
Vision for Robotics in Optimal Control and Reinforcement Learning Systems

Riley Simmons-Edler
Princeton University

rileys@cs.princeton.edu

Abstract

Robotics is a large and multidiciplinary field that
touches many topics, but chief among them is computer
vision, as without visual information many robotic tasks
would be infeasible. In this paper, we review recent work in
robotics for three different but related task domains, push-
ing/grasping, navigation, and autonomous driving, and
how computer vision techniques and representations are
used in these systems. We discuss how vision interacts with
planning systems such as reinforcement learning and opti-
mal control, and how the field of robotics and vision tech-
niques used in it are changing to meet the challenges en-
countered, and what future research in each domain might
look like.

1. Introduction
Robotics as a field of computer science is innately multi-

disciplinary, combining mechanical and electrical engineer-
ing as well as computer systems and architecture, but is es-
pecially closely linked to vision and visual AI. Without vi-
sual understanding of a robot’s environment, it is difficult
if not impossible for the robot to make intelligent decisions
and react to its environment. Curiously, while the field of
computer vision has seen dramatic breakthroughs in perfor-
mance and capability in recent years, these breakthroughs
have not yet yielded similar breakthroughs in robotics. One
reason for this is the complex link between motion plan-
ning and visual understanding- Our understanding of how
to connect vision with motion planning lags behind perfor-
mance on benchmark vision tasks, and there remains much
disagreement as to what high-level approach is best.

Here, we review the landscape of methods and tasks con-
sidered in modern visual robotics. We describe the space
of approaches in section 2, being broadly along two axes,
corresponding to choice of motion planning algorithm, how
robot actions are selected, and to the structural assumptions
of the vision system it is combined with. We further dis-
cuss several major categories of tasks which are studied in

robotics in section 3 and how methods for each fit into the
landscape defined in section 2. We also discuss the chal-
lenges and limitations of existing technique for each do-
main. Lastly, we discuss some future directions for each
area in section 4.

2. Method Overview
Here we provide an overview of the major categories of

methods used in visual robotics research. Broadly speak-
ing, there are two major method axes to consider: On the
motion planning side, there is the choice of reinforcement
learning(RL) versus optimal control(OC), which informs
the design of the vision system for the robot. On the vision
side, methods can broadly be grouped into model-based ap-
proaches that learn a structured model of the world, such as
object pose prediction as used by Zeng et al. for robotic
grasping[34], and model-free methods that map directly
from pixels to motions using a neural network, such as Finn
and Levine et al.’s work on grasping [22][11]. While op-
timal control and model-based vision are typically asso-
ciated(and likewise for RL and model-free vision), rein-
forcement learning allows for both classes of vision sys-
tem to be used. There also exist systems using aspects of
both RL and OC, such as model-based RL using OC to se-
lect actions,[11] or which use imitation learning and RL to
mimic and improve upon an optimal controller[5],[8],[20].

2.1. Reinforcement Learning versus Optimal Con-
trol

Reinforcement Learning First, we will describe RL and
optimal control. reinforcement learning describes a cat-
egory of algorithms for training machine learning mod-
els to solve Markov Decision Processes(MDPs).[3] An
MDP is a process having some state st for timesteps
t ∈ {1, 2, . . . , T}. At each state st an action at ∈
{a1, a2, . . . , an} from among n possible actions is emit-
ted, with some unknown function p(st+1|st, at) determin-
ing the following state st+1 from among some (typically
large) state space. Actions at are selected by an agent
A(at|st, θ) with learned parameters θ, commonly a neural
network. This agent is trained to maximize the expected

4321

cumulative reward value E(RT) emitted by some reward
function r(st, at), with RT =

∑T
t=1 r(st, at). Critically

for the training of neural networks, the reward function
r(st, at) does not need to be differentiable or convex. This
property allows us to train neural networks to perform tasks
in a real world environment where the gradient over action
selection ai ∈ a1, . . . , an(a.k.a. what would have happened
had we selected some other action aj 6=i) cannot be analyt-
ically determined. One challenge for robotics in particular
is that the most general action spaces are often continuous,
e.g. joint angles or motor impulses at a given time, which
complicates the task. More broadly, generalization to new
experiences and the number of experiences required to train
the agent are major challenges in RL, and both are major
concerns for practical real-world robotics.

