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Abstract

This paper reviews recent papers in learning physical
dynamics as a function of image or video data. The ability
to describe the evolution of dynamical systems is essential
to constructing accurate algorithms for a variety of tasks
in computer vision. Capturing the physics of a system is
critical to video prediction, due to the necessity of simu-
lating the interaction between various agents and their en-
vironment, such as motion prediction of a bouncing ball.
Accurate physical models are also essential to controlling
an agent which can interact with the visual environment,
such as a robotic arm which learns to manipulate physical
objects by collecting visual information through a camera.
We survey the various methods for representing a dynami-
cal system in isolation, methods for prediction and control,
and multi-modal extensions. We summarize the major road-
blocks and prospective trends in each domain, and highlight
several notable works for their contributions towards build-
ing robust, generalizable models.

1. Introduction
In this survey, we consider the problem of utilizing raw

visual input, possibly augmented with extra-sensory data,
to determine a representation of a physical, dynamical sys-
tem. The physics determined by the modeling process can
then be used to predict future states of the system or ap-
ply controls to modify the state. Here, we explore a va-
riety of strategies for recovering the internal physics of a
system, including parametric models, in which physical pa-
rameters must be determined within fixed dynamical equa-
tions, and more approximate methods, such as causality
models and graph-based models. Oftentimes, very simple
physical systems are utilized to analyze the effectiveness of
such methods, including gravitational systems, rigid body
dynamics, spring-mass systems, or scenarios in which the
algorithm must detect when a stack of objects will fall. Mo-
tion tracking is another widely studied problem. We will
subsequently review the current methods for utilizing such
dynamical models for video prediction and control.

Much of the inspiration of these models is derived from
how humans experience and interact with the world. If a
human is presented with a novel object, he or she could an-
ticipate the trajectory of the object if it were to be thrown or
dropped, all as a function of raw sensory inputs. In 2011,
Hamrick et al. performed experiments to suggest that hu-
mans use internal models of physics to predict how dy-
namical systems evolve [22]. In this study, human judg-
ments regarding properties of physical systems were found
to closely correlate with those made by a model observer
using simulations based on realistic physical dynamics and
sampling-based approximate probabilistic inference. A
number of older works from the field of cognitive sci-
ence explore the internal physical model hypothesis, includ-
ing [25], [32], [23], and [47].

When it comes to predicting subsequent frames within a
video, one might consider works such as [34] by Michaelski
et al., which predict the motion of a bouncing ball. How-
ever, overly simplified methods for generating new video
frames directly from past frames are wrought with draw-
backs. Such methods do not generalize well to novel envi-
ronments. Moreover, they do not provide any real inter-
pretable notion of the agents within the system nor their
influence on their surrounding environment, and they may
not scale well with large training data sets. An analogously
naı̈ve prediction method developed to determine the future
visual snapshots of a robotic arm is presented by Boots et
al. in [7].

Within the controls systems engineering community, the
internal physical model formulation has been well explored.
The methods presented in the control literature frequently
involve running multiple internal simulations of a system
and choosing the control strategy which optimized the out-
put state. D. Q. Mayne summarizes the use of internal mod-
els for action planning in [33]. A more recent work by Oh
et al., [39], provides a method for learning internal physical
models with task supervision (with Q control) for the pur-
pose of playing Atari games. In order to extend to more gen-
eral environments, however, it would be beneficial to design
more generalizable methods which do not require extensive
task supervision, as do those in the controls literature. In
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the following sections, we emphasize the contributions of
various researchers towards the goal of producing accurate
physical predictions with minimal human supervision.

2. Parameter estimation for fixed dynamical
models

We first consider the class of methods which rely upon
the independent development of a physics engine in con-
junction with a parameter estimation technique. In Wu
et al., [55], for instance, a MCMC is utilized to deter-
mine physical parameters corresponding to a physics en-
gine describing the motion of blocks sliding down an in-
clined plane. Figure 1 displays the schemetic demonstrating
the joint use of the physics engine and a tracking algorithm
to generate predictions of block velocities. Works such as
those by Bhat et al., [6], Brubaker et al., [9], and Mottaghi
et al., [37], similarly estimate parameters in pre-determined
Newtonian equations from images and video data. Due to
the inherent difficulty in producing comprehensive dynam-
ical models for most systems, the use of fixed physics en-
gines finds limited application with real-world tasks.

