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Open World Annotation

Real-world, natural, datasets include:

» Different objects embedded together in

complex scenes
> Occlusion of interesting regions
» An open universe with classes not known

beforehand

MS-COCO was a good example of this intuition;
Visual Genome extends upon it




“Cognitive” Tasks

Involve higher-order questions on images;
closer step to “understanding” images:

> Image description synthesis

> Visual Question Answering

> Intuitional leaps (why?, relationships,
subjective attributes)

Scene graphs are one way of representing a
higher-order “knowledge”




2.
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Visual Genome: Connecting Language and Vision
Using Crowdsourced Dense Image Annotations

By: Krishna et al.,, 2016



For the following slides: Images Credit: Krishna et al.

Visual Genome: Overview PR | Sl

object detection object attributes object classification scene classification fine-grained recognition action recognition
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Q: How many people are  Q: What is the most Q: What animal is the Q: Where was the picture  Q: What kind of boat is Q: What is the

wearing a lettered, valuable device in this balloon modelled taken? the far left blue boat? snowboarder doing?
zip-up red jacket? room? after?
A: Just one. A: The television. A: Blue whale. A: At the beach. A: Sail boat. A: Jumping.
text detection spatial reasoning event understanding common sense person identification facial expressions

- A P 2t
Q: When was the bridge Q: Where is the American  Q: What holiday is being ~ Q: Why is the man’s tie Q: Who is this man? Q: What expression is on
built? flag? celebrated? moving? most people’s faces?
A: 1932, A: Behind president A: Fourth of July. A: The wind is blowing. A: Derek Jeter. A: They are smiling.

Reagan.



Region Based Question Answers Free Form Question Answers

Q. What color is the fire hydrant? Q. What is the woman standing next to? - = C p t
g . — omponents

@ Regions & Descriptions

woman in shorts is
standing behind
the man

AR @ Objects & Bounding Boxes

ons

fire hydrant

< @ Attributes

= @ Relationships
@ Region Graphs
@ Scene Graph

Regional + Freeform
Question-Answer Pairs

Region Descripti

Scene Graph
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1: Regional Descriptions

Intuition: creating region-based descriptions
would reduce description of only major features

1. Worker picks three new bounding boxes, describes
each region uniquely (shown most similar regions)

N
1
Sn(dir d;) = b(di, dj) exp(; D_logpn(dindy))  bldsdy) =

n=1 ’

1 if len(d;) > len(d;)
{ e~ iezgz; otherwise
2. Algorithm enforces < 0.7 similarity to

image-specific & global descriptions
3. Worker draws region boxes judged on coverage
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Fig. 18: (a) A plot of the most common visual concepts or phrases that occur in region descriptions. The most

common phrases refer to universal visual concepts like “blue sky,

» o«

green grass,” etc. (b) A plot of the most

frequently used words in region descriptions. Each word is treated as an individual token regardless of which region
description it came from. Colors occur the most frequently, followed by common objects like man and dog and
universal visual concepts like “sky.”

Region Statistics

Tennis Cluster

White lines on the ground of the tennis court.

A pair of tennis shoes.

Metal fence securing the tennis court.

Navy blue shorts on tennis player.
The man swings the racquet.

Tennis player preparing a backhand swing.

Numbers Cluster

The number four.
Three dogs on the street.

Two people inside the tent.
Many animals crossing the road.
Five ducks almost in a row.

Two towels hanging on racks.

Transportation Cluster

Ladder folded on fire truck.
Dragon design on the motorcycle.
Tall windshield on bike.

Front wheels of the airplane.

A bus rear view mirror.

The front tire of the police car.

Ocean Cluster

Ocean is blue and calm.

Rows of waves in front of surfer.
A group of men on a boat.
Surfboard on the beach.
Woman is surfing in the ocean.

Foam on water’s edge.




2: Objects & Bounding Boxes

1. Worker given a region and description, extracts
objects and draws bounding boxes

2. Bounding boxes drawn to satisfy both
coverage & quality (4px max error)

3. List of previously-extracted objects (from
alternate descriptions) provided
a. Workers told to join identical objects
b. Stanford’s dependency parser used to

suggest most likely nouns



Visual ILSVRC Det. MS-COCO Caltech101  Caltech256 PASCAL Det.  Abstract
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Fig. 22: (a) Examples of objects in Visual Genome. Each object is localized in its image with a tightly drawn
bounding box. (b) Plot of the most frequently occurring objects in images. People are the most frequently occurring
objects in our dataset, followed by common objects and visual elements like building, shirt, and sky.

Number of Objects per Image



3/4: Attributes / Relationships

Given a region description, region image,
and object bounding boxes, workers extract
attributes/relationships and identify the
objects they apply to

Note: some descriptions have no objects,
attributes, or relationships

Ex: “It is a sunny day”
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Fig. 24: (a) Distribution showing the most common attributes in the dataset. Colors (e.g. white, red) and materials
(e.g. wooden, metal) are the most common. (b) Distribution showing the number of attributes describing people.
State-of-motion verbs (e.g. standing, walking) are the most common, while certain sports (e.g. skiing,
surfing) are also highly represented due to an image source bias in our image set.

Fig. 27: (a) A sample of the most frequent relationships in our dataset. In general, the most common relationships
are spatial (on top of, on side of, etc.). (b) A sample of the most frequent relationships involving humans in
our dataset. The relationships involving people tend to be more action oriented (walk, speak, run, etc.).



