
A Literature Review of Neural Style Transfer

Haochen Li
Princeton Univeristy

Princeton University, Princeton NJ 08544
haochenl@princeton.edu

Abstract

Neural Style Transfer is the problem of taking a con-
tent image and a style image as input, and outputting an
image that has the content of the content image and the
style of the style image. The key technique that makes
neural style transfer possible is convolutional neural net-
work(CNN). This paper will first survey major techniques of
doing neural style transfer on images, and then briefly ex-
amine one way of extending neural style transfer to videos.

1. Introduction

Figure 1: Example of Neural Style Transfer[3]

In order to combine the content of the content image and
the style of the style image, we have to find ways to in-
dependently represent the semantic content of an image and
the style in which the content is presented. Thanks to the re-
cent advances in deep CNN [10], we are able to tackle this
challenge with great success. By tackling this challenge, the
field of neural style transfer ”provide new insights into the
deep image representations learned by Convolutional Neu-
ral Networks and demonstrate their potential for high level
image synthesis and manipulation” [5].

In this paper, we will first survey several techniques for
neural style transfer. We will then briefly look at one way
to extend neural style transfer to videos. One major issue of
doing neural style transfer on videos is the lack of tempo-
ral coherence between frames and we will give a high level

overview of techniques from [6] to overcome this challenge.
We will also cover the datasets used to train deep CNNs

to perform neural style transfer and evaluation metrics for
this task.

2. Neural Style Transfer On Images
2.1. A Neural Algorithm of Artistic Style

Gatys et al proposed the first algorithm [5] that worked
really well for the task of neural style transfer and we will
look at this algorithm in detail in this section. In this algo-
rithm, a VGG-16 architecture [15] pretrained on ImageNet
[2] is used to extract the features that represent semantic
content and style.

2.1.1 Content

A given image x̂ is encoded in each layer of a CNN by
that layer’s filter responses to that image. A layer with Nl
distinct filters has Nl feature maps each of size Ml, where
Ml is the height times the width of the feature map. There-
fore, the response in a layer l can be stored in a matrix
Fl ∈ RNl×Ml , where F lij is the activation of ith filter at
position j at layer l.

TheFls can be used to represent the content of the image.
The filter response of lower layers of VGG net(meaning lay-
ers closer to the input) look very close to the input image,
while the filter representation of the the higher layers of
VGG net captures the high level content information(e.g.
objects in the scene, the relative positions of objects) and
largely ignores the pixel-by-pixel information of the input
image. Figure 2 provides a very good illustration of this
phenomenon.

Let ô and ĝ be the original image and the image that is
generated respectively, and Ol and Gl be their respective
filters at layer l. The contribution of each layler l to the
total content loss is:

Cl(ô, ĝ) =
1

2

∑
i,j

(Olij −Glij) (1)

4321



Figure 2: The Representation of Content and Style by High
and Low Layers of Neural Network[5]

and the total content loss between ô and ĝ is:

Lcontent(ô, ĝ) =

L∑
l=0

clCl(ô, ĝ) (2)

where cl is a hyperparameter that specifies the weighting
factor of the contribution of each layer(note that some cls
could be 0, indicating that we don’t use the filter response
of that layer).

2.1.2 Style

The style of an image is captured by the correlations be-
tween the different filter responses. The feature correlations
are given by the Gram Matrix Gl ∈ RNl×Nl , where Glij is
the inner product between the vectorized feature maps i and
j at layer l:

Glij =
∑
k

F likF
l
jk (3)

By including feature correlations of multiple layers, we
capture the style information of the image while ignor-
ing the content information(e.g. objects present in scenes,
global arrangements of objects).

