
COS 511: Theoretical Machine Learning

Homework #4 Due:
Rademacher & boosting March 26, 2018

Problem 1

[15] Let F1, . . . ,Fn be families of real-valued functions on some space Z, and let a1, . . . , an
be arbitrary