Optimal Control Optimal Control,[21][25] sometimes
referred to under the broader category of Control Theory,
is a class of algorithms for solving motion problems using
direct optimization under a model of the world. Broadly,
while RL attempts to directly learn to estimate the behavior
of the world and take actions in the world, optimal control
assumes some a priori model of the world to be true and
then optimizes actions to fit the objective given that model.
For many problems, OC is well-suited as given an accurate
model of the world and a tractable action space to optimize
it will perform robustly on new experiences and bounds on
performance may be provable. However, given tasks where
an accurate model of the environment is difficult to obtain
or where the action space is large/highly non-convex and
hard to optimize, OC performance will degrade rapidly.

2.2. Model-based versus Model-free Vision

Model-based Model-based vision here refers to robotic
vision systems that adopt an explicit model of the world,
such as trying to predict bounding boxes or 6D poses[34] or
a map of the environment,[17] then planning actions using
that model of the environment. The model assumed can
range from highly prescriptive, such as a physics simulator
that only requires a handful of values be predicted given
visual observation, to very loose, such as reconstructing a
spatial map of the environment directly from images.[16]
These methods can be combined with either OC and RL
for motion planning, and can be effective and efficient for
problems where human prior knowledge can inform good
models for the environment.

Model-free Model-free vision, conversely, refers to a sys-
tem which makes no or minimal assumptions about the vi-
sual environment, and simply relies on a neural network to
model the visual world implicitly as a result of end-to-end
training. This class of methods is primarily associated with
RL, which provides an objective that requires the network

Figure 1. Example of the grasping task and a model-based OC-
driven method predicting an object’s pose and then optimizing a
grasping trajectory to grab it, courtesy of [34].

to learn implicitly about the world. Arguably methods rely-
ing on visual features transferred from a pretext task, such
as image classification, would fall into this category as well.
The critical differences among this class of methods are the
action/task space used, which can range from continuous
joint angles[22] to spatially-mapped action scores,[32] as
well as variations in input, such as providing a visual de-
scription of the target[37] or multiple viewpoints.[5] These
methods are flexible and potentially powerful due to mak-
ing few assumptions about the structure of the task, but the
lack of prior knowledge can make some tasks very slow to
train or intractably complex.

3. Task Spaces

Here we describe each major category of robotics task we
are exploring, including a discussion of each work and how
it fits into the overall landscape of methods for the task.

3.1. Pushing and Grasping

One of the major tasks in robotics is to grasp or push(in
the simpler case) objects to achieve some task. There are
several notable benchmarks for this task, including the work
of Yu et al. [31] on a benchmark of pushing tasks and the
Amazon Picking/Robotics Challenge,[1] which attempts to
provide a benchmark for the task.

4322

Classic Approaches Traditionally, pushing and grasping
was primarily considered a physics problem, with the main
challenge being in modeling the (typically simplified) en-
vironment well enough for optimal control to plan robust
movements and grasps[25][21]. Due to the (to this day sig-
nificant) challenge in designing physical simulations accu-
rate and fast enough for this task, these approaches have in-
creasingly been challenged over the last decade. Goldfeder
et al. [15] in 2009 produced a dataset of precomputed grasps
for diverse object shapes that could be indexed using visual
features, allowing closer itegration with vision than pre-
vously. Yu et al. [31], developed a large experimental push-
ing benchmark dataset and demonstrated that many classi-
cal simplifications made, such as uniform friction, are not
robust in practice. Bauza et al. [2] learned a Gaussian model
for pushing and provided further evidence that many clas-
sic model assumptions used for non-learned systems don’t
hold in practice. More recently, however, grasping methods
have moved towards more on-line approaches, with closer
integration of vision and visual feedback into the grasping
process.

3.1.1 OC-based methods

In addition to classical work, a large portion of recent
work in grasping continues to use OC. As part of the Ama-
zon Picking Challenge[1], Zeng et al. [34] learned to predict
6D object pose for use with OC planning and a sophisti-
cated robot arm to simplify the task using suction as well as
mechanical grasping. While this method was was effective
in cluttered grasping environments and could grasp a wide
range of objects, the OC and vision modules were largely
independent and sequential, and each fundamentally as-
sumed the other would work robustly. As a result, errors in
pose prediction(such as due to a novel target object) usually
resulted in grasping failures, and errors in the control mod-
ule’s physical simulations could not be corrected or adapted
to using vision. The same authors subsequently developed
a method with closer integration between grasping and vi-
sion, this time predicting grasp affordances directly from
pixels, followed by using metric learning to recognize the
grasped object once separated from background clutter(the
task involved grasping specific objects from among an un-
ordered collection of objects in a bin)[33]. This method
worked better, but their ability to predict grasp affordances
was limited by physical obstructions from surrounding clut-
ter, as well as occlusions to the target. To resolve these
issues, they developed an RL-based approach that can use
pushing to clear obstructions and obtain a better view of a
target before grasping, discussed in more detail in section
3.1.2[32].