Let ô and ĝ be the original image and the image that is
generated respectively, let Ol and Gl be their style repre-
sentations in layer l respectively, the contribution of layer l
to the total style loss is(Nl ×Ml is the size of the filter at
layer l):

Sl(ô, ĝ) =
1

4N2
l M

2
l

∑
i,j

(Olij −Glij)2 (4)

and the total style loss between ô and ĝ is:

Lstyle(ô, ĝ) =

L∑
l=0

slSl(ô, ĝ) (5)

where sl is a hyperparameter that specifies the weighting
factor of the contribution of each layer(note that some sls
could be 0, indicating that we don’t use the filter response
of that layer).

2.1.3 Style Transfer Algorithm

In deep learning, we normally optimize the parameters
of some neural network. However, to transfer the style of
an artwork â onto a photograph p̂, we repeatly optimize the
pixel values of the constructed image, x̂, so that x̂ simulta-
neously matches the style representation of â and the con-
tent representation of p̂. At the beginning, x̂ is initialized
to random noise. In order to get a good stylized output, x̂,
we jointly minimize the content loss and the style loss. The
final loss function we minimize is:

Ltotal(p̂, â, x̂) = αLcontent + βLstyle (6)

where α and β are real numbers(they are hyperparamters
to be set). A large α

β ratio means that we want to emphasize
content of the photograph in the constructed image x̂, while
a small αβ means that we want to emphasize the style of the
artwork in the constructed image x̂.

Figure 3 clearly illustrates the style transfer algorithm.
Here is a very good description of the algorithm from

[5] that accompanies figure 3: ”First content and style fea-
tures are extracted and stored. The style image ~a is passed
through the network and its style representation Al on all
layers included are computed and stored (left). The con-
tent image ~p is passed through the network and the con-
tent representation P l in one layer is stored (right). Then a
random white noise image ~x is passed through the network
and its style features Gl and content features F l are com-
puted. On each layer included in the style representation,
the element-wise mean squared difference between Gl and
Al is computed to give the style loss Lstyle (left). Also the
mean squared difference between F l and P l is computed to
give the content loss Lcontent (right). The total loss Ltotal
is then a linear combination between the content and the
style loss. Its derivative with respect to the pixel values can
be computed using error back-propagation (middle). This
gradient is used to iteratively update the image ~x until it si-
multaneously matches the style features of the style image
~a and the content features of the content image ~p (middle,
bottom)”. The inputs to this network are the style target,
content target, and the initialized image.

Figure 5(c) shows an example output of this algorithm.

4322



Figure 3: Style Transfer Algorithm[5]

Although this algorithm outputs images of very high
quality, this algorithm takes 3-5 minutes to generate an out-
put every single time. If one wants to generate a lot of styl-
ized images, this algorithm will take a lot of time. We will
look at another approach to neural style transfer that can
achieve real-time style transfer after some training.

2.2. Perceptual Losses for Real-Time Style Transfer
and Super-Resolution

In this paper [8], Johnson et al. trained a feedforward
convolutional neural network in a supervised manner in or-
der to achieve real time style transfer.

2.2.1 Dataset

The dataset used to train the feedforward convolutional
neural network is the MS COCO dataset [12]. This dataset
contains about 80K images of complex everyday scenes
containing common objects in their natural context. This
dataset is used as the content images.

2.2.2 Architecture

In this algorithm, the input image, x, which is the same as
the content image, is passed through the Image Transform
Net. The output of the the Image Transform Net, ŷ is passed
throught the VGG-16 [15] net along with the style target and

Figure 4: Feedforward Network[8]

content target. Note that during training, the style target is
fixed, and the content target is the same as the input image
x. The content loss and the style loss is then calculated in
the same way as the algorithm described in section 2.1(us-
ing a VGG net[15]). In this algorithm, we are optimizing
the parameters of the Image Transform Net. It takes about
4-6 hours to train the Image Transform Net, depending on
the hardware you are using. The input to the Image Trans-
form Net after it is trained is simply the content image you
want to use. We can use the Image Transform Net to trans-
fer the style of the style target used to train this network onto
any content image in real time. The quality of images ob-
tained using this algorithm is comparable to the algorithm
described in section 2.2(see Figure 5). Please refer to [8]
for the specific architecture of the Image Transform Net.

