Two simple Models for Temporal Action
Localization
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Temporal Action Localization

Every Moment Counts: Dense
Detailed Labeling of Actions in

Complex Videos

Predictive-Corrective Networks
for Action Detection




Problem Recap

Temporal Action Localization:

Recognize action, as well as the temporal segment where
the action happened in the video.



Every Moment Counts:

Dense Detailed

Labeling of Actions in
Complex Videos

Yeung et al.

e Motivation

o Dense detailed multi-label
action understanding

e Find right dataset

o MultiTHUMOS Dataset
e Develop right model

o MultiLSTM Model

e Experiments



Motivation
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Road Map

Target problem of dense detailed multi-label action understanding
(1) Finding the right dataset

(2) Developing an appropriate model
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Exisiting Datasets

Detection | Untrimmed | Open-world | Multilabel
UCF101 [37 - - yes -
HMDBS51 [14 - - yes -
SportsIM [10 - yes yes -
Cooking [29 yes yes - -

Detection: temporal localization annotation
Untrimmed: long enough to capture consecutive actions
Open-world: generality of videos, a broad set of actions
Multilabel: label all simultaneous actions in a frame




Exisiting Datasets

e UCF101, HMDB51, Sports1M
o Common Challenging action recognition datasets
o Non-localized labels, temporarily clipped around actions
e MPII Cooking and Breakfast
o Long untrimmed videos with multiple sequential actions
o Single label per frame, closed-world environment

e THUMOS
o Long untrimmed videos
o 80% videos only contain a single action class




From THUMOS to MultiTHUMOS

e Action Detection Dataset from THUMOQOS Challenge 2014
e 30 hours across 413 videos, collected from YouTube
e C(lasses: 20 — 65
o Diversity of length
o Hierarchical, hierarchical within a sport and fine-grained categories
o Sport-specific and non-sport-specific categories
e Annotations: 6365 — 38690
o Datatang data annotation service
o Given the name of an action, a brief description and 2 annotation
examples, one worker is asked to annotate the start and end frame of
the action if it occurs for each video

o A second worker verifies each annotation.
s
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Comparlson with THUMOS
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Avergae # of labels per frame: 0.3 —» 1.5
Average # of action classes per video: 1.1 — 10.5

Dense interactions between actions!



MultiTHUMOS as Challenging Dataset

e Long tail data distribution
o Amount of annotated data varies across action classes
o Requires effective utilization of both small and large amounts of

annotated data
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MultiTHUMOS as Challenging Dataset

e Shorter length of actions
o Little visual signal in the positive frames
o Requires strong contextual modelling and multi-action reasoning

THUMOS MultiTHUMOS
Avg. Instance Length |4.8s 3.3s
Avg. Class Length 1.5s ~14.7s -
# of Classes <1s 0 7




MultiTHUMOS as Challenging Dataset

e Fine-grained actions
o low inter-class variation
o Requires general action detection approaches that are able to
accurately model a diverse set of visual appearances

Hierarchical: throw vs. baseball pitch

Hierarchical within a sport: pole vault vs. plant the pole when pole vaulting
Fine-grained: basketball dunk, shot, dribble, guard, block, and pass
Sport-specific actions: different basketball or volleyball moves

General actions: pump fist, or one-handed catch



MultiTHUMOS as Challenging Dataset

e High intra-class variation
o Visual difference for the same action across frames
o Requires insensifitivty to camera viewpoint and accurately focus on
semantic information
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Target problem of dense detailed multi-label action understanding.
(1) Finding the right dataset

(2) Developing an appropriate model
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Output predictions for a
window of N frames previous
to current time step

[0 0 pNé pQNJ

Yyt = Zz Bitpit

Predicted labels for all classes
at the t-th frame

pit Predictions at the i-th time step
for the t-th frame

ﬁit Weights of contributions

The final predicted label for all
classes for a frame is calculated as a

weight average of predictions.




Variant of output offset



Implementation Details

e 512 unit LSTM, 50 units in the attention component
e Window of 15 frames
e |nputx:
o 4096-d fc-7 features of VGG16,-pretrained on ImageNet and
fine-tuned on MultiTHUMOS on an individual frame level
e Outputy:
o Unnormalized log probability of each action class
e Multilabel loss - sum of logsitic regression losses per class:

Y|X Z Rte log th)) & (1 — ZtC) log(l — U(th))




Experiments

e Dataset: MultiTHUMOS
e Action detection
o Baseline: Single-frame CNN, LSTM
e Action prediction
o Baseline: A model using ground-truth label distribution



Action Detection Evaluation

Per-frame mean Average Precision across all action classes

Model THUMOS mAP | MuliTHUMOS mAP
IDT [46] 13.6 133
Single-frame CNN 34.7 25.4
Two-stream CNN 36.2 27.6
LSTM 393 28.1
LSTM +1i 39.5 28.7
LSTM+i+a 297 291
MultiLSTM 41.3 29.7




Per-class AP

MultiLSTM
VS.
Single-Frame
CNN
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MultiLSTM (per—class AP)
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Example Action Detection Result
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Example Video Retrieval Result

Pass, then Shot Sit&Talk Stand& Talk

4
Y

Sequential Co-occurrence



Action Prediction Evaluation
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Example Action
Prediction
Result

Jump — Fall

Dribble — Shot




Predictive-Corrective
Networks for Action

Detection

Dave et al.

e Motivation

Predict the future and correct
with future observations

e Model
o Predictive-Corrective Model

o Layered Predictive-Corrective
Blocks

o Dynamic Computation

e Experiments



Motivation

Obsgrve t=1

‘Predict for t=1

Correct

The human vision
system relies on
continuously
predicting the
future and then
correcting for the
unexpected



Motivation
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Reasoning frame differences de-correlates data