5: Regional Graphs

Programmatically created based on worker
identification of relationship and attribute
links to particular objects in each region

sits on )—{benchJ
[ in front of /)[{vriverJ
[womanH sits on ]

A man and a woman sit on a park
bench along a river.




6: Scene Graph

1. Combine objects from different regions

with bounding box overlap of > 0.9

Ask workers to confirm identity

3. Take union of region graphs, merging at
each repeated node

o
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7: Question-Answer Pairs

> Freeform Q-A: Worker creates 8 Q-A pairs
(>3 categories) per image shown

» Region-based Q-A: random large (>5k
pixels, >4 words in phrase) regions
selected, workers create a Q-A pair for each

Questions must be precise, unique,
unambiguous, and either of type 5Ws or “how”




Canonicalization

All objects, attributes, relationships, and
noun phrases mapped to WordNet synsets:

1.

2.
3.

B

Use NLP tools to extract noun phrases /
relationship verbs, stem attributes

Map each to most frequent synsets

Use heuristics to correct common errors
Present top 5 potential synsets and
definitions to workers for verification




Verification

Two processes used:

> Majority Voting: 3 workers vote on each
annotation, 2 must verify correctness
> Rapid Judgements: verification method

to speed up process by 10x




Background: Rapid Judgements

Ground Truth User Keypress Ground Truth Ground Truth User Keypress  User Keypress
—_— = — e —

True Labels
(b)

Observed Labels
(c)

Click Likelihood
(d)

LLearnt Likelihood

(e)

Figure 1: (a) Images are shown to workers at 100ms per image. Workers react whenever they see a dog. (b) The true labels are
the ground truth dog images. (c) The workers’ keypresses are slow and occur several images after the dog images have already
passed. We record these keypresses as the observed labels. (d) Our technique models each keypress as a delayed Gaussian to
predict (e) the probability of an image containing a dog from these observed labels.

Core idea: Show images super quickly (100ms) to workers, keypress when they see an
object of a given class. Model the delay to predict the images with those objects

Original paper (+ above image): https://arxiv.org/pdf/1602.04506.pdf
Presentation: https://dl.acm.org/citation.cfm?id=2858115



https://arxiv.org/pdf/1602.04506.pdf
https://dl.acm.org/citation.cfm?id=2858115
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Descriptions Total # Object Objects  # Attributes  Attributes # Relationship  Relationships Question

Images per Image Objects  Categories per Image Categories  per Image Categories per Image Answers
YFCC100M (Thomee et al., 2016) 100,000,000 - - - - - - - - -
Tiny Images (Torralba et al., 2008) 80,000,000 - - 53,464 1 - - - - -
ImageNet (Deng et al., 2009) 14,197,122 - 14,197,122 21,841 1 - - - - -
ILSVRC Detection (2012) (Russakovsky et al., 2015) 476,688 - 534,309 200 2.5 - - - - -
MS-COCO (Lin et al., 2014) 328,000 5 27,472 80 - - - - - -
Flickr 30K (Young et al., 2014) 31,783 5 - - - - - - - -
Caltech 101 (Fei-Fei et al., 2007) 9,144 - 9,144 102 1 - - - - -
Caltech 256 (Griffin et al., 2007) 30,608 - 30,608 257 1 - - - - -
Caltech Pedestrian (Dollar et al., 2012) 250,000 - 350,000 1 14 - - - - -
Pascal Detection (Everingham et al., 2010) 11,530 - 27,450 20 2.38 - - - - -
Abstract Scenes (Zitnick and Parikh, 2013) 10,020 - 58 11 5 - - - - -
aPascal (Farhadi et al., 2009) 12,000 - - - - 64 - - - -
Animal Attributes (Lampert et al., 2009) 30,000 - - - - 1,280 - - - -
SUN Attributes (Patterson et al., 2014) 14,000 - - - - 700 700 - - -
Caltech Birds (Wah et al., 2011) 11,788 - - - - 312 312 - - -
COCO Actions (Ronchi and Perona, 2015) 10,000 - - - 5.2 - - 156 20.7 -
Visual Phrases (Sadeghi and Farhadi, 2011) - - - - - - - 17 1 -
VisKE (Sadeghi et al., 2015) - - - - - - - 6500 - -
DAQUAR (Malinowski and Fritz, 2014) 1,449 - - - - - - - - 12,468
COCO QA (Ren et al., 2015a) 123,287 5 2 z 2 . g 5 . 117,684
Baidu (Gao et al., 2015) 120,360 - - - - - - - - 250,569
VQA (Antol et al., 2015) 204,721 - - - - - - - - 614,163
Visual Genome 108,077 50 3,843,636 33,877 35 68,111 26 42,374 21 1,773,258

Table 1: A comparison of existing datasets with Visual Genome. We show that Visual Genome has an order of magnitude more descriptions and question
answers. It also has a more diverse set of object, attribute, and relationship classes. Additionally, Visual Genome contains a higher density of these
annotations per image. The number of distinct categories in Visual Genome are calculated by lower-casing and stemming names of objects, attributes and

relationships. Table Credit; Krishna et

. i



Descriptions Total # Object Objects  # Attributes  Attributes  # Relationship  Relationships Question