The main drawback of this algorithm is that each net-
work is tied to a single style. If we want to perform style
transfer for multiple styles, we have to train a separate net-
work using each style. Not only is this extremely inefficient,
it is impractical in many situations. For example, in mobile
applications, there is not enough memory in mobile phones
to store the parameters of many separate Image Transform
Networks. In order to address this drawback, we will next
look at algorithms that can perform style transfer for multi-
ple styles using only one network in real time.

2.3. Mix Fast Style Transfer

Mix fast style transfer is the task of performing real-time
style transfer for multiple styles using one network. In this
section we will look at two techniques that can achieve mix
fast style transfer. Both techniques stem from the intuition
that ”many styles probably share some degree of computa-
tion, and that this sharing is thrown away by trainingN net-
works from scratch when building anN -styles style transfer
system.” [4]. Both techniques propose a conditional style
transfer network, where the network is given a content im-
age and the identity of style to apply to produce a corre-
sponding stylized image. The difference between the two
techniques lies in how they build the conditional network.

4323



(a) Content Image (b) Style Image

(c) Gatys et al (d) Feedforward Network

Figure 5: Example Results Produced by Gatys et al’s Algo-
rithm and Feedforward Network[8]

2.3.1 Conditional Instance Normalization

This paper [4] proposes the conditional instance normal-
ization technique, which is an extension to the instance nor-
malization technique [16]. The goal fo the procedure is to
transform a layer’s filter response, F , into a normalized fil-
ter response, FN , specific to a painting style s. The key
insight of this technique is: ”to model a style, it is sufficient
to specialize scaling and shifting parameters after normal-
ization to each specific style.” [4] That is, we can share the
the convolution weights of the style transfer network across
many styles, and all we need to tune are two N × C matri-
ces, γ and β, where N is the number of styles being mod-
eled and C is the number of output feature maps. γ is the
scaling matrix and β is the shifting matrix here, and γi and
βi represent the parameters of stylei. Conditioning on one
style is achieved by:

z = γs(
x− u
σ

) + βs (7)

where u and σ are x’s mean and standard deviation taken
across x’s spatial axes(that is, if x ∈ RN×C×W×H , where
N is the number of batches, C is the number of channels,
W is the width, and H is the height, we take the mean and
standard deviation across W and H) and γs, βs are the sth
row of γ and β that correspond to style s.

The input to this network is simply the content image
and the network will output N stylized images, where N is
the number of styles the network is trainied on.

This approach can be applied to any style transfer net-
work, and to apply this technique, we simply replace the
batch normalization layer in the original network by condi-
tional instance normalization.

Because conditional instance normalization only acts on
the scaling and shifting parameters, training a single style
transfer network on N styles require far fewer parameters
than trainingN separate networks for scratch. Furthermore,
when we already have a trained style transfer network on
N styles and we want to incorporate N + 1th style into
our network, we can just keep the convolutional weights
of the network fixed and finetune the γ and β matrices(the
dimensions of γ and β matrices need to change from N ×
C to (N + 1) × C). As shown in figure 6, finetuning is
much faster than training from the scratch as finetuning for
5000 steps achieves similar qualitative results as training for
40000 steps from scratch.

Figure 6: Training from Scratch vs Fine Tuning γ and β[4]

Another interesting feature of this algorithm is that
this algorithm allows for arbitrary combination of paint-
ing styles. We combine different painting styles by calcu-
lating convex combinations of the γ and β values. Sup-
pose (γ1, β1) and (γ2, β2) are the parameters that corre-
spond to two different styles. If we want to stylize a con-
tent image using the combination of two different styles,
we will calculate γ1+2 = α × γ1 + (1 − α) × γ2 and
β1+2 = α × β1 + (1 − α) × β2. α is a hyperparameter
to be tuned based on how much you want to emphasize ei-

4324



ther style.
Figure 7 shows some example outputs of this technique.

Note that all the different stylized images are produced by a
single network.