Predictive-Corrective Model

e lIdea: Inspired by Kalman Filtering
e Suppose our images and action scores evolve smoothly, as with a linear
dynamical system:

Latent State (Actions) X; = AX;_q + noise
Observation (Frames) y: = Cx; + noise
e (an create improved estimates of action scores by:
X =X 1 +9(Y: — Ye)

== Prediction
Correction

[Dave, Russakovsky, Ramanan. “Predictive-Corrective Networks for Action Detection.” CVPR 2017]




Predictive-Corrective Model (Cont’)

X¢ = AX;.1 4 noise X¢ Semantic state of frame't

yt = Cx;¢ + noise Yt Appearance of framet

Posterior Estimate:

% A x ' , . :
Xt = X¢|p—1 +K(y; — Yt|t—1) At|t—1 Prior pre.dlct|ons glvgn
N—— “————  Yt|t—1 observations of previous frames

prediction correction _ .
K  Kalman gain matrix

Approximation:
f(t|t—1 A X1 yt|t—1 XYyi-1 mmmp Xi = Xi—1 +9(yt — yt-1)

Actions and pixel values of a video evolve slowly over time




Predictive-Corrective Model (Cont’)

Frames FC8

prediction

correction ~

Y Xt
Xt =Xe1 +9(Ye — Vi)

== Prediction
Correction

[Dave, Russakovsky, Ramanan. “Predictive-Corrective Networks for Action Detection.” CVPR 2017]




Layered Predictive-Corrective Blocks

e Idea: Combine hierarchy with predictive-corrective block
e Model lower layers as observations that are used to infer the hidden
states of higher layers

At layer | =0...L:

A A -1 [—1 L
2t =2, +9'(z,7 " —2,]) 2z latentrepresentattion in layer | at frame t

2. prediction for 7.

[ , :
g learned non-linear function for layer |




Layered Predictive-Corrective Blocks (Cont’)

Problem: No ground truth latent state for layers except for |=0

L 0 . : A .
Initialize Z; with the pixel appearance; compute Z% and use it as
observed z% to compute 2? continuing the layerwise recursion.

Problem: Base case of the temporal recursion at time t=0

Use a separate CNN which doesn’t consider the evolution of the dynamic
system: 2§ = f(z3)



Block at Layer |

Block at Layer |+1




Layered Predictive-Corrective Blocks (Cont’)

Problem: Efficient end-to-end training to learn the layer-specific
functions

1 & Al 4l
At = 2y — 244

2 = 2;_1+9 (2,  — Zt—l)

Ap =g" (A ) =g (g" (- 9N (AY))) = 9(Z — 2)_,)

Action prediction for frame tas 2F = 2% + 37 AL with ground truth

action label Zf’ as training signal
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Dynamic Computation

e Idea: Adaptively focus computation on “surprising” frames
e Ignore small corrections, re-initialize on large corrections

7 4 if static activations
sl ) plisl—1 : R
2; = [z, ) if re-initializes

A Ly =1 -1
2;_1+9 (2  —2z_y) else




Connections to Prior Art

e Non-linear Kalman Filter
o Linear dynamics (identity mapping)
o Nonlinear hierarchical observation model

e RNN
o Use past output x¢—7 in a linear fashion
o Maintain the previous input Y¢—1 as part of memory

x; = o(Wys + Vxi—1)
X =Xg—1 +o(W(y: —ye—1))




Implementation Details

e VGG16 architecture for initial and update models
e Weight initialization:

o Pre-trained on ILSVRC 2016

o Fine-tuned on per-frame acion classification task for al actions
e |[nput

o Frames extracted from the video at 10 frames per second

o Resized to 256 x 256, and random cropped to 224 x 224



Experiments

e Model Analysis
o Comparison with baseline
o Test-time reinitialization
o Architectural variations
e FEvaluation
o Benchmarks: THUMOS. MultiTHUMOS and Charades



Model Analysis: Baseline

(Per-frame classification (mAP) on MultiTHUMOS)

Method MultTHUMOS mAP
Single-frame RGB 25.1
4-frame late fusion 25.3

Predictive-corrective (our)

26.9




Model Analysis: Baseline
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Model Analysis: Test-time Reinitialization

(Per-frame classification (mAP) on MultiTHUMOS)
e Static reinitialization:

Reinit Train Reinit 4 | Train Reinit 8
Test Reinit 2 26.9 259
Test Reinit 4 26.9 26.9
Test Reinit 8 25.4 27.3
Test Reinit 16 20.0 25.9

e Dynamic reinitialization by thresholding (at least every 4th frame):
o 27.2% mAP

e Dynamic discard by thresholding:
o 26.7% mAP by discarding nearly 50% frames



Model Analysis: Architectural Variations
(Per-frame classification (mAP) on MultiTHUMOS)

Configuration mAP
convb53 every 4 26.5
fc7 every 4 26.9
fc8 every 4 26.6
conv33every 1, fc7 every 4 27.2
conv43every 2, conv53every4 | 26.6
convb3every 2, fc7 every 4 24.8




Evaluation

Per-frame classification (mAP)

Method MultiTHUMOS | THUMOS
Single-frame [55] 25.4 34.7
Two-Stream’[ 3] 27.6 36.2
Multi-LSTM [55] 29.7 41.3
Predictive-corrective 29.7 38.9




Evaluation

Per-frame classification (mAP)

Predictive-corrective

Method Charades
Single-frame 1.9
LSTM (on RGB) Bl
Two-Stream [35] 3.9

3.9




Thoughts

Simple extension to exisiting models
Help recurrent model by direct
pathway to neighboring frames

A dataset right for the task is as
important as the approach

Reduce trouble of correlation of
video frames by only focusing on
changes

Difficult task, still a lot of unutiliized
spatio-temporal information