Images per Image Objects Categories per Image Categories  per Image Categories per Image Answers

YFCC100M (Thomee et al., 2016) 100,000,000 % 2 2 . " 4
Tiny Images (Torralba et al., 2008) 80,000,000 - = - - " -
ImageNet (Deng et al., 2009) 14,197,122 14,197,122 - - - - -
ILSVRC Detection (2012) (Russakovsky et al., 2015) 476,688 534,309 - - % g =
MS-COCO (Lin et al., 2014) 328,000 27,472 - . N _ -
Flickr 30K (Young et al., 2014) 31,783 . . . . . B - )
Caltech 101 (Fei-Fei et al., 2007) 9,144 9,144 - z = & =
Caltech 256 (Griffin et al., 2007) 30,608 30,608 - - - - -
Caltech Pedestrian (Dollar et al., 2012) 250,000 350,000 - - - - =
Pascal Detection (Everingham et al., 2010) 11,530 27,450 - - - 2 =
Abstract Scenes (Zitnick and Parikh, 2013) 10,020 - A -
aPascal (Farhadi et al., 2009) 12,000 - & s
Animal Attributes (Lampert et al., 2009) 30,000 - a -
SUN Attributes (Patterson et al., 2014) 14,000 = = =
Caltech Birds (Wah et al., 2011) 11,788 -
COCO Actions (Ronchi and Perona, 2015) 10,000 -

Visual Phrases (Sadeghi and Farhadi, 2011) - - - Z g g g
VisKE (Sadeghi et al., 2015) - - - - - = -

DAQUAR (Malinowski and Fritz, 2014) 1,449 - = - & - u
COCO QA (Ren et al., 2015a) 123,287 - - - - - - 117,684
Baidu (Gao et al., 2015) 120,360 - - - - - - - - 250,569

VQA (Antol et al.

2015 204,721 614,163

Visual Genome 108,077 21 1,773,258

Table 1: A comparison of existing datasets with Visual Genome. We show that Visual Genome has an order of magnitude more descriptions and question
answers. It also has a more diverse set of object, attribute, and relationship classes. Additionally, Visual Genome contains a higher density of these
annotations per image. The number of distinct categories in Visual Genome are calculated by lower-casing and stemming names of objects, attributes and

relationships. Table Credit; Krishna et

. i



Descriptions Total # Object Objects  # Attributes  Attributes # Relationship  Relationships Question

Images per Image Objects  Categories per Image Categories  per Image Categories per Image Answers
YFCC100M (Thomee et al., 2016) 100,000,000 - - - - o
Tiny Images (Torralba et al., 2008) 80,000,000 - - 53,464 1 Vlsual' Genome VS. MS_COCO
ImageNet (Deng et al., 2009) 14,197,122 - 14,197,122 21,841 1 Both based on real-world images,
012) (Russakovsky et al., 2015) 476,688 . 534,309 200 2.5 with segmentation and descriptions

MS-COCO (Lin et al., 2014 328,000 5 27,472 80 . e 108k vs. 300k photos
Flickr 30K (Young et al., 2014) 31,783 5 . . - o) Subset of COCO!
Caltech 101 (Fei-Fei et al., 2007) 9,144 - 9,144 102 1 P 34k Ob_JeCt classes vs.
Caltech 256 (Griffin et al., 2007) 30,608 - 30,608 257 1 80 object classes

Caltech Pedestrian (Dollar et al., 2012) 250,000 - 350,000 1 14

e >50 regional descriptions vs.

Pascal Detection (Everingham et al., 2010) 11,530 - 27,450 20 2.38 .

Abstract Scenes (Zitnick and Parikh, 2013) 10,020 - 58 11 5 5 sentences abOUt eaCh Image
aPascal (Farhadi et al., 2009) 12,000 - - - -

Animal Attributes (Lampert et al., 2009) 30,000 - - - - 1,280 - - - -
SUN Attributes (Patterson et al., 2014) 14,000 - - - - 700 700 - - -
Caltech Birds (Wah et al., 2011) 11,788 - - - - 312 312 - - -
COCO Actions (Ronchi and Perona, 2015) 10,000 - - - 5.2 - - 156 20.7 -
Visual Phrases (Sadeghi and Farhadi, 2011) - - - - - - - 17 1 -
VisKE (Sadeghi et al., 2015) - - - - - - - 6500 - -
DAQUAR (Malinowski and Fritz, 2014) 1,449 - - - - - - - - 12,468
COCO QA (Ren et al., 2015a) 123,287 - - - - - - - - 117,684
Baidu (Gao et al., 2015) 120,360 - - - - - - - - 250,569
VQA (Antol et al., 2015) 204,721 - - - - - - - - 614,163
Visual Genome 108,077 50 3,843,636 33,877 35 68,111 26 42,374 21 1,773,258

Table 1: A comparison of existing datasets with Visual Genome. We show that Visual Genome has an order of magnitude more descriptions and question
answers. It also has a more diverse set of object, attribute, and relationship classes. Additionally, Visual Genome contains a higher density of these
annotations per image. The number of distinct categories in Visual Genome are calculated by lower-casing and stemming names of objects, attributes and

relationships. Table Credit; Krishna et al.