Figure 7: Mixed Style Transfer Using Conditional Instance
Normalization [4]

2.3.2 Mix Fast Style Transfer Via Fusion

The conditional instance normalization approach is effi-
cient and produces very good outputs. However, conditional
instance normalization layer needs to be manually imple-
mented in most of today’s popular deep-learning frame-
works. This paper [9] proposes an approach for Mix Fast
Style Transfer that is simpler to implement that the condi-
tional normalization approach.

This algorithm uses a similar structure as Johnson’s feed-
forward neural network. There is an Image Transform Net-
work followed by a VGG-16 network [15]. Figure 8 is the
Image Transform Net used in this algorithm. During train-
ing, a minibatch is formed with one content image and all
N style images the network is associated with. To train the
network, we present the network with a content image and a
N -dimensional binary vector where the corresponding ele-
ment to each style is 1 and the other elements are 0. That is,
if we are presenting the network the content image and style
1, the first element of the binary vector should be 1 and all
other elements of the binary vector should be 0. The fusion
step simply concatenates the conditional vector and the fil-
ter response of the content image. The output of the Image
Transform Network, along with the content target and style
target, is being passed to a VGG-16 network [15] to calcu-
late the content loss and style loss in the same way as in the
algorithm described in section 2.1.

There is no need to manually implement a special layer if
we are using one of the modern deep-learning frameworks.
Furthermore, it is also easier to combine different styles in
this approach. If the network is trained on 4 different styles,
to combine the 4 styles, we simply present the network with
a content image and a 4-dimensional vector where each el-
ement is nonzero(e.g. [0.1, 0.2, 0.3, .0.4], the specific value
of each element of the vector depends on how much you
want to emphasize each style). However, in order to incopo-
rate additional elements into this style transfer network, we
have to train the network from scratch instead of finetuning
like we did in section 2.3.1. This technique’s outputs are
qualitatively similar to the one presented in section 2.3.1.

Figure 8: Fusion Network [9]

Instead of showing stylized images using any one particular
style, we will show an example of stylizing an image using
a mixture of two styles(Figure 9).

(a) Content Im-
age

(b) Style Im-
age1

(c) Style Im-
age2

(d) Stylized Im-
age using Style
1 and 2

Figure 9: Stylizing an Image Using a Mixture of Two
Styles[9]

2.4. Universal Fast Style Transfer

All the real-time style transfer techniques presented so
far can only do style transfer for painting styles that the net-
work has seen before, and we will now present several tech-
niques that can train a network to perform style transfer for
any painting style(including the ones the network has not
seen before) in real time.

2.4.1 Arbitrary Style Transfer in Real-time with
Adaptive Instance Normalization

This paper [7] introduces a technique known as adaptive
instance normalization(AdaIN). The insight of this method
is that feature statistics of generated image can control the
style of the generated image. In conditional instance nor-
malization, the specific styles are specificied using a scaling
matrix γ and a shifting matrix β. Both scaling and shifting
are affine transformations, and we will call γ and β affine
parameters from now on. The high level idea of AdaIN is
to find ways of coming up affine parameters for arbitrary
styles.

4325



Unlike conditional instance normalization, AdaIN has no
learnable affine parameters. Instead, AdaIN receives a con-
tent image c and a style image s and matches the channel-
wise mean and variance of c with those of s:

AdaIN(c, s) = σ(s)(
c− u(c)
σ(c)

) + u(s) (8)

where σ(x) and u(x) denote the standard deviation and
mean of x across x’s spatial axes.

Figure 10: AdaIN Style Transfer Architecture[7]

Figure 10 illustrates the architecture of AdaIN style
transfer network. The style transfer network T takes a
content image and an arbitrary style image as inputs and
stylizes the content image using the style of the style im-
age. The network adopts an encoder-decoder architecture,
in which the encoder f is fixed to first few layers(up to
relu41) of a VGG-19 [15] that is pretrained on Imagenet
[2]. After the encoder encodes the content image and the
style image as f(c) and f(s) respectively, we pass them to
AdaIn and get:

t = AdaIn(f(c), f(s)) (9)

A randomly initialized decoder network is trained to gen-
erate the stylized image. The decoder network is mostly
the same as the encoder network, with all pooling layer re-
placed by nearest up-sampling to reduce checkerboard ef-
fects.