Figure 2. Example of an RL-based model-free approach to grasp-
ing, which seeks to address the issue of reactivity and challenging
object arrangements. Figure courtesy of [32].

3.1.2 RL-based methods

In parallel with the development of more sophisti-
cated/closely coupled vision models for use with OC, a sep-
arate branch of research using RL has developed. The first
major work in this area was from Levine and Finn et al.
in 2015[22], who learned from camera pixels to actions di-
rectly for several different grasping tasks. To make training
tractable with a real robot, they had to pretrain their RL pol-
icy to match the output of OC controllers for motion prima-
tives and their vision system using object detection to learn
basic image features. Notably, this system had several ma-
jor limitations- Robustness to perturbations was poor, and
they did not demonstrate any transfer to tasks not trained
on.

Another early work in this area was Pinto and Gupta
2015[26], who learned end-to-end grasping by randomly
sampling a very large dataset of grasps and predicting the
success or failure of sampled grasps directly. While this
approach worked well for seen objects, generalization was
mixed, and their approach relied on a fixed object detection
and grasp proposal algorithm to propose candidate grasps
given an uncluttered environment.

More recently, Finn and Levine[11] improved on their
previous method through upscaled training with multiple
robots, a larger and more complex neural network, and a
next frame prediction task conditioned on a specified ac-
tion produced by their RL policy. By predicting subsequent
frames conditioned on a proposed action, they could use
their predictions to optimize actions across multiple frames
and learn to effectively pick up diverse objects. However,
the challenges of future video frame prediction, itself a chal-
lenging task with its own body of research, was a limit-
ing factor for their method, which could only function over
short time horizons and as such was mostly limited to push-
ing rather than grasping to manipulate objects.

4323

Figure 3. Example of the navigation task and a model-free RL ap-
proach to it, courtesy of [37].

Another recent direction of research has used RL and
vision to address the traditional weakness of OC-based
control- incorrect or missing information about an object
to be grasped. While not explicitly tied to robotic grasping,
Jayaraman and Grauman[19] used RL to perform active ob-
ject recognition, learning an RL policy to select new views
of an object or scene to aid in object recognition. Such an
approach could be used to help overcome situations where
the initial view of an object to be grasped is insufficient for
recognition or grasp affordance prediction. Zeng et al. [32]
recently proposed a grasping system with a similar goal, us-
ing RL to learn directly from pixels how to combine pushing
and grasping blocks to pick up a target block, which may be
occluded or physically constrained by other blocks.

3.2. Navigation

Another major task for robots is navigating complex en-
vironments using visual information to reach a destination.
Benchmarks on this task are more limited, as navigation in
physical spaces is difficult to standardize outside of simula-
tors, though fixed datasets such as KITTI do exist[13].

Classical Approaches Interestingly, the core challenges
of navigation in a static environment given a reliable map
were well solved decades ago, reducing to a tractable op-
timization problem[6]. Therefore, the major challenges of
this field have been to handle cases where a map of the en-
vironment is either incomplete, inaccurate, or does not ex-
ist(and is not produced along the way). Generating high-
fidelity maps of an environment, as part of the broader
task of 3D reconstruction, remains generally unsolved, with
some amount of error unavoidable. Classically active sens-
ing, such as the work of Davison et al. [9] was used to
help correct for errors in a pre-existing map, such as long-
range drift. This direction of work(which is heavily used in
self-driving cars today) is limited by the constraints of high-
precision, high sample rate LIDAR sensors(chiefly size and
cost), and is unsuitable for many tasks. Other works, such

Figure 4. UAV navigation in a forest environment, with trinocular
vision. Movement is represented as a single three-choice decision
following a trail. Figure courtesy of [14].

as that of Fraundorfer et al. [12], produce maps while navi-
gating, but are mostly concerned with producing a complete
map of a static environment rather than performing directed
navigation in a dynamic environment as humans do.