Descriptions Total # Object Objects  # Attributes  Attributes # Relationship  Relationships Question
Images per Image Objects  Categories per Image Categories  per Image Categories per Image Answers
YFCC100M (Thomee et al., 2016) 100,000,000 - - - - o
Tiny Images (Torralba et al., 2008) 80,000,000 - - 53,464 1 Vlsual' Genome VS. VQA
ImageNet (Deng et al., 2009) 14,197,122 - 14,197,122 21,841 1 Both include open ended
ILSVRC Detection (2012) (Russakovsky et al., 2015) 476,688 < 534,309 200 2.5 question—answer pairs on real-world
MS-COCO (Lin et al., 2014) 328,000 5 27,472 80 s images. Multiple pairs per image.
Flickr 30K (Young et al., 2014) 31,783 5 . . - e 1.8Myvs. 614k Q-A pairs
Caltech 101 (Fei-Fei et al., 2007) 9,144 - 9,144 102 1 P 57% VS. 89% Of answers are
Caltech 256 (Griffin et al., 2007) 30,608 - 30,608 257 1 Singl.e—\x/ord
Caltech Pedestrian (Dollar et al., 2012) 250,000 - 350,000 1 14 o 39% Of VQA answers are
Pascal Detection (Everingham et al., 2010) 11,530 - 27,450 20 2.38 yes/nol
Abstract Scenes (Zitnick and Parikh, 2013) 10,020 - 58 11 5
aPascal (Farhadi et al., 2009) 12,000 - - - -
Animal Attributes (Lampert et al., 2009) 30,000 . . < . 1,280 - . a &
SUN Attributes (Patterson et al., 2014) 14,000 - - - - 700 700 - - -
Caltech Birds (Wah et al., 2011) 11,788 - - - - 312 312 - - -
COCO Actions (Ronchi and Perona, 2015) 10,000 - - - 5.2 - - 156 20.7 -
Visual Phrases (Sadeghi and Farhadi, 2011) - - - - - - - 17 1 -
VisKE (Sadeghi et al., 2015) - - - - - - - 6500 - -
DAQUAR (Malinowski and Fritz, 2014) 1,449 s . . . s - < s 12,468
COCO QA (Ren et al., 2015a) 123,287 - - - - - - - - 117,684
120,360 - - - - - - - - 250,569
VQA (Antol et al., 2015) 204,721 s . . . s . . s 614,163
Visual Genome 108,077 50 3,843,636 33,877 35 68,111 26 42,374 21 1,773,258

Table 1: A comparison of existing datasets with Visual Genome. We show that Visual Genome has an order of magnitude more descriptions and question
answers. It also has a more diverse set of object, attribute, and relationship classes. Additionally, Visual Genome contains a higher density of these
annotations per image. The number of distinct categories in Visual Genome are calculated by lower-casing and stemming names of objects, attributes and

relationships.

Table Credit: Krishna et
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Key Metrics

More Dense:

» 35 objects perimage (OM+)

> 144k unique objects, relationships, and
attributes (OM+)

> 1.4M Q-A pairs (more than any other)
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Key Metrics

More Comprehensive/Diverse:

> More object categories (34k total)

> Object-specific attributes: size, pose, emotion, etc.

» More semantically diverse captions, but still
imperfect (2x more men annotated than women)
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Semantic Diversity Detection

1. Use word2vec to convert each word to a
300-dimensional vector

2. Hierarchical agglomerative clustering
on vector representations -> 71 clusters

3. 5descriptions randomly

) preprocess
chosen per image T |'k°'"z|

vectorize

T O O
\/
EESEEE

Fig. 17: The process used to convert a region description
into a 300-dimensional vectorized representation.




Findings: Attribute Graphs
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Findings: Affordances
Using typical relationships, B
can learn common sense B o i o
knowledge like couches have  § ™ § oo
pillows on them, zebras eat e po
hay, etc.

(a)

(b)

Fig. 28: (a) Distribution of subjects for the relationship riding. (b) Distribution of objects for the relationship
riding. Subjects comprise of people-like entities like person, man, policeman, boy, and skateboarder that
can ride other objects. On the other hand, objects like horse, bike, elephant and motorcycle are entities
that can afford riding.



Question: Have any researchers taken advantage of
these kinds of affordance relationships?

Visual Relationship Detection with Language
Priors (link)

By: Lu et al., 2016


https://arxiv.org/pdf/1608.00187.pdf

@ IR: Key Challenge

@ |R: Dataset

@ IR: Implementation

@ IR: Experiments/Results
@ MP: Key Challenge

@ MP: Implementation

3- @ MP: Experiments/Results

SCENE GRAPH
APPLICATIONS




Image Retrieval using Scene Graphs

By: Johnson et al., 2015
Note: Johnson also collaborated on VG, and will
have his faculty interview here on March 29th!



For the following slides: Images Credit: Johnson et al.

{ man holding fish and wearing hat on white boat n

Key Challenge:

Using Scene Graphs for Image Retrieval

Intuition: Scene graphs can represent what
you actually want better than plaintext

Problem: Given a scene graph query,
identify the image that best matches it

Evaluation:

1. Performance on hyper-precise graphs

2. Performance on more simple,
open-ended graphs

3. Performance generating accurate object  *~

localizations @




Scene Graph Formalization

Scene graphs include objects, attributes, and
relationships, and are grounded to an image.