During training, the MS-COCO dataset [12] is used as
the content images and a set of paintings mostly collected
from WikiArt [14] is used as the style images. Both datasets
contain about 80000 images. To train the decoder network,
equation (6) is used as the loss function and the style and
content loss are calculated using a VGG-19 [15] that is pre-
trained on Imagenet [2] in the same way as the algorithm
described in section 2.1. In this case, the content target is
the output of AdaIN, t(we don’t use the actual content im-
age as content target because in practice, using t as content
target leads to faster convergence speed), the style target is

the style image, and the generated image is the output of the
decoder network.

Figure 11 shows an example output of AdaIN. Note that
the network has not seen the particular style shown in Figure
11.

(a) Content Image (b) Style Image (c) Style Transfer

Figure 11: Results of AdaIN [7]

2.4.2 Universal Fast Style Transfer Via Fusion

This technique [17] is an extension of the technique pre-
sented in section 2.3.2.

Figure 12: Style Conditional Network[17]

In the algorithm presented in section 2.3.2, we supply the
conditional vectors as input. In this algorithm, as illustrated
in figure 12, there is an additional style conditional network.
We pass in a style image as input and the style conditional
network would extract a conditional vector. The rest of ar-
chitecture is the same as before.

In this algorithm, we train the style conditional network
along with the rest of architecture. The goal of training the
style conditional network is to teach it to generate the right
conditional vector for arbitrary styles. During training, the
MS-COCO dataset [12] is used as the content images and a
set of paintings mostly collected from WikiArt [14] is used
as the style images.

This method achieves qualitatively similar results as the
method described in section 2.4.2.

2.5. Photorealistic Style Transfer

The algorithms we surveyed in previous sections give
very cool artistic outputs. However, other than for enter-

4326



tainment purposes, it is not clear how neural style transfer
is applicable. Photorealistic style transfer is the same prob-
lem as neural style transfer, except that when both the style
images and content images are photos, the stylized image
should look photo realistic. The solution to photo realistic
style transfer is very applicable for photo editing. For exam-
ple, photorealistic style transfer can be used to alter the time
of the day or weather of a picture. An output of the algo-
rithm described in section 2.1 and an output photorealisitic
algorithm is shown in figure 13. Other neural style trans-
fer algorithms explored do not produce qualitatively differ-
ent results from the algorithm described in section 2.1. As
one can see, the existing style transfer techniques are not
suitable for photorealistic style transfer. Even when both
the content image and the style image are photos, the out-
put of regular style transfer algorithms still contains distor-
tions that are reminiscent of paintings(e.g. the spill in the
sky). The photorealistic style transfer successfully stylizes
the daytime photo so that it looks like it has been taken at
night.

(a) Content Image (b) Style Image

(c) Style Transfer (d) Photorealistic Style Transfer

Figure 13: Comparison Between Regular Style Transfer and
Photorealistic Style Transfer [13]

2.5.1 Key Challenges

There are two key challenges present in this problem.
The first one has to do with two competing objectives we
are trying to accomplish. On one hand, we are trying to
achieve very drastic local effects(Light up the window of
the skyscraper in figure 13). On the other hand, we do not
want the transfer to have any geometric effect(e.g. the grids
of windows stay as grids and don’t get distorted). This work
[13] proposes the first solution to this challenge.

Another challenge is raised by the complexity of scenes
in the real world. ”The transfer should respect the semantics

of the scene. For instance, in a cityscape, the appearance of
buildings should be matched to buildings, and sky to sky”
[13].

2.5.2 Algorithm

Recall that in the algorithm described in section 2.1, there
are two terms in the loss function, namely content loss and
style loss. This paper [13] has two core technical contribu-
tions.