3.2.1 OC-based Methods

Optimal control for navigation is an approach ex-
tensively used in classic methods, and is closely cou-
pled with Simultaneous Localization And Mapping(SLAM)
techniques[10], with the goal of building a high quality
map on-the-go and using that to optimize future move-
ment(possibly with the goal of improving the map[12]).
This body of work is fairly broad and not confined to
robotics applications(being a subtask of 3D reconstruction,
and referred to as Structure from Motion(SfM) in the non-
robotics vision community), and as such will not be dis-
cussed in detail here, but is relatively effective for on-line
navigation in a static environment. The major limitations of
these methods come when environments are not static, such
as for a vehicle driving on a crowded city street with moving
vehicles and pedestrians, who must be separated from the
map and handled by more intelligent vision systems. These
challenges can be handled by various vision systems, and
are heavily described by the autonomous driving literature,
an overview of which can be found here[29].

3.2.2 RL-based Methods

Most recent research on navigation uses some form of RL
to perform navigation(at least partly because most of the OC
based research has shifted to working on autonomous driv-
ing in industrial labs). One major task within this space is
UAV navigation. The first modern work in this category
largely used imitation learning, the supervised learning ap-
proach for learning to solve MDP’s, to directly learn from
pixels to actions without an explicit mapping step. Giusti et

4324

Figure 5. Example of UAV navigation and transfer from simulated
to real environment, courtesy of [28].

al. [14] trained UAV’s to follow forest trails using a three-
camera RGB setup mounted on a human’s head as a proxy
for ground truth drone trajectories(shown in figure 4). The
task of their system was then to predict which direction the
path would go(left, right, forward) for each frame of the
video, which could then be used to fly a physical drone
along a previously-unseen trail with near-human accuracy.
While impressive, a constrained action space(only three op-
tions), a clearly defined path free of obstructions, and abun-
dant real world training data were required. Similar to [5],
the use of three cameras to add robustness to distribution
drift by sampling slightly different views was likely impor-
tant for making this method work robustly.

This method was then extended by other work to im-
prove robustness and reduce the amount of real-world train-
ing data required through domain transfer from a simula-
tor. Daftry et al. [8] used a simulator along with limited
real world data to train a drone capable of navigating with
only a single monocular camera with a continuous range
of left-right movement options while dealing with obsta-
cles and demonstrating robustness to environment varia-
tions such as weather. The use of synthetic pretraining and
the large amount of data it provides made this possible, but
the method still required fine-tuning on real data to get good
performance, and the actual task was relatively simple(go
that way as far as you can).

More recently Sadeghi and Levine[28] demonstrated a
method for UAV navigation which removes the need for
training on real images, with the bold and amusing title of
“Real Single-Image Flight Without a Single Real Image.”
Compared to previous works, they use extensive simulated
data along with a Q-learning RL algorithm to learn indoor
navigation, a harder task than outdoor navigation in open
forest terrain. While their simulator was not particularly
realistic in content or rendering quality, they argue that ex-
tensive variation of objects and textures in simulated scenes
overcomes this limitation. While better than previous work,
their crash rate on real environments remains much higher
than in simulated environments.

Figure 6. Example of navigation in simulated mazes. While not
directly analogous to a robotics task, techniques developed here
could be used with physical robots. Figure courtesy of [23].

In addition to UAV navigation, terrestrial robot naviga-
tion is also studied with both real and simulated robots.
Compared to most UAV navigation, this branch of navi-
gation usually requires handling both more complex and
cluttered environments as well as harder navigation tasks,
such as moving through mazes[23][4][36] or human CS
departments[17][16][37]. Navigation in complex spaces
also often requires longer-ranged reasoning than the proxi-
mal obstacle avoidance that is handled by UAVs, needing to
plan a path to a target over a longer time horizon.

As with the UAV task, simulated training is often neces-
sary due to the sample complexity required and the physi-
cal difficulties/hazards of training a robot from scratch in a
real environment. The work of Zhu et al. [37] is the closest
analog to the UAV works previously discussed, using sim-
ulated training from pixels to actions, then fine-tuning on
small amounts of real data, but adding the additional con-
straint of needing to locate and navigate to a target specified
by an image taken in the scene.