C: Set of object classes B: Set of bounding boxes
A: Set of attribute types  Grounding: v: 0 — B

R: Set of relationships Yo: grounding of object o
0; = (c;, A:) , one object to bounding box b

O = {o1,...,0,}, all objects

E COxRxO0, set of edges

Scene Graph G = (O, E)




Dataset

» Sk images, intersection of MS-COCO + YFCC100m

» Uses AMT workers to write object, attributes, and
relationships with an open vocabulary

» Uses AMT workers to draw bounding boxes

» Uses AMT workers to verify all attributions

For experiments, Johnson et al. discarded object +
attribute classes with < 50 occurrences and
relationships with < 30 occurrences

Note: This paper was written prior to Visual Genome’s release



Dataset Details

—Object classes Figure 4: Ob_] ects, at-
— Attribute types . -
— Relationship types| tributes and relations reveal

a Zipf distribution when
ordered by number of
labeled instances.

Number of instances
umbrella is open

COCO ILSVRC Pascal
Full Experiments| 2014 2014 (Det) VOC
dataset  Sect. 6 [42] [54] [15]

Object classes 6,745 266 80 200 20
Attribute types 3,743 145 - - -
Relationship types | 1,310 68 - - =

Object instances 93,832 69,009 (886,284 534,309 27,450
Attribute instances 110,021 94,511 - - -
Relationship instances (112,707 109,535 - - -

Instances per obj. class| 13.9 259.4 |11,087.5 2,672.5 1,372
Instances per attr. type | 29.4 651.8 - - -

@
8
s

£
]
H
3

=

lamp on

shirt on skateboard _ wooden table

man wearing red

Instances per rel. type | 86.0  1,610.8 . . - g? B
Objects per image | 18.8 13.8 72 ] 24 :5¢8l
Attributes per image | 22.0 18.9 - - - € ;
Relationships per image| 22.5 219 - - - 283
Soc
Attributes per object | 1.2 1.0 - < = §55
Relationships per object| 2.4 2:3 - - - €gs
Table 1: Aggregate statistics for our real-world scene graphs Figure 3: Examples of scene sub-graphs of increasing complex-

ity (top to bottom) from our dataset, with attributes and up to 4

dataset, for the full dataset and the restricted sets of object, at- ; .
different objects.

tribute, and relationship types used in experiments.



Dataset Findings
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Figure 5: An aggregate scene graph computed using our entire dataset. We visualize the 150 most frequently occurring (object, relation-
ship, object) and (object, attribute) tuples. We also provide 3 examples of scene graphs grounded in images that contribute to the sub-graphs
within the dashed rectangles of the aggregated graph. Best viewed with magnification.




CRF Formulation

Task: Given a scene graph, want to retrieve images

Solution: For a given graph, measure ‘agreement’
between it and all unannotated images

» Use a Conditional Random Field (CRF) to model
distribution over all possible groundings

» Use Maximum a Posteriori (MAP) inference to find
most likely grounding

» Use the likelihood of this ‘best’ grounding as a
measure of agreement




CRF Formulation

P(y|G,B) = ][ P(vo | 0) ] | P(ver 7o | 0,7, 0).

o€eO (o,r,0')EE

Using Bayes rule + since P(y ) and P(o0) are constants
for MAP inference:

7" =argmax [[ P(o| %) [ P(vos70r | 0,7,0).
& oeO (O,T,O’)EE



CRF Formulation

11 P(o|7)=Pc|) ] Plal).
ac€A

P(c | 7o) and P(a | 7). are probabilities that box
y_0 has object o or attribute a.

1. Use R-CNN to train detectors for 266 object
classes and 145 attribute types

2. Obtain SVM classification scores

3. Use Platt scaling to convert this to probabilities



CRF Formulation

2: P(’)'Oafyo’ ‘ o,T, 0/)

Train a Gaussian Mixture Model (GMM) to model:
P(f(70770') | C, T, C,) and P(f(70770’) | T)

(use the latter if <30 instances of (c, r, C’) ).

Use Platt scaling to convert GMM output to probabilities

(o 10) = ((@ = @) /w, (y—¢)/h, w'Jw, B /R)



Background: Gaussian Mixture Models

Negative log-likelihood predicted by a GMM Mixture Model: f(z) = (1 — 7)g1(x) + mg2(x)

— Gaussian mixture: g;(z) = ¢, (), 0; = (15,07)
oc=1.0 oc=1.0

- 102

Responsibilities
00 02 04 06 08 10

|
— 101 '\‘ |

[
Responsibilities

00 02 04 06 08 1.0

Model data points into a number of Gaussian distributions with unknown parameters

Fantastic overview:
https://jakevdp.github.io/PythonDataScienceHandbook/05.12-gaussian-mixtures.html

Image (left): http://scikit-learn.org/stable/modules/mixture.html
Image (right): http://statweb.stanford.edu/~tibs/stat315a/LECTURES /em.pdf



https://jakevdp.github.io/PythonDataScienceHandbook/05.12-gaussian-mixtures.html
http://scikit-learn.org/stable/modules/mixture.html
http://statweb.stanford.edu/~tibs/stat315a/LECTURES/em.pdf

Implementation

Training: Learn from a set of images with associated
grounded scene graphs

Testing: given a scene graph + unannotated images,

1. For each image,
a. Generate candidate boxes using Geodesic
Object Proposals (GOP)
b. Use CRF + MAP to identify best grounding
and output probability of match
2. Return ranked list of images by probability



Background: Geodesic Object Proposals

f n .