The first is the introduction of a photorealism regular-
ization term into the loss function. The insight is that the
input content image is already photorealistic, all we need to
do is to ensure that we do not lose the photorealism during
the style transfer process. This is accomplished by adding
a term to equation (6) that penalizes image distortion. This
loss term is built upon the Matting Laplacian proposed by
Levin et al. [11]. In [11], a least-square penalty function
that penalizes image distortion is proposed:

Lm =

3∑
c=1

Vc[O]TMIVc[O] (10)

Vc[O] is the vectorized version(N × 1) of the output im-
age O in channel c. MI is a matrix that depends only on
the input image I . For the specific formula of MI , please
refer to this paper [11] and we will only present the high
level idea in this literature review due to spatial constraints.
The high level idea of this loss term is to penalize things
that are not well explained by locally affine transforma-
tion(An affine transformation is a linear transformation that
preservers points, straight lines, and planes). Output that is
not well explained by locally affine transformation includes
things like making a straight edge curvy.

A limitation of the style loss in equation (6) is that the
Gram matrix is computed over the entire image. By calcu-
lating Gram matrix over the entire image, the Gram matrix
is limited in terms of its ability to adapt to variations of se-
mantic context and can cause ”spillovers”. This problem is
addressed using a semantic segmentation method [1] to gen-
erate image segmentation tasks for content and style images
for a set of common labels(e.g. sky, buildings, water, and
etc). We add the masks to the input image as additional
channels and we update the style loss as follows:

Lls =

C∑
c=1

1

2N2
l,c

∑
ij

(Gl,c[O]−Gl,c[S])2ij (11)

Fl,c[O] = Fl[O]Ml,c[I] Fl,c[S] = Fl[O]Ml,c[S] (12)

where C is the number of channels in the semantic seg-
mentation mask, Ml,c[·] denotes the channel c of the seg-
mentation mask of input · in layer l, Fl,c[·] denote the the fil-
ter response of channel c of input · in layer l. In each layer,

4327



there are Nl filters each with a vectorized feature map of
size Dl. Gl,c[·] is the Gram matrix corresponding to Fl,c[·].
Nl,c is the number of filters in channel c of layer l.

The loss function used in photorealistic style transfer is:

Ltotal = αLc + βLs + γLm (13)

where α, β, and γ are the hyperparameters that regulate
the content weight, style weight, and photorealism weight
respectively.

Other than the modified loss function, this algorithm uses
the same architecture as the algorithm presented in section
2.1. The semantic segmentation is performed using Dilat-
edNet [1].

2.6. Evaluation Metric

Since determining quality of images is a largely subjec-
tive task, most of evaluations of neural style transfer al-
gorithms are qualitative. The most common approach is
to qualitatively compare outputs of some current approach
with some previous approaches by putting outputs of dif-
ferent algorithms side by side. The algorithm presented in
section 2.1 is often used as a baseline method for qualitative
evaluation.

Another common evaluation method is user study. The
typical setup is to recruit some Amazon Mechanical Turk
users, show them stylized images output by different algo-
rithms, and ask them which images they prefer.

There are also some attempts for quantitative evaluation.
The most common approach is compute the runtime or the
convergence speed(how long it takes the loss function to
converge) of different algorithms. Some paper also try to
compare the final values of loss functions of different algo-
rithms. However, the values of loss function do not always
correspond precisely to the quality of output images.

Due to spatial constraints, we have only shown a limited
number of outputs from each algorithm in this literature re-
view. If you are interested in other kinds of evaluation met-
rics mentioned here, please refer back to the original papers
listed under Reference.

3. Style Transfer On Videos
There are some works that focus on generalizing style

transfer to videos. If we just naively apply existing style
transfer techniques to individual frames of videos, the re-
sulting video does not have temporal coherence. We will
briefly look at one paper [6] that solves the problem doing
style transfer on videos. However, since this literature re-
view is not focusing on style transfer on videos, we will not
go into great depth on this topic.