There also exists a significant body of work on naviga-
tion purely in simulation. While much of this is outside
the scope of our discussion, a few works are worth noting
for their implications on future work. Kahn et al. [20] pro-
pose PLATO, an approach for training an RL policy using
an optimal controller as a tutor to speed up training and al-
low for safety guarantees with an incompletely trained pol-
icy. While they only demonstrate it for a simulated UAV
task, this approach could help with data collection/training
on navigation tasks in the real world without putting hu-
mans and fragile objects at risk from misbehaved robots.
Mirowski et al. [23] and Bhatti et al. [4] perform naviga-
tion in simulated mazes(example shown in figure 6), but
rather than use a model-free approach mapping pixels di-
rectly to actions, these methods perform intermediate vision
tasks(predicting depth and egomotion loop closures in [23]
and performing SLAM and using it as an input to the policy

4325

Figure 7. Example of a model-based approach to navigation in CS
departments. Figure courtesy of [17].

network in [4]) and show improved performance as a result.

In line with these simulated results, Gupta et al. [17][16]
propose a heavily modularized approach to RL-based navi-
gation, shown in figure 7. Their system takes as input sev-
eral landmark snapshots of the environment and a destina-
tion, produces a partial map of the environment from the
given information, plans a path through the map, recognizes
landmarks for correcting egomotion drift from the plan, and
finally executes the plan via an RL policy. Notably, each
component of this system is learned via deep neural net-
work, although they are not trained in combination. While
this work is impressive in its use of explicit vision modules,
and tackles the more challenging task of navigation in (sim-
ulated scans of) real human CS buildings with only limited
data to build a map from, performance remains relatively
low, and much work remains to be done on this task.

3.2.3 Autonomous Driving

One additional task within navigation that bares special
mention is autonomous driving, which we distinguish from
broader navigation due to the specific constraints and sim-
plifications encountered. While a full review of autonomous
driving methods is beyond the scope of this work, it is an in-
teresting domain to touch on as it has attained much more
real-world traction than most robotics tasks. Most driving
systems rely on vision systems to perform vision primitives
such as object tracking or segmentation, which are then fed
into optimal controllers to handle motion planning. To date,
this general approach has been far more successful than RL-
based alternatives. As most research of this type is now
done in industrial research groups, we will focus mainly on
RL-based approaches here that are of more academic in-
terest. [29] provides a review of neural networks for au-
tonomous driving in general for the interested reader. One
interesting OC-based work worth noting is DeepDriving[7],
which seeks to minimize the amount of explicit world mod-
eling and sensing required for effective OC planning and
unlike most such systems uses only front facing cameras to
navigate.

Figure 8. Example of the Bojarski et al. imitation learning method.
Note the use of three cameras and augmentation of inputs. Figure
courtesy of [5].

A notable landmark paper in RL-based self-driving is Bo-
jarski et al. 2016[5], who use imitation learning to learn di-
rectly from pixels to driving directions in the real world.
In contrast, most practical self-driving systems use a heav-
ily modularized approach, with discrete vision modules for
tasks such as vehicle tracking, drivable surface segmenta-
tion, and pedestrian detection, which this method handles
implicitly. A schematic of their system is shown in fig-
ure 8 One challenge in training directly from human data,
as this work does, is that humans typically do not deviate
from correct behaviour, and thus when the autonous ve-
hicle eventually does it would not be expected to behave
well. By using multiple cameras set at angles from the cor-
rect driving direction to provide a “buffer” of driving states
that represent deviations from desired behavour and can be
trained against, Bojarski et al. manage to train a robust sys-
tem that can self-correct and achieve good performance on
real roads(albeit worse performance than publicly reported
numbers for state of the art OC-based approaches).

Other work on the topic also exists. Zhang and Cho[35]
propose an extension of the Dagger algorithm[27] to make
this iterative training and data collection algorithm viable
for autonomous vehicles. Xu, Gao et al. [30] phrase the
problem of driving as one of egomotion prediction, and
learn to predict future motion given a current image state
and a previous motion trace, which makes the task learnable
from crowdsourced vehicle camera data. Recently, Hecker
et al. [18] proposed to improve existing self-driving systems
with a failure prediction module to predict situations where
the driving module(whether learned or OC based) is likely
to fail so that a human can take over.