' f ) r

ST e S 9 ' Ing —> — ' ‘ ’ : l

1\* !‘}, " ¥ ;‘J‘ : A \

i e F
L""" IE i) LI"'I“ ' _J \. = —’ - Ll l y,
(a) Input (b) Seeds (c) Masks (d) SGDT (e) Proposals

Fig.2: Overall proposal generation pipeline. (a) Input image with a computed super-
pixel segmentation and a boundary probability map. (b) Seeds placed by the presented
approach. (c) Foreground and background masks generated by the presented approach
for two of these seeds. (d) Signed geodesic distance transforms for these masks. (e)
Object proposals, computed by identifying critical level sets in each SGDT.

Creates a probability map for boundaries, then places geodesic seeds. Uses those seeds
to make maps, then uses a geodesic distance transform for final object proposals.
Note: The paper found “[Selective Search (SS)] achieves the highest object recall on our dataset; however we use

[Geodesic Object Proposals] GOP for all experiments as it provides the best trade-off between object recall (=70%
vs = 80% for SS) and number of regions per image (632 vs 1720 for SS).

Original paper (+ above image):
http://www.philkr.net/papers/2014-10-01-eccv/2014-10-01-eccv.pdf



http://www.philkr.net/papers/2014-10-01-eccv/2014-10-01-eccv.pdf

Evaluation

Models Used:

>

SG-obj-attr-rel: Our model.
Includes unary object and
attribute potentials and

binary relationship potentials.

SG-obj-attr: Our model, using
only object and attribute
potentials.

SG-obj: Our model, using only
object potentials. Equivalent
to R-CNN

Rand: Random permutation

Metrics Used:

>

Med r: Median rank for
true image/highest true
image

R @ N: Recall atrank N



Results

1: Full scene-graph queries

Pick an image from the test set. Query test set with
its scene graph. Record rank of the true image.

Rand || SIFT |GIST | CNN || SG-obj| SG- SG-
[43] | [48] | [34] [4] |obj-attr | obj-attr-rel
Medr | 420 - - - 28 17.5 14
@) R@1 0 - - - 0.113 | 0.127 0.133
R@5 |0.007 - - - 0.260 | 0.340 0.307
R@10 |0.027 - - - 0.347 | 0.420 0.433

—Random

| —SG-obj

| — SG-obj-attr
—SG-obj-attr-rel




Results

2: Partial scene-graph queries

Mine dataset for recurring (>5x) scene subgraphs.
For each subgraph, find all images that match it.
Query test set and record highest-ranked TP image

1

0.9f

0.8f

Rand [[ SIFT [GIST |CNN [[SG-obj| SG- SG- 07}
[43] | [48] | [34] [*“] |obj-attr|obj-attr-rel X osf
Medr | 94 || 64 | 57 | 36 17 12 11 i e
)| Rel [0 0 [0.008[0.017[[ 0.059 | 0.042 | 0.109 L S
R@5 [0.034(0.084/0.101{0.050 || 0.269 | 0.294 | 0.303 o3y o
R@10 [0.042(/0.168|0.193{0.176 (| 0.412 | 0.479 | 0.479 02 —SG-ob

0.1

~—SG-obj-attr |4
—— SG-obj-attr-rel

80 100




Results

3: Partial scene-graph queries

Evaluate median loU across all objects in all test

images and fraction of objects with loUs above
thresholds. Note: they’re quite low!

—SG-obj

0.55({ — SG-obj-attr
—SG-obj-attr-re
Rand || SIFT |GIST | CNN || SG-obj| SG- SG- g :
[43] | [48] | [34] [74] |obj-attr | obj-attr-rel =

MedloU| - || - | - | - [/ 0014 0.026] 0.067 g,
R@0.1 - - - - 0.435 | 0.447 0.476
R@0.3 - - - - 0.334 | 0.341 0.357
R@0.5 - - - - 0.234 | 0.234 0.239

0'6.5 045 04 035 03 025 02 0.15 0.1 0.08
(©) IOU threshold



Results

¥ hair
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Ground Truth

(c)

SG-obj-attr-rel

Left: experiment 1. Top: experiment 3. Bottom: experiment 2.
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Question: Scene graphs are clunky and complex,
and won't likely be used for real-world image
retrieval. What do we do instead?

Generating Semantically Precise Scene Graphs

from Textual Descriptions for Improved Image
Retrieval (link)

By: Schuster et al,, 2015


https://nlp.stanford.edu/pubs/schuster-krishna-chang-feifei-manning-vl15.pdf

Scene Graph Generation by Iterative Message
Passing

By: Xu et al., 2017



For the following slides: Images Credit: Xu et al.

Key Challenge:

Generating Scene Graphs from Images

Problem:

Create an end-to-end trainable model that, given
an image, outputs a scene graph with object
classes, bounding boxes, and relationships

Central Intuition:

Use the surrounding context for reasoning; why
not use object predictions to predict
relationships (and vice versa)?

