Anonymous Communication

COS 518: Advanced Computer Systems
Lecture 22
Michael Freedman

Slides based heavily on Christo Wilson’s CS4700/5700 at Northeastern

Definition

• Hiding identities of parties involved in communications from each other, or from third-parties
 – “Who you are” from the communicating party
 – “Who you are talking to” from everyone else

Quantifying Anonymity

• How can we calculate how anonymous we are?

- Larger anonymity set = stronger anonymity
Anonymity Systems

Crypto (SSL)
- Content is unobservable
 - Due to encryption
- Source and destination are trivially linkable
 - No anonymity!

Anonymizing Proxies
- Source is known
- Destination anonymity

Anonymizing VPNs
- Source is known
- Destination anonymity

HTTPS Proxy

VPN Gateway
Crowds

- Key idea
 - Users’ traffic blends into a crowd of users
 - Eavesdroppers and end-hosts don’t know which user originated what traffic

- High-level implementation
 - Every user runs a proxy on their system
 - When a message is received, select $x \in [0, 1]$
 - If $x > p$: forward the message to a random proxy
 - Else: deliver the message to the actual receiver

Crowds Example

- Links between users use public key crypto
- Users may appear on the path multiple times

Anonymity in Crowds

- No source anonymity
 - Target receives $m \geq 0$ msgs, sends $m+1$ msgs
 - Thus, target is sending something
- Destination anonymity is maintained
 - If the source isn’t sending directly to the receiver
Anonymity in Crowds

- Source and destination are anonymous
 - Source and destination are proxies
 - Destination is hidden by encryption

Anonymity in Crowds

- Destination known
 - Source is anonymous
 - $O(n)$ possible sources, where n is the number of proxies

Anonymity in Crowds

- Destination is known
 - Evil proxy able to decrypt the message
- Source is somewhat anonymous
 - Suppose f evil in system and if $p_f > 0.5$ and $n > 3(f + 1)$, source cannot be inferred with prob > 0.5

Summary of Crowds

- The good:
 - Crowds has excellent scalability
 - Each user helps forward messages and handle load
 - More users = better anonymity for everyone
 - Strong source anonymity guarantees

- The bad:
 - Very weak destination anonymity
 - Evil proxies can always see the destination
 - Weak unlinkability guarantees
Mix Networks

- A different approach to anonymity than Crowds
- Originally designed for anonymous email
 - David Chaum, 1981
 - Concept has since been generalized for TCP traffic
- Hugely influential ideas
 - Onion routing
 - Traffic mixing
 - Dummy traffic (a.k.a. cover traffic)

Onion Routing

- Mixes form a cascade of anonymous proxies
- All traffic is protected with layers of encryption

\[E(K_P, E(K_P, E(K_P, M))) = C \]

Another View of Encrypted Paths
Return Traffic

- In a mix network, how can the destination respond to the sender?
- During path establishment, the sender places keys at each mix along the path
 - Data is re-encrypted as it travels the reverse path

Traffic Mixing

- Hinders timing attacks
 - Messages may be artificially delayed
 - Temporal correlation is warped
- Problems:
 - Requires lots of traffic
 - Adds latency to network flows

Applied to cryptographic voting

- Server collects votes
- Computes random shuffle of votes
- Outputs votes in randomized order
- Includes “proof” that correctly shuffled

Chain multiple MIXes for security

- Synchronously collects and shuffles messages (votes)
- Secure as long as at least 1 honest
Dummy / Cover Traffic

- Simple idea:
 - Send useless traffic to help obfuscate real traffic

In practice
Hard to be anonymous
Information leaked at many layers

Using Content to Deanonymize

- Login to email account
- Information sent in cookies
- Accessing Facebook pages

It’s Hard to be Anonymous!

- **Network location** (IP address) can be linked directly to you
 - ISPs store communications records (legally required for several years)
 - Law enforcement can subpoena these records
- **Application** is being tracked
 - Cookies, Flash cookies, E-Tags, HTML5 Storage, browser fingerprinting
 - Centralized services like Skype, Google voice
- **Activities** can be used to identify you
 - Unique websites and apps that you use, types of clicked links
 - Types of links that you click
You Have to Protect at All Layers!

Challenges:

- Maintain performance
- Provide functionality!

Wednesday’s reading

- Tor: 2nd generation onion routing (2004)