Figure 1. Schematic for integrated physics engine and tracking al-
gorithm method to predict object motion. Image courtesy of [55].

In [1], Kyriazis et al. anticipate the trajectory of bounc-
ing balls using a physics-based simulation. Given single 2D
camera observations, the physical model serves as a prior
to the position of the ball, even when the ball is occluded
in certain frames. In this case, the physical parameters of
the physics engine are determined by optimizing over a
physical parameter space. Salzmann and Urtasun present
a framework for handling a wider variety of tracking prob-
lems, and present their results on tasks such as articulated
human motion tracking and billiards dynamics [44].

3. Approximate physical models
When the form of a physical model cannot be con-

structed, then we rely upon machine learning methods to
learn approximations for the dynamical system as a whole.

This might involve simplified techniques such as that pre-
sented in [48] by Urtasun et al., in which human motion
paths are anticipated by using a linear dynamical model. In
this section, we will examine a variety of methods for learn-
ing approximate dynamical models.

3.1. Dimensionality reduction

Autoencoder networks are designed such that the net-
work is forced to learn a low-dimensional representation,
or encoding, for a set of data. A number of works simi-
larly seek to construct physical models by transforming raw
visual data to lower-dimensional features, which are then
used in conjunction with reinforcement learning or control
methods.

We look to works such as Lampe & Riedmiller [27],
Kietzmann & Riedmiller [26], Lange et al. [28], and Finn
et al. [14] for examples of such encoding from visual in-
put techniques applied in the robotics community. More
advanced applications include policy learning for robotic
arms. For example, in [49], Wahlström et al. use deep au-
toencoders to learn a closed-loop control policy from pixel
information alone via reinforcement learning. The low-
dimensional embedding is learned jointly with a predic-
tive model, allowing both static and dynamic information
to be accounted for, and thereby improving long-term pre-
dictions. Additionally, autoencoder-based techniques are
commonly applied to toy controllers for comparison with
classical literature, as in [51] of M. Watter et al. Here, a
classical pendulum system is controlled using images of the
pendulum alone, motivating more advanced applications of
vision-based control.

However, as the field of deep learning evolves, autoen-
coders are being used in fewer and fewer applications.
With the exception of such areas as data de-noising, com-
pression, and dimensionality reduction for visualization,
many of the benefits of autoencoders have been overtaken
by supervised-learning approaches in practical applications.
Autoencoders are likely to remain relevant in certain semi-
supervised applications, while bottleneck architectures in
general are likely to become more prevalent in computer vi-
sion methods, given the recent success of the Stacked Hour-
glass Networks [38] for the task of human pose estimation.

3.2. Kalman filters

Kalman filters, and their nonlinear extensions, extended
Kalman filters (EKFs) are algorithms from classical control
theory which optimally produce estimates of the state of a
dynamic system. Classical Kalman filters were applied to
computer vision problems with limited success; see, for in-
stance, Weng et al.’s application of Kalman filters to video
object tracking using classical techniques ( [54]).

Krishnan et al. proposed deep Kalman filters in 2015
in [43]. In this early work, a generative model is fit to a
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sequence of observations and actions, and the relationship
between a latent state and the observations and actions is
assumed to be nonlinear. That is, the underlying state tran-
sition matrices that control the dynamics of a hidden pro-
cess state are replaced with deep neural networks. But, only
the state space equations of the Kalman filter are used. Al-
ternative approaches which combine deep neural networks
and Kalman filters seek to replace the manual fine-tuning of
noise parameters in robotic navigation tasks, as in [2].

A recent improvement to pose estimation in video builds
off of [43]. In Krishnan et al.’s work, an LSTM network
is trained which jointly learns to propagate the state, in-
corporate measurement updates and react to control inputs.
By constrast, in [11], Coskun et al. utilize distinct predic-
tion and update models and demonstrate that their approach
produces superior state estimations, particularly in the ab-
sence of large-scale training data. Refer to Figure 2 for the
schematic of the LSTM-KF architecture from [43], which
obtained SOTA in three tasks spanning pose estimation in
video, camera tracking, and object tracking.

Figure 2. Schematic of the LSTM-KF architecture. Classical com-
ponents of Kalman filters have been replaced by LSTM networks,
such as the nonlinear state-transition model, f, and the covariance
models of the process and observation noise, Q and R, respectively.
Image courtesy of [43].