Figure 1. Object detectors perceive a scene by attending to indi-
vidual objects. As a result, even a perfect detector would produce
similar outputs on two semantically distinct images (first row). We
propose a scene graph generation model that takes an image as in-
put, and generates a visually-grounded scene graph (second row,
right) that captures the objects in the image (blue nodes) and their
pairwise relationships (red nodes).

image object proposal scene graph

Figure 2. An overview of our model architecture. Given an image
as input, the model first produces a set of object proposals using
a Region Proposal Network (RPN) [32], and then passes the ex-
tracted features of the object regions to our novel graph inference
module. The output of the model is a scene graph [18], which
contains a set of localized objects, categories of each object, and
relationship types between each pair of objects.



Scene Graph Generation

Given an image I:

1. Use a Region Proposal Network
to generate a set of proposed
bounding boxes B_|

2. Infer relevant labels:
a. Foreach bbox, an object class
b. For each bbox, offsets for refining position
c. Foreach pair, a relationship variable

(Part 2 is the central undertaking of this paper...)



Background: Region Proposal Network

RPN = Fully Convolutional Network

. classifier

| 2k scores ] | 4k coordinates | <mm K anchor boxes

'R"I pooling cls layer reg layer
2\ 4
e Z A /; [ 256-d |

-
| intermediate layer
etwor
feature maps 8
A: //
) -

conv layers { 4
/ sliding window:

conv feature map

Region Proposal N

lg.
f

Slides across the conv feature map of an image of any size, feeds features into a
box-regression and box-classification layer, outputs set of object proposals

Above image: Berthy/Riley’s slides
From Faster-RCNN: https://arxiv.org/pdf/1506.01497.pdf



https://arxiv.org/pdf/1506.01497.pdf

Task Formalization

P B il = LswTld = lasallyd 7 J}
Pr(x|I, Br) = H HPr(fBgls7$gbom7$z'—>j|I, B ).
i€V ji

X* = drg maxs Pr(x|I; Br)

Notation: Q(x | .) is the probability of x; depends only on the
current states of all nodes + edges



object proposal

node message pooling scene graph

edge
GRU

edge
feature

(@)

node
feature

edge edge
GRU [ ] GRU
node message edge
™  pooling (e
message message
passing passing
dual
graph |_,| edge message rode
- pooling GRU
/ \\‘
509
e aRU
state
edge message pooling T=1 T=2 T=N
(b) (c) (d)

(a): Each node, edge has a corresponding Gated Recurrent Unit (GRU)

Each of these units have hidden states h. (node) or hi_>j (edge)

Using ROI-Pooling, we extract visual features for each bbox -
fi" Is the feature for bboxi, while fie is for the union of boxesi J.



node message pooling

object proposal ode
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(a): Then, the mean field distribution is initially just:

Q(x|I, By) = | [ Q=" 227 |h:) Q(hs| £7)
=1

HQ(mi—*ﬂhi—*i)Q(hi—*ﬂ f—m')

J#i
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Background: Gated Recurrent Units

A slightly more dramatic variation on the LSTM is the Gated Recurrent Unit, or GRU,
introduced by Cho, et al. (2014). It combines the forget and input gates into a single “update
gate.” It also merges the cell state and hidden state, and makes some other changes. The

resulting model is simpler than standard LSTM models, and has been growing increasingly

popular.
hy
" S T} zt =0 (W, - [hi—1,24])
M_ re =0 (Wy - [he1, z4])
B [tanr{l]t hy = tanh (W - [ry % hy—1, x])
i y htz(l—zt)*ht_1+zt*fzt

A |

Above image: http://colah.github.io/posts/2015-08-Understanding-LSTMs/
Original paper: https://arxiv.org/pdf/1406.1078.pdf
Comparison to LSTMs: https://arxiv.org/pdf/1412.3555v1.pdf



http://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://arxiv.org/pdf/1406.1078.pdf
https://arxiv.org/pdf/1412.3555v1.pdf

Background: ROI-Pooling

* RolPool breaks pixel-to-pixel translation-equivariance o)

@ T i

RolPool coordinate
guantization

>

Rol
original Rol 7
\

Ll
()()

ROI-Pooling: method to efficiently max-pool across inputs of different sizes

Above Image: Berthy/Riley’s Slides
Great overview: https://blog.deepsense.ai/region-of-interest-pooling-explained/

From Fast-RCNN: https://arxiv.org/pdf/1504.08083.pdf



https://blog.deepsense.ai/region-of-interest-pooling-explained/
https://arxiv.org/pdf/1504.08083.pdf

node message pooling scene graph

Object proposal edge | edge | edge
GRU GRU GRU
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> S £
(000
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GRU SO GRU GRU
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T=0 edge message pooling T=1 T=2 T=N
(a) (b) (c) (d)

(b): (a) alone is sufficient as an RNN for graph inference. Now, we
Incorporate message passing for contextual understanding.

Bipartite graph: nodes and edges affect each other inter-class-wise
m. for it node: h., all outbound/inbound edges hi_>j and hj o

m, ,;fori -> " edge: h,,» endpoint nodes h; and h,



node message pooling scene graph

b_ t | primal inbound
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T=0 edge message pooling T=1 T=2 T=N T
(a) (b) (c) (d)

(b):

Each node and edge gets multiple messages. Xu et al. use a novel
message pooling function to weight each message and fuse them:

m; = Z o(v1 iy hissi])hisj + Z o (V3 [hiy hjosi]) hjss
Jii—g Jii—1
3) w, v are learnable params
Misj = 0(W1 [hi, hisj)hi + o(wW3 [hg, hisDhy  (4) o is the sigmoid func.



node message pooling
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(c): Repeat this process with multiple layers. Finally, similarly to faster

R-CNN:

» Softmax layer for final object and relationship scores
> Fully-connected layer for bounding box offsets for each obj class

Former uses cross-entropy loss; latter uses | loss.



