions per each word, and one attention map
is created on words per each region. Multiplicative atten-
tion is used to obtain attended feature representations of the
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Table 1. Summary of the best case accuracy results on VQA
dataset

Method Accuracy
Norm I + deeper LSTM 57.75%
NMN 58.7%
N2NMN 64.9%
ReasonNet 67.9%
Wehre to Look 62.43%
SMem-VQA 57.99%
HieCoAtt 62.1%
Strong Baseline 64.50%
DCN 66.88%

question and image, Q̂l and V̂l. Subsequently, the image
and question representation are fused using the following
formula:

q(l+1)n = ReLU(WQl

[
qln
v̂ln

]
+ bQl

) + qln

v(l+1)t = ReLU(WVl

[
vlt
q̂lt

]
+ bVl

) + vlt

Where qln is the layer l representation of n − th question
word. vlt is defined similarly for the t − th image region.
Ultimately, the answer prediction layer predicts the answer
based on VL and QL, which are the output of last dense
co-attention layer. This method has been evaluated on both
VQA and VQA 2.0, and achieved the accuracies of 66.88%
and 66.87%, respectively.

Figure 11. Overview of the DCN architecture [16].

4. Discussion and Future Directions
4.1. Comparison

As the results explained earlier shows, the current state-
of-the-art on VQA is the ReasonNet architecture [8], and on
VQA 2.0 is the DCN [16]. Generally, the co-attention ap-
proaches seem to be promising in the future. The quality of
the results generated by these models depend on the fact that
how dense is the co-attention between image and question,
as well as the fusion method between question and image
representations. By improving on these two fronts, DCN
achieved better results compared to those of [12]. Table 1
shows the summary of the results on the VQA dataset.

4.2. Shortcomings of Current Methods

Despite all the improvements that we have seen in the
recent years, most of these methods suffer from some pos-
sible shortcomings. The first problem of current methods
is to answer a question which requires a long chain of
reasoning. Furthermore, all these system seem to have
difficulty in answering questions which require short-term
memory such as integer equality questions. Questions
about counting the number of specific object in the image
is another example which can be very challenging for the
most of the models that we discussed in this paper. Re-
cently, there have been efforts to address these challenges
as well. The authors of [18] formulate the counting as a
sequential decision process, and solved it using reinforce-
ment learning approach. Furthermore, this approach also
identifies the objects that contribute to each count. The
future models can improve upon current methods, by build-
ing on the existing methods such as co-attention or modular
networks, and also addressing the challenges mentioned
here, maybe by using a solution tailored to these challenges.

One of the interesting approaches discussed here is the
LBA [15] method. Although this approach seem to be
promising, the problem with this work is the fact that it
only uses synthetic images in CLEVR dataset. Developing
a real-world version of LBA, by replacing the synthetic im-
ages by real-world scenes can be an interesing future work.

4.3. Future Opportunities for VQA

VQA task can be a part of an agent which is in an inter-
active environment, and should answer the questions from
humans. For example, the agent can be presented with the
question ”Are there any apples in the fridge?”. The Inter-
active Question Answering proposed in [5] is a challenging
problem. In this task, the agent should be able to navigate
through the environment, acquire understanding of the en-
vironment, interact with the environment, and be able to
plan and execute a series of actions. A visual question an-
swering system can be part of an intelligent agent which is
designed to address the interactive question answering chal-
lenge. The authors of [5] collected an interactive question
answering dataset, which is based on a simulated environ-
ment. This dataset can facilitate future research in the area
of interactive question answering.

5. Conclusion

VQA is an interesting and challenging task for the re-
searchers. In this survey, we looked at various datasets,
and several methods for this task. We compared the results,
and identified a number future work that can be done in this
area.

8



References
[1] J. Andreas, M. Rohrbach, T. Darrell, and D. Klein. Neural

module networks. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 39–48,
2016.

[2] S. Antol, A. Agrawal, J. Lu, M. Mitchell, D. Batra,
C. Lawrence Zitnick, and D. Parikh. Vqa: Visual question
answering. In Proceedings of the IEEE International Con-
ference on Computer Vision, pages 2425–2433, 2015.

