

FCN: (Baseline)

\[\mathcal{L}(\Theta) = \sum p e(X_{\Theta}(p), l(p)) \rightarrow \text{Objective Function} \]

\(p = \text{pixel index}, l(p) = \text{gt label}, X_{\Theta}(p) = \text{net labeling} \)

\[e(l(p), X_{\Theta}(p)) = \text{per pixel loss} \]

\(\Theta = \text{network parametrization; updated w/ SGD and backprop} \)
Box Sup:
Overlapping
Objective Function
\[E_0 = \frac{1}{N} \sum_s (1 - \text{IoU}(\mathbf{B}, s)) \delta(\mathbf{B}, s) \]

\[S = \text{candidate segment mask} \]
\[\mathbf{B} = \text{gt bounding box annotation} \]
\[\text{IoU}(\mathbf{B}, s) \in [0, 1] \rightarrow \text{intersection-over-union ratio} \]
\[\uparrow \text{IoU} \Rightarrow \uparrow \text{box-candidate mask overlap} \]

\[\delta(\mathbf{B}, s) = \begin{cases} 1 & \text{if } \mathbf{B} = s \text{ \hspace{1cm} } L_B = \text{semantic label of bounding box } \mathbf{B} \\ 0 & \text{otherwise} \text{ \hspace{1cm} } L_s = \text{semantic label of candidate segment } s \end{cases} \]

Minimizing \(E_0 \) implies higher \(\text{IoU}s \) for consistent semantic labels

\[N = \# \text{ of candidate segments} \]

\[E_r = \sum_p e(X_\theta(p), L_s(p)) \]

\(L_s(p) = \text{semantic label at pixel } p \text{ used for network training} \)

Target of regression: estimated candidate segment

Overarching Objective Function:
\[\varepsilon = \min_{\Theta, \mathbf{E}s_3} \sum_i (E_0 + \lambda E_r) \]

\[\Sigma = \text{sum over all images} \]

\[\lambda = 3 \text{ (fixed weighting parameter)} \]

Parameters to optimize:
\[a) \text{ net parameters } \Theta \]
\[b) \text{ labelling of all candidate segments } \mathbf{E}s_3 \]
Full Supervision Loss Function:

Let:
- \(I \) = set of pixels of image \(j \)
- \(N \) = # of pixels
- \(S_{ic} \) = CNN score for pixel \(i \) and class \(c \)
- Softmax probability of \(c \) at \(i \): \(S_{ic} = \frac{e^{S_{ic}}}{\sum_{k=1}^{N} e^{S_{ik}}} \in [0,1] \)
- \(G \) = ground truth map
- \(L \) \(\rightarrow \) pixel \(i \) belongs to class \(G_i \)

Cross-entropy loss

\[
L_{\text{pix}}(S, G) = - \sum_{i \in I} \log(S_{Gi})
\]

(If \(G_i \) undefined, set \(\log(S_{Gi}) = 0 \) for that value of \(i \))

Image-Level Supervision Loss Function:

- \(E_1, \ldots, N_3 \) = set of all classes CNN trained to recognize
- \(L \subseteq E_1, \ldots, N_3 \) = classes present in image
- \(L' \subseteq E_1, \ldots, N_3 \) = classes not present in image

\[
L_{\text{img}}(S, L, L') = - \frac{1}{|L|} \sum_{c \in L} \log(S_{Ec}) - \frac{1}{|L'|} \sum_{c \in L'} \log(1 - S_{Ec})
\]

where \(E_c = \arg \max_{i \in I} S_{ic} \)

Single-image cross-entropy loss

Point-Level Supervision Loss Function:

- \(I_s \) = set of pixels w/ known class; supervised pixels

\[
L_{\text{point}}(S, G, L, L') = L_{\text{img}}(S, L, L') - \sum_{i \in I_s} a_i \log(S_{Gi})
\]

\(a_i \) = relative importance of each supervised pixel

Combines \((1)\) and \((2)\)

\((1)\) only for supervised points
Point-level Supervision w/ Object Prior:

p_i = probability pixel i belongs to an object

\mathcal{O} = set of object classes; \mathcal{O}' = set of background classes

e.g. PASCAL VOC \Rightarrow \mathcal{O} = set of 20 object classes

\mathcal{O}' = generic background class

$$L_{obj}(S, P) = - \frac{1}{|I|} \sum_{i \in I} p_i \log \left(\sum_{c \in \mathcal{O}} s_{ic} \right) + (1 - p_i) \log \left(1 - \sum_{c \in \mathcal{O}} s_{ic} \right)$$