Implementation

Training: tune the fully connected layers and GRUs

Testing: Given an image |,
1.

2.

Use a Region Proposal Network to generate a set
of proposed bounding boxes B_I

Use a pretrained VGG-16 network to extract visual
features

Non-Max Suppression to filter boxes down to
object proposals

Predict outputs for all boxes, edges; create graph



Evaluation

Three tasks:

1. Predicate classification: predict predicates for all
pairwise relationships

2. Scene graph classification: predict the predicate and
associated object categories for all relationships

3. Scene graph generation: detect a set of objects (0.5
loU overlap), predict predicates between them

R@50/100: fraction of ground truth relationships in top x
most confident predictions for an image (higher = better)

Dataset: Visual Genome, cleaned up (!)
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Findings:

> Performance
stagnates after 2
iterations

>

Novel pooling
method very
effective



Results

[26] avg.pool maxpool final

PREGCLS R@50 27.88 32.39 34.33 44.75
R@100 (| 35.04 39.63 41.99 53.08

SGCLS R@50 1179 15.65 16.31 21.72
R@100 || 14.11 18.27 18.70 24.38

SGGEN R@50 0.32 2.70 3.03 3.44
R@100 || 0.47 3.42 3.1 4.24

>

Findings:

Outperformed a
model using only
local info ([26])
Novel pooling
method very
effective



Table 2. Predicate classification recall.

Results

We compare our final

model (trained with two iterations) with Lu et al. [26]. Top 20
most frequent types (sorted by frequency) are shown. The evalua-

tion metric is recall@5.
predicate [26] ours predicate [26] ours
on 99.71 99.25 under 28.64 52.73
has 98.03 97.25 sitting on 31.74 50.17
in 80.38 88.30 standingon 44.44 61.90
of 82.47 96.75 in front of 26.09 59.63
wearing  98.47 98.23 attached to 8.45 29.58
near 85.16 96.81 at 54.08 70.41
with 31.85 88.10 hanging from  0.00 0.00
above 49.19 79.73 over 9.26 0.00
holding 61.50 80.67 for 1220 31.71
behind 79.35 92.32 riding 7243  89.72

Figure 5. Sample predictions from the baseline model and our final model trained with different numbers of message passing iterations. The
models take images and object bounding boxes as input, and produce object class labels (blue boxes) and relationship predicates between
each pair of objects (orange boxes). In order to keep the visualization interpretable, we only show the relationship (edge) predictions for

the pairs of objects (nodes) that have ground-truth relationship annotations.

‘wearing —

hat

unknown] ——on—— building

\
- in
‘man~—~wearing — shirt R \
— nmhnlh__.mng\ — g ﬂ;; o
— unknown — wearing —Sman \ =S
eye ——riding — horse —ult x/ L (baseline)
unknown ——o1 -
mountain
vase
" 5 tree —behind — building = | is
mountain — behind — horse umbrella ™o holding. BE | A
e 5 N=1
riding glass ——of — woman | WU AV
o W Bead——of~ 1
Weanig— shirt oW Bt
on
vase
g
on [ with
= v | o
table lower
} LN \h N=2
mané:welﬁng—hat bé”
‘wearing — shirt \
on
vase
A
face —— of t;n bar
mountain —behind —horse 5 holding table | flower ground
1N\ \
o has | has in truth
'
man ——~has —hat BeaE
‘has — shirt \
on
ree
|
"T sign ——on —signl
‘window building window1 —on — window
— ‘pole —on—fence
/ shoe —on. -
M‘Z“j g Rt
window
ol
N=2
SR ——
on lon

pant_horse

‘man
N\
‘wearing near
' / |
horsel
g

has —arml
/bu—chnndahnldinganckm
i
m‘wuﬂng—‘hat\
.
N—=

‘wearing —pant

(N) suoneuay Bujuies jo “wnN



Results

Support Accuracy PREDCLS

t-ag t-aw R@50 R@100
Silberman et al. [28] 75.9 72.6 - -
Liao et al. [24] 88.4 82.1 - -
Baseline [26] 87.7 85.3 34.1 50.3
Final model (ours) 91.2 89.0 41.8 55.5

From the NYU Depth v2 set:

>

Attempt to predict
support relation type and
struct class of each object
State of the art results
using only RGB images
(not RGB-D!)



Question: What are some more novel approaches
to scene graph creation from images (ie. who's
beaten Xu et al. 2017)?

Mapping Images to Scene Graphs with
Permutation-Invariant Structured Prediction

(link)
By: Herzig et al., 2018

Note: This paper was published less than two weeks ago; while it
outperforms Xu et al., the methods are unverified by others


https://arxiv.org/pdf/1802.05451.pdf

Implications

Scene graphs are pretty broadly useful - they've been
successfully used for:

% Image Retrieval (we've seen this)
% 3D Scene Synthesis (brief mention in Johnson et al.)
% Visual Question Answering (coming up!)

We've now learned of methods to find images from scene
graphs and scene graphs from images, and of a dense
dataset that can be used to improve performance further.



/end