[3] A. Das, H. Agrawal, L. Zitnick, D. Parikh, and D. Batra.
Human attention in visual question answering: Do humans
and deep networks look at the same regions? Computer
Vision and Image Understanding, 163:90–100, 2017.

[4] M.-C. De Marneffe, B. MacCartney, C. D. Manning, et al.
Generating typed dependency parses from phrase structure
parses. In Proceedings of LREC, volume 6, pages 449–454.
Genoa Italy, 2006.

[5] D. Gordon, A. Kembhavi, M. Rastegari, J. Redmon, D. Fox,
and A. Farhadi. Iqa: Visual question answering in interactive
environments. arXiv preprint arXiv:1712.03316, 2017.

[6] Y. Goyal, T. Khot, D. Summers-Stay, D. Batra, and
D. Parikh. Making the v in vqa matter: Elevating the role of
image understanding in visual question answering. In CVPR,
volume 1, page 9, 2017.

[7] R. Hu, J. Andreas, M. Rohrbach, T. Darrell, and K. Saenko.
Learning to reason: End-to-end module networks for visual
question answering. CoRR, abs/1704.05526, 3, 2017.

[8] I. Ilievski and J. Feng. Multimodal learning and reasoning
for visual question answering. In Advances in Neural Infor-
mation Processing Systems, pages 551–562, 2017.

[9] J. Johnson, B. Hariharan, L. van der Maaten, L. Fei-Fei,
C. L. Zitnick, and R. Girshick. Clevr: A diagnostic dataset
for compositional language and elementary visual reasoning.
In Computer Vision and Pattern Recognition (CVPR), 2017
IEEE Conference on, pages 1988–1997. IEEE, 2017.

[10] V. Kazemi and A. Elqursh. Show, ask, attend, and answer: A
strong baseline for visual question answering. arXiv preprint
arXiv:1704.03162, 2017.

[11] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ra-
manan, P. Dollár, and C. L. Zitnick. Microsoft coco: Com-
mon objects in context. In European conference on computer
vision, pages 740–755. Springer, 2014.

[12] J. Lu, J. Yang, D. Batra, and D. Parikh. Hierarchical
question-image co-attention for visual question answering.
In Advances In Neural Information Processing Systems,
pages 289–297, 2016.

[13] M. Malinowski and M. Fritz. A multi-world approach to
question answering about real-world scenes based on uncer-
tain input. In Advances in neural information processing sys-
tems, pages 1682–1690, 2014.

[14] M. Malinowski and M. Fritz. Towards a visual turing chal-
lenge. arXiv preprint arXiv:1410.8027, 2014.

[15] I. Misra, R. Girshick, R. Fergus, M. Hebert, A. Gupta, and
L. van der Maaten. Learning by asking questions. arXiv
preprint arXiv:1712.01238, 2017.

[16] D.-K. Nguyen and T. Okatani. Improved fusion of vi-
sual and language representations by dense symmetric co-
attention for visual question answering. arXiv preprint
arXiv:1804.00775, 2018.

[17] K. J. Shih, S. Singh, and D. Hoiem. Where to look: Focus
regions for visual question answering. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 4613–4621, 2016.

[18] A. Trott, C. Xiong, and R. Socher. Interpretable
counting for visual question answering. arXiv preprint
arXiv:1712.08697, 2017.

[19] H. Xu and K. Saenko. Ask, attend and answer: Exploring
question-guided spatial attention for visual question answer-
ing. In European Conference on Computer Vision, pages
451–466. Springer, 2016.

[20] L. Yu, E. Park, A. C. Berg, and T. L. Berg. Visual madlibs:
Fill in the blank description generation and question answer-
ing. In Computer Vision (ICCV), 2015 IEEE International
Conference on, pages 2461–2469. IEEE, 2015.

[21] Y. Zhu, O. Groth, M. Bernstein, and L. Fei-Fei. Visual7w:
Grounded question answering in images. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 4995–5004, 2016.

9