4. Discussion

In the beginning of this review, we asked the question,
“why do robotic vision systems lag behind traditional vi-
sion tasks in performance?” Considering all major domains

4326

discussed above, some major unifying challenges compared
to computer vision as a whole are:

• Real world data availability. A constant across all do-
mains is the need for simulated data in training, which
is largely not the case for traditional vision tasks. This
stems in each case from the challenges of collecting
large amounts of real world data that can be used for
training robotics systems. The main exception to this
trend is autonomous driving, where many methods are
able to collect extensive real world data, and, partially
because of this, display much higher real-world per-
formance than other tasks. To make tasks like grasp-
ing and generalized navigation practical it will likely
ultimately be necessary to “bite the bullet” and collect
large amounts of real-world data.

• Problematic failure modes. For a lot of vision tasks,
such as classification or detection, low percentage fail-
ure cases are considered acceptable and par for the
course. In most robotics applications in the wild even
a 1% failure rate would be considered unacceptable,
as failures often have severe consequences, from dam-
aged robots to risk of human injury. Even when failure
isn’t catastrophic, failures can cause significant aggre-
vation and delay, such as grasping failures in a ware-
house causing incorrect product sorting, or navigation
failures resulting in robots getting lost or stuck in cor-
ners and requiring human intervention.

• The complexity of the task. Most robotic vision sys-
tems are holistic in nature, and must implicitly or ex-
plicitly perform multiple nuclear vision tasks in com-
bination to succeed. Whereas it is relatively simple to
achieve some nontrivial performance on most nuclear
vision tasks by throwing convolutional networks at
them, the relative scarcity of multitask and multistage
vision success stories outside of robotics is telling.
Success stories for RL such as Atari games and file
system management either require no vision or only
very simple visual understanding and can perform fine
using a 90’s-style LeNet architecture such as in [24].

• Standardization of benchmarks. Unlike vision-only
tasks, where benchmark datasets can easily be dis-
tributed and compared against, robots are physical and
often purpose built to a very high degree. Continued
improvements in hardware also make physical stan-
dardization undesirable for performance reasons. Re-
gardless of the causes, the lack of benchmarks means
not only that it is hard to compare methods apples-to-
apples, but that a large amount of the actual work of
robotics is technically redundant with previous work.
While some progress has been made in this direction

in recent years, it remains a fundamental issue for the
field and slows down the development of new methods.

However, the field of robotics is not without hope- most
of the tasks discussed here can be performed by humans or
simpler animals at a very high level of performance, which
can be seen as a long-term proof of concept for the field. For
example, fruit flies have only 250,000 neurons in total, and
less than 1 million synapses(network connections/weights),
yet can function on a level that no existing algorithm for
autonomous navigation can. More proximally, modulariza-
tion of tasks and transfer of techniques used in other areas
of vision and AI are likely to help move the field forward.
We discuss some potential future directions for each domain
below.

Grasping While this review only covers a few directions
within the field of robotic manipulation(a major omission
being development of better optimized grasping arms and
structured environments to simplify the problem space for
industrial applications), For grasping tasks in relatively un-
structured environments, the largest extant challenge seems
to be in reactivity and robustness- both vision systems and
planning algorithms are prone to failure cases, including
situations that are hard to resolve simply by adding addi-
tional training data(such the limits of most vision cameras
on transparent or mesh-structured materials, or the chal-
lenges of planning to pick up amorphous objects such as
cloth). Our opinion is that the key to solving this will be
through either RL-based systems that learn how to adjust
behaviour in response to new data(such as a grasped ob-
ject slipping out of the grasper), or (likely more proximally)
OC-based systems that can plan on-line and use additional
vision information to change its trajectory during execution.
On this latter point, the transfer of techniques from naviga-
tion and self-driving may prove useful, as these domains
make heavy use of reactivity to function.

Navigation The main factor in performance within the
broader domain of navigation seems to be how constrained
the task being addressed is. More constrained tasks, such
as UAV navigation or autonomous driving, where environ-
ments can be made relatively regular, with well constrained
and largely local action and decision spaces, can demon-
strate very good performance, while less constrained tasks
such as navigating a CS building remain challenging. While
for the immediate future OC-based systems are likely to re-
main dominant for well-constrained tasks, less constrained
tasks remain hard for both approaches. Based on recent
work, it is likely that regularizing the task via model-based
vision systems to improve generalization and training sam-
ple efficiency will be key. In addition, effective simulated-
to-real transfer will be essential. While not discussed here,

4327

we believe that developments in meta learning technique
would help maintain performance on real domains relative
to simulated ones.