3.3. Hidden Markov Models

A hidden Markov model (HMM) consists of a finite set
of states, each of which is associated with a probability dis-
tribution, and which are “hidden” in the sense that only the
outcome of the model is visible to an external observer. The
process is assumed to be closely approximated by a Markov
process. A hidden Markov model can be considered to be a
generalization of a mixture model in which the latent vari-
ables are related to one another via a Markov process.

Traditionally, hidden Markov models have been applied
to a number of computer vision tasks. In 1997, HMMs were
being used for motion prediction for visual tracking. For ex-
ample, Brand et al. utilized HMMs for action recognition
using 3D hand tracking data [8], while Ghahramani & Jor-
dan extend the unconstrained HMM structure to handle a
distributed hidden state representation [18].

In November of 2017, Bacciu proposed Hidden Tree
Markov Models, which combine a tree-based generaliza-

tion of HMMs with LSTM-based neural networks [4]. This
work may have laid the foundation for future extensions of
HMMs to modern computer vision tasks.

3.4. Causality models

Causal-effect reasoning has not yet become widely stud-
ied in the context of computer vision, but the current ap-
plications suggest its promise in future tasks. This set of
methods attempt to explore how hidden states cause ob-
served actions. Bayesian networks, for instance, represent
sets of variables and their conditional dependencies using
a directed acyclic graph [19], [40]. By contrast, grammar
models generate hypothesis spaces of possible causal net-
works at a more abstract level [20].

In [30], a grammar model structure is used to learn con-
tainment relations in videos: for example, where objects are
relative to “container” objects, such as a pizza in a box. Xu
et al. utilize grammar models to re-identify humans in im-
ages based on reference images of the individual [56]. Here,
the grammar model structure is used in the sense that human
bodies are decomposed into body-part templates, and candi-
date matches are compared across images. Earlier this year,
Fang et al. proposed a more physics-oriented pose grammar
to obtain improved results on the task of 3D pose estima-
tion [12]. In this, the pose grammar network encodes hu-
man body dependencies and relations with respect to kine-
matics, symmetry, and motor coordination, with each gram-
mar itself represented as a bi-directional RNN. In the future,
grammar models in the form of hierarchical recurrent trans-
former networks as applied in [57] may be utilized for more
physics-based tasks.

A successful, recent method for object tracking is [42],
published in March 2018. The motivation for this work
comes largely from the work of Fire & Zhu, who in [15]
describe a causal grammar model to learn the status of an
object from video data, such as inferring whether a light
is turned on or off. Fire & Zhu describe Causal And-Or
Graphs for object status, noting that a light can be in the
“on” state because it was already on, or because an agent in
the video turned the light on. Refer to Figure 3 for a visual
representation of a Causal And-Or Graph.

Qin et al. were the first to apply Causal And-Or Graph
models to the task of tracking humans in video, when the
humans are interacting with other objects and subjects in
complex scenes [42]. The complete trajectory of an object is
a function of the subject’s surroundings. Thus it is feasible
that physical effects on an object can be represented in a
similar fashion.

3.5. Graph-based models

More generally, one might consider complex systems
which are represented by a broader range of graphs-
whether or not they are acyclic or cyclic, undirected or di-
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Figure 3. A basic Causal And-Or Graph. The light can be in the
“on” state because it was already on, or because an agent in the
video turned the light on. Image courtesy of [15].

rected, and so on. The Graph Neural Network model was
initially introduced in [45], and ultimately inspired the In-
teractions Networks model [5], which has proven to be a
natural framework for expressing physical relationships be-
tween objects. “Graph neural networks” are those frame-
works that reason about graphs using neural networks by
sharing learning across nodes and edges.

In [5], Battaglia et al. suggest that humans learn to in-
teract with their physical environments by decomposing the
setting into distinct objects and relations between the ob-
jects, and then reasoning about the consequences of their
interactions and dynamics. Thus, the interaction networks
are designed such that the reasoning about objects and the
reasoning about the relations are assigned to distinct mod-
els. Interaction networks are also designed such that learn-
ing is automatically generalized across a variable number
of objects and relations. Consider Figure 4 for a schematic
and description of two simple interaction networks.

Figure 4. Schematic of the interaction network architecture. a. In
a simple system, the objects and relations are passed to the net-
work as input. The network first reasons about their interactions,
and then applies this information and physical dynamics to make
predictions of the system. b. For more complex systems, the net-
work takes in systems of objects and relations between them. For
more details, refer to [5].