The key technical contribution of this paper [6] is that the
neural network takes consecutive frames as input instead of

single frame. The neural network takes previous stylized
frame pt−1 and the current video frame pt as input. The
output at each timestep is fed as input at the next time step.
At each time step, the loss function is the same as equation
(6). Between timesteps, a new term known as temporal con-
sistency loss is introduced into the loss function to ensure
that the network will produce temporally consistent results.
The high level idea of temporal consistent loss is to ensure
that consecutive frames of a video should be very similar to
each other. We will not go into the technical details of the
architecture or the temporal consistency loss term in this lit-
erature review. This method does produce temporally con-
sistent stylized videos.

4. Discussion

From a practical point of view, neural style transfer pro-
vides people with a way to create interesting artwork. The
ability to generate artwork of different styles is one type of
visual intelligence. Furthermore, as shown in section 2.5,
style transfer can also have important applications in photo
editing.

From a technical point of view, the body of research con-
cerning style transfer deepens our understanding of CNN’s
ability to represent images(e.g. Feature statistics of a gener-
ator network, such as channelwise mean and variance, can
represent the style of an image). By deepending our under-
standing of CNN’s ability to represent images, the body of
research concerning style transfer has made important con-
tribution to the study of visual intelligence.

References
[1] L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L.

Yuille. Deeplab: Semantic image segmentation with deep
convolutional nets, atrous convolution, and fully connected
crfs. IEEE Trans. Pattern Anal. Mach. Intell., 40(4):834–
848, 2018.

[2] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei.
ImageNet: A Large-Scale Hierarchical Image Database. In
CVPR09, 2009.

[3] S. Desai. Neural artistic style transfer: A comprehensive
look.

[4] V. Dumoulin, J. Shlens, and M. Kudlur. A learned represen-
tation for artistic style. ICLR, 2017.

[5] L. A. Gatys, A. S. Ecker, and M. Bethge. A neural algorithm
of artistic style. CoRR, abs/1508.06576, 2015.

[6] A. Gupta, J. Johnson, A. Alahi, and L. Fei-Fei. Character-
izing and improving stability in neural style transfer. ICCV,
2017.

[7] X. Huang and S. Belongie. Arbitrary style transfer in real-
time with adaptive instance normalization. In ICCV, 2017.

[8] J. Johnson, A. Alahi, and L. Fei-Fei. Perceptual losses for
real-time style transfer and super-resolution. In European
Conference on Computer Vision, 2016.

4328



[9] R. T. Keiji Yanai. Conditional fast style transfer network.
ICMR, 2017.

[10] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In
F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger,
editors, Advances in Neural Information Processing Systems
25, pages 1097–1105. Curran Associates, Inc., 2012.

[11] A. Levin, D. Lischinski, and Y. Weiss. A closed form so-
lution to natural image matting. In IEEE Computer Soci-
ety Conference on Computer Vision and Pattern Recognition.
IEEE Computer Society, 2006.

[12] T.-Y. Lin, M. Maire, S. Belongie, L. Bourdev, R. Girshick,
J. Hays, P. Perona, D. Ramanan, C. L. Zitnick, and P. Dollár.
Microsoft COCO: Common Objects in Context. Computer
Vision–ECCV 2014. Springer (2014).

[13] F. Luan, S. Paris, E. Shechtman, and K. Bala. Deep photo
style transfer. arXiv preprint arXiv:1703.07511, 2017.

[14] K. Nichol. Painter by numbers, wikiart. 2016.
[15] K. Simonyan and A. Zisserman. Very deep convolu-

tional networks for large-scale image recognition. CoRR,
abs/1409.1556, 2014.

[16] D. Ulyanov, A. Vedaldi, and V. S. Lempitsky. Instance
normalization: The missing ingredient for fast stylization.
CoRR, abs/1607.08022, 2016.

[17] K. Yanai. Unseen style transfer based on a conditional fast
style transfer network. ICLR, 2017.

4329