Overall, the problem facing most RL-based driving meth-
ods is one of robustness- collecting enough data to train
discrete vision modules is already considered an industrial-
scale task, and end-to-end learning is likely to increase this
need for data. In addition, practical concerns remain, as
while some guarantees of sane behaviour can be made for
OC-based systems, the lack of interpretability in most deep
neural networks means that currently no guarantee can be
made that an RL system will not suddenly swerve off the
road into a ditch given some noisy input or adversarial im-
age.

4.1. Acknowledgements

The author would like to thank caffeine, without which
this manuscript would not exist.

5. References

References
[1] Amazon robotics challenge re-

sults 2017. http://phx.corporate-
ir.net/phoenix.zhtml?c=176060&p=irol-
newsArticle&ID=2290376. Accessed: 2018-04-14.

[2] M. Bauzá and A. Rodriguez. A probabilistic data-driven
model for planar pushing. CoRR, abs/1704.03033, 2017.

[3] R. Bellman. A markovian decision process. Indiana Univ.
Math. J., 6:679–684, 1957.

[4] S. Bhatti, A. Desmaison, O. Miksik, N. Nardelli, N. Sid-
dharth, and P. H. S. Torr. Playing doom with slam-augmented
deep reinforcement learning. CoRR, abs/1612.00380, 2016.

[5] M. Bojarski, D. D. Testa, D. Dworakowski, B. Firner,
B. Flepp, P. Goyal, L. D. Jackel, M. Monfort, U. Muller,
J. Zhang, X. Zhang, J. Zhao, and K. Zieba. End to end learn-
ing for self-driving cars. CoRR, abs/1604.07316, 2016.

[6] J. Borenstein and Y. Koren. Real-time obstacle avoidance for
fast mobile robots. In B. Prasad, editor, CAD/CAM Robotics
and Factories of the Future, pages 144–148, Berlin, Heidel-
berg, 1989. Springer Berlin Heidelberg.

[7] C. Chen, A. Seff, A. L. Kornhauser, and J. Xiao. Deep-
driving: Learning affordance for direct perception in au-
tonomous driving. CoRR, abs/1505.00256, 2015.

[8] S. Daftry, J. A. Bagnell, and M. Hebert. Learning transfer-
able policies for monocular reactive MAV control. CoRR,
abs/1608.00627, 2016.

[9] A. J. Davison and D. W. Murray. Mobile robot localisation
using active vision. In H. Burkhardt and B. Neumann, edi-
tors, Computer Vision — ECCV’98, pages 809–825, Berlin,
Heidelberg, 1998. Springer Berlin Heidelberg.

[10] M. W. M. G. Dissanayake, P. Newman, S. Clark, H. F.
Durrant-Whyte, and M. Csorba. A solution to the simul-
taneous localization and map building (slam) problem. IEEE

Transactions on Robotics and Automation, 17(3):229–241,
Jun 2001.

[11] C. Finn and S. Levine. Deep visual foresight for planning
robot motion. CoRR, abs/1610.00696, 2016.

[12] F. Fraundorfer, L. Heng, D. Honegger, G. Lee, L. Meier,
P. Tanskanen, and M. Pollefeys. Vision-based autonomous
mapping and exploration using a quadrotor mav. pages
4557–4564, 11 2012.

[13] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun. Vision meets
robotics: The kitti dataset. The International Journal of
Robotics Research, 32(11):1231–1237, 2013.

[14] A. Giusti, J. Guzzi, D. C. Ciresan, F.-L. He, J. Pablo Ro-
driguez, F. Fontana, M. Faessler, C. Forster, J. Schmidhuber,
G. Di Caro, D. Scaramuzza, and L. M. Gambardella. A ma-
chine learning approach to visual perception of forest trails
for mobile robots. IEEE Robotics and Automation Letters,
1:1–1, 01 2015.

[15] C. Goldfeder, M. T. Ciocarlie, H. Dang, and P. Allen. The
columbia grasp database, 05 2009.

[16] S. Gupta, J. Davidson, S. Levine, R. Sukthankar, and J. Ma-
lik. Cognitive mapping and planning for visual navigation.
CoRR, abs/1702.03920, 2017.

[17] S. Gupta, D. F. Fouhey, S. Levine, and J. Malik. Unifying
map and landmark based representations for visual naviga-
tion. CoRR, abs/1712.08125, 2017.