The natural extension of interaction networks to com-
puter vision tasks is the visual interaction network (VIN),
as first described by Watters et al. in [53]. Visual inter-
action networks consist of a perceptual front-end based on
convolutional neural networks followed by the interaction
networks for discovering the system dynamics and produc-

ing state predictions. Through joint training, the raw visual
input to the system is converted into the object-relations sys-
tems which can be utilized by the interaction network, as
described previously. Watters et al. demonstrate that using
only a few frames of input data, the VIN can generate ac-
curate trajectories across hundreds of future timesteps for
physical systems involving springs, gravity, billiard dynam-
ics, drift, variable mass, and more. Refer to Figure 5 to view
examples of predicted billiard ball trajectories produced by
the VIN across a range of billiard table geometries.

Figure 5. Predictions of billiard ball positions produced by the Vi-
sual Interaction Network method. Billiard physics are described
by a rich dynamical model, and the restriction of the motion to
a 2D table enables the direct application of convolutional neural
networks. Image courtesy of [53].

3.6. Constraining search space using physics simu-
lators

An alternative method for capturing the approximate
physics of a system involves utilizing existing physical
models to constrain the learned physical model. Such meth-
ods share a similar set of limitations to the parameter esti-
mation methods described previously, because it is unlikely
that a physical model is available for general tasks. How-
ever, some flexibility is gained in the sense that a wider con-
straint space may be specified than in the case where the
simulation itself is wholly governed by the physics engine.

For a nice introduction to constraint learning, we refer
the reader to [46] by Stewart & Ermon. Here, the constraints
that are defined are those that hold over the output space of
the neural network in the context of computer vision tasks.
If the objective is to track a falling pillow across several
video frames, as in one of their examples, then the equa-
tion for an object acting under gravity may be encoded, and
a special loss function is fixed to ensure that the (convolu-
tional) neural network is optimized over a space of possible
functions specifying a hypothesis class related to this dy-
namic equation. That is, the network is trained in the direc-
tion of better satisfying this physical equation. The method
is also applied to tasks such as tracking human motion in
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video and detecting objects with causal relationships. Con-
straint learning is especially beneficial for tasks with scarce
labeled data.

4. Visual predictive models
In the previous sections, we have summarized a number

of ways for constructing the internal physical model of dy-
namical systems. We now consider the application of such
models to visual prediction: that is, using raw visual input
to predict future states of the system. This is a challenging
task: in complex environments, models of both the agents
and their surrounding environments are necessary. Thus,
modern visual predictive methods rely upon deep neural
networks for their ability to generalize more broadly to a
wide variety of environments.

We have already briefly introduced the visual predictive
method known as Visual Interaction Networks [52] by Wat-
ters et al. Recall that VINs discover systems of objects and
relations between the objects using raw visual input, and
combines models of relational and object reasoning to pre-
dict the future states of the overall system. Such a method
might adequately capture the dynamics of the agents, yet
fail to generalize well to novel environments. The challenge
in developing new visual predictive models arises due to the
necessity of simultaneously learning both specific physical
relationships and the ways in which broad classes of envi-
ronments may act on agents.

One recent method which seeks to overcome this dual
challenge is presented in [16] by Fragkiadaki et al. In or-
der to handle a variety of environments and situations, the
visual predictive models presented here present an object-
centric approach, rather than a frame-centric approach, as
is commonly employed in standard computer vision appli-
cations (e.g. typical object detection methods). This line
of reasoning closely resembles Battaglia’s object-oriented
approach described in [5], or Xu et al.’s object-oriented
grammar model described in [56], though neither was ex-
plicitly referenced by Fragkiadaki et al. The object-centric
approach, in contrast with the frame-centric approach, is de-
picted in Figure 6. The future states of the world are deter-
mined by individually modeling the temporal evolution of
each object in the system from object-centric glimpses. In
this way, the model is able to handle translation invariance
of the objects as well as model sharing, spanning novel en-
vironments and object instances.