[18] S. Hecker, D. Dai, and L. Van Gool. Failure Prediction for
Autonomous Driving. ArXiv e-prints, May 2018.

[19] D. Jayaraman and K. Grauman. Look-ahead before you leap:
end-to-end active recognition by forecasting the effect of mo-
tion. CoRR, abs/1605.00164, 2016.

[20] G. Kahn, T. Zhang, S. Levine, and P. Abbeel. PLATO: pol-
icy learning using adaptive trajectory optimization. CoRR,
abs/1603.00622, 2016.

[21] O. Khatib. A unified approach for motion and force con-
trol of robot manipulators: The operational space formula-
tion. IEEE Journal on Robotics and Automation, 3(1):43–53,
February 1987.

[22] S. Levine, C. Finn, T. Darrell, and P. Abbeel. End-
to-end training of deep visuomotor policies. CoRR,
abs/1504.00702, 2015.

[23] P. Mirowski, R. Pascanu, F. Viola, H. Soyer, A. J. Ballard,
A. Banino, M. Denil, R. Goroshin, L. Sifre, K. Kavukcuoglu,
D. Kumaran, and R. Hadsell. Learning to navigate in com-
plex environments. CoRR, abs/1611.03673, 2016.

[24] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves,
I. Antonoglou, D. Wierstra, and M. A. Riedmiller. Play-
ing atari with deep reinforcement learning. CoRR,
abs/1312.5602, 2013.

[25] R. Murray, Z. Li, and S. Sastry. A Mathematical Introduction
to Robotic Manipulation. CRC Press, 1994.

[26] L. Pinto and A. Gupta. Supersizing self-supervision: Learn-
ing to grasp from 50k tries and 700 robot hours. CoRR,
abs/1509.06825, 2015.

[27] S. Ross, G. Gordon, and J. A. D. Bagnell. A reduction of im-
itation learning and structured prediction to no-regret online
learning. In Proceedings of the 14th International Confer-
ence on Artifical Intelligence and Statistics (AISTATS), April
2011.

4328

[28] F. Sadeghi and S. Levine. (cad)$ˆ2$rl: Real single-image
flight without a single real image. CoRR, abs/1611.04201,
2016.

[29] G. von Zitzewitz. ”survey of neural networks in autonomous
driving”. 2017.

[30] H. Xu, Y. Gao, F. Yu, and T. Darrell. End-to-end learning
of driving models from large-scale video datasets. CoRR,
abs/1612.01079, 2016.

[31] K. Yu, M. Bauzá, N. Fazeli, and A. Rodriguez. More than a
million ways to be pushed: A high-fidelity experimental data
set of planar pushing. CoRR, abs/1604.04038, 2016.

[32] A. Zeng, S. Song, S. Welker, J. Lee, A. Rodriguez, and
T. Funkhouser. Learning Synergies between Pushing and
Grasping with Self-supervised Deep Reinforcement Learn-
ing. ArXiv e-prints, Mar. 2018.

[33] A. Zeng, S. Song, K. Yu, E. Donlon, F. R. Hogan, M. Bauzá,
D. Ma, O. Taylor, M. Liu, E. Romo, N. Fazeli, F. Alet,
N. C. Dafle, R. Holladay, I. Morona, P. Q. Nair, D. Green,
I. Taylor, W. Liu, T. A. Funkhouser, and A. Rodriguez.
Robotic pick-and-place of novel objects in clutter with
multi-affordance grasping and cross-domain image match-
ing. CoRR, abs/1710.01330, 2017.

[34] A. Zeng, K. Yu, S. Song, D. Suo, E. W. Jr., A. Rodriguez,
and J. Xiao. Multi-view self-supervised deep learning for
6d pose estimation in the amazon picking challenge. CoRR,
abs/1609.09475, 2016.

[35] J. Zhang and K. Cho. Query-efficient imitation learning
for end-to-end autonomous driving. CoRR, abs/1605.06450,
2016.

[36] J. Zhang, J. Tobias Springenberg, J. Boedecker, and W. Bur-
gard. Deep reinforcement learning with successor features
for navigation across similar environments. 12 2016.

[37] Y. Zhu, R. Mottaghi, E. Kolve, J. J. Lim, A. Gupta, L. Fei-
Fei, and A. Farhadi. Target-driven visual navigation in
indoor scenes using deep reinforcement learning. CoRR,
abs/1609.05143, 2016.

4329