In[16], the authors test their method on a simulated bil-
liards game, which is a dynamical system that exhibits rel-
atively complex dynamics yet is constrained to a 2D sur-
face. Different numbers of balls and wall geometries are
considered, ensuring generalization to novel settings. The
visual predictive model itself takes in as input four previ-
ous glimpses of the table centered at each object’s position,
applied forces, and the previous LSTM hidden states. The

Figure 6. Frame-centric versus object-centric prediction for mod-
eling billiard dynamics. Left: The frame-centric approach, which
requires the image of the billiards table as a whole, plus forces on
the ball objects, to be taken as input. Right: The object-centric
approach, which models future states of the table by individu-
ally modeling the temporal evolution of each ball. In the billiards
world with L objects, it is necessary to discover the velocities, u,
for making predictions of future states. For more details, refer
to [16].

network outputs the displacement of each object. Refer to
Figure 7 for a schematic of the network architecture. Ex-
perimental results demonstrate good generalization of the
method to varying numbers of billiard balls and novel ge-
ometries of the billiard table.

Figure 7. Schematic of the visual predictive model as applied to
billiard dynamics. The model takes as input four previous time-
step glimpses centered on the object position, the forces acting on
the object, and the previous LSTM hidden states. For more details,
refer to [16].

The network uses an AlexNet-style architecture, with
layer 1 adapted to process a stack of four frames, and conv4
modified such that the output matches the value range of the
applied forces, which are joined in via a fully-connected
layer. Long-range temporal dynamics are then modeled
by two LSTM units, and finally the output is passed into
a decoder to predict billiard ball velocities. A Euclidean
loss between ground-truth and predicted ball velocity over
h timesteps is minimized. We study how well the model
generalizes by comparing performance on a variety of bil-
liard table geometries and number of balls. Some results are
displayed in Figures 8 and 9, which were taken from [16].

The same research group proposed the Encoder-
Recurrent-Decoder (ERD) model for learning even more
complex phenomena, such as the movement of a person,
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Figure 8. Errors in magnitude and angle of the velocity, as reported
in a◦/b, with a the mean of angular error in degrees, and b the
relative error in the magnitude of predicted velocity. The Overall
Error is averaged across all frames, while the Error Near Collisions
is reported within ± frames of a collision event. Constant Velocity
(CV), Frame Centric (FC), and Object Centric (OC) models are
considered. For more details, refer to [16].

Figure 9. The angular error near collisions is measured for Frame-
Centric (dashed line) and Object-Centric (solid line) methods, with
h=20. Left. Models are both trained and tested on 1, 2, and 3 ball
worlds. Right. Models trained on 2- and 3- ball worlds and tested
on worlds with larger numbers of balls. This demonstrates that
the object-centric model generalizes better than the frame-centric
model. For more details, refer to [16].

compared to simpler phenomena such as the motion of
physical objects[17]. This brings an additional degree of
complexity to the model: now, it becomes necessary to an-
ticipate a wide variety of future behavior. However, the
ERDs do capture system dynamics in an object-centric fash-
ion: future outcomes are conditioned on an object tracklet,
rather than variations at a particular pixel location. Thus
for predictions of human kinematics, the visual predictive
model is said to be “Lagrangian” rather than “Eulerian”
in nature, and realistic human motions were predicted for
longer periods of time than a standard LSTM-based method.

Finn et al. tackle the problem of predicting physical mo-
tion without labels in [13]. Given videos of agents inter-
acting with various objects, long-term predictions are made
by using variations of a dynamic neural advection (DNA)
model, which outputs a distribution over locations in the
previous frame for each pixel in the new frame. Extended
versions of the DNA method utilize convolutional opera-
tions and spatial transformers to handle separate objects,
like the object-centric methods described previously. It re-
mains to be seen whether more recent methods for han-
dling long-range interactions across frames, such as non-
local neural networks [50], will improve performance on
prediction tasks involving dynamical systems.

Surprisingly, despite the recent emphasis on object-
centric dynamics, no vision-based methods have been pub-
lished which explicitly handle the tasks of predicting or con-

trolling swarm behavior. Collective dynamics can be ob-
served across nature and technology: for example, crowds
of pedestrians, swimming shoals of fish, the migration of
cells (see Figure 10), swarm robotics, and even seismic net-
works. Swarm behavior is well studied in the mathemati-
cal sciences, and models are typically object-centric, with
relatively simple relations fixed between individual agents
to control the group behavior. Thus, object-centric visual
prediction methods seem to provide the most natural frame-
work for learning swarming dynamics. Just as in the vi-
sual interaction network method, one could utilize convo-
lutional neural networks to identify agents from raw vi-
sual input (which in this case could be pedestrians, fish,
cells, etc.); then, the internal interaction network could learn
the relation dynamics between individual objects. We see
many potential future applications of swarm engineering,
especially in combination with reinforcement learning tech-
niques, which will be described in the following section.

Figure 10. Bioelectric herding of collective cell dynamics is an
example of swarm engineering. The ability to more accurately
control collective cell migration using DC electric fields, as is
done in [10], has potential applications to speeding up wound
healing. Swarm dynamics are well-studied in the mathemati-
cal community and are well-suited to the object-centric frame-
work which is becoming increasingly utilized for visual predic-
tion. However, we have found no examples of visual predic-
tion or control which address swarm dynamics. Shown here are
kidney epithelial cells which can be induced to move back and
forth under a DC electric field. Image courtesy of Daniel Cohen,
https://cohengroup.princeton.edu/projects/.

5. Vision-based control
We have described a number of methods which utilize

the feature representations learned by deep neural networks
to predict future states of a dynamic system from visual
data. There is also considerable interest in developing meth-
ods to then control such dynamical systems directly from
visual input. The earliest example of vision-based control
was presented by Mnih et al. in [36], in which a convolu-
tional network used in conjunction with deep Q-learning-
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a type of reinforcement learning (RL)- was first utilized to
learn to play Atari games. The system architecture was rel-
atively simple: the input to the system is raw pixel values,
and the output is a value function estimating future rewards
in the game, with the outputs from the convolutional layers
taken as inputs to the Q-function. Even with such a straight-
forward approach, the algorithm was able to outperform hu-
man experts in three out of the six games.

The joint implementation of convolutional neural net-
works and reinforcement learning became widely applied
in the robotics community. Lillicrap et al. demonstrated
the use of CNNs and Q-learning to simulated robotics envi-
ronments, and robust performance on 20 simulated physics
tasks [31]. The authors note that the Deep-Q Network
(DQN) which was utilized by Mnih et al. could only handle
discrete and low-dimensional action spaces, even though it
could handle high-dimensional observation spaces. Rather
than discretize the action space, which would be intractable
for problems of high dimensionality, Lillicrap et al. in-
stead utilize an off-policy actor-critic algorithm with deep
function approximators. Competitive control policies are
found on such physical systems as the driven pendulum, 2D
legged locomotion, cartpole swing-up, and so on.

Beyond simulated environments, the CNN/RL combina-
tion has also been applied to real-world robotics applica-
tions. Levine et al. learn a method which directly maps raw
visual observations to torques at a robot’s motors [29]. By
using a guided policy search method, they are able to trans-
form the policy learning task into a supervised method, and
jointly train the perception and control systems in an end-
to-end fashion. The robot learns to perform such tasks as
hanging a coat hanger on a rack, screwing on a bottle top,
and using a hammer to remove a nail.

One major application of joint prediction and control in
the field of robotics is the task of navigation in novel envi-
ronments. Gupta et al. utilize camera input from the per-
spective of a robot to build a belief map of the robot’s envi-
ronment and to plan a sequence of actions towards goals in
that environment [21]. Figure 11 displays the general net-
work architecture: by structuring the network as a sequence
of mapping and planning modules, the latent space is able to
infer a map of the robot’s environment and plan actions ac-
cordingly. Even more recent papers, such as [24] by Hong
et al., jointly train the perceptive and control networks but
link them via a meta-representation; in this case, via visual
semantic segmentation.

As research has progressed in vision-based control, we
see a consistent use of reinforcement learning, with modi-
fications to the specific algorithm used. The current state-
of-the-art RL strategy for vision-based control tasks seems
to be A3C, asynchronous advantage actor-critic, which has
been proven to be data-efficient and is described in [35].
Meta-representations connecting the perceptive and control

Figure 11. Schematic of the network architecture from [21] con-
sisting of multiple mapping and planning modules. The latent
space corresponds to a map of the environment from the robot’s
perspective. Image courtesy of the authors.

networks will likely continue to be explored, particularly
to ease the use of simulators as training platforms for real-
world control systems.

6. Multi-modal extensions
In practical applications, it is often the case that multi-

modal data is available: for instance, the accessibility of
both audio and video data. Having additional “touch” sen-
sory data is essential to robots if they are to interact with
physical objects and build an internal representation of the
natural world. We here focus on one example of such a
multi-modal extension. Agrawal et al. investigate an expe-
riential learning paradigm in which robots are able to freely
poke objects in order to learn to displace objects to target
locations [3]. This paper is the intellectual heir of earlier
papers which utilize convolutional neural networks to teach
robots how to interact with physical objects, such as [41] by
Pinto & Gupta, in which the robot learned to grasp objects
following 700 hours of trial-and-error grasping attempts.
However, this work relies upon self-supervision to develop
policies to accomplish a single fixed task, while the work
in [3] learns a more general predictive model of the physics
which can be utilized later to accomplish a variety of tasks.
In this case, the robot is confronted with objects on a ta-
ble, and records a visual state of the world before and after
randomly performing an action (see Figure 12). In order to
learn the mapping from one visual state to the next, the for-
ward and inverse dynamics models are jointly learned. That
is, a forward model predicts the next state given the current
state and an action, while the inverse model predicts the ac-
tion given the initial and target states. Thus the two models
provide supervision for one another.

A schematic of the network architecture for learning to
poke by poking is shown in Figure 13. One training sample
is composed of the initial snapshot of the table, It, the snap-
shot of the table after the action is performed, It+1, and the
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Figure 12. Schematic of the neural network setup for learning to
poke by poking using a Baxter robot. The robot pokes objects on
a table and records the visual state of the table before and after
performing the action. A mapping is learned between the applied
poke and the corresponding change in visual state. After 400 hours
of random pokes, the robot learns to push objects to their desired
locations. Image courtesy of [3].

action, ut. The images (It, It+1) are passed into a Siamese
convolutional network in order to learn their latent fea-
ture representations (xt, xt+1), which are concatenated and
passed through fully convolutional layers in order to predict
the poke location, angle, and length conditionally. Thus the
inverse model can be learned. Additionally, the poke loca-
tion, angle and length are discretized into a number of bins
for modeling multimodal poke distributions. For building
the forward model, the action and initial table state snap-
shot are passed through a series of fully connected layers to
predict the post-action table state.

Figure 13. (a) The set of objects which were poked by the Baxter
robot. (b) Pairs of images of the table state before and after the
poking action was performed. (c) The schematic of the neural net-
work architecture. The forward and inverse models of the system
dynamics are simultaneously learned via a Siamese convolutional
network and a series of fully convolutional layers. Image courtesy
of [3].

On the task of displacing novel objects to desired loca-
tions, the joint modeling approach outperforms alternative
methods. Likewise, given only limited training data, the
joint method is shown to get closer to the goal in fewer
steps than competitive methods (see Figure 14). The abil-
ity of this model to generalize well is even more important
than small reductions in position error. For most real-world
object manipulation tasks, small amounts of error in per-
formed actions is manageable. However, it is essential that

performance is robust to a variety of environmental con-
ditions. Thus, the utilization of an “intuitive” model of
physics, rather than a simulator-based model, provides ben-
efit in this domain.

Figure 14. (a) and (b) compare the joint learning model as de-
scribed in [3] to a baseline blob model, which estimates object
locations using a template-based object detector and then uses the
vector difference between the before-after image pairs to compute
action parameters (poke location, angle, and length). The inverse
model alone was also considered. (c) Simulation studies reveal
that when fewer training examples are available, the joint model
outperforms the inverse model. We infer that the forward model
is able to regularize the inverse model. Image courtesy of the au-
thors.

7. Prospective trends and conclusions

In this paper, we have reviewed a number of modeling
techniques for learning dynamical systems in isolation, as
well as several research directions with respect to visual
prediction and control. Convolutional operations and deep
neural networks remain essential in this domain.

Prediction. The trend in visual-predictive modeling is to
mimic the object-centric manner in which humans identify
objects and then construct internal models of relationships
between them. The recent Visual Interaction Networks pa-
per [53] illustrates the application of convolutional neural
networks for identifying meaningful objects, and then uti-
lizing an internal interaction network for discovering the
physical relationships between those objects. We antici-
pate the utility of recent techniques such as dynamic neu-
ral advection models, which ease the prediction of physical
motion without labels, or even non-local operations. Fur-
thermore, we anticipate the future study of swarm dynamics
using visual predictive models, given the suitability of this
application to the recent object-centric frameworks.

Control. With respect to control, reinforcement learning
remains the dominant method, with some variation in the
specific RL algorithm used. The current SOTA RL strat-
egy seems to be the asynchronous advantage actor-critic
method (A3C). Additionally, more effort is being spent on
enabling self-supervision. We anticipate improved meta-
representations of physical dynamics to enable the substitu-
tion of simulated data for expensive real-world interaction,
as is emphasized in [3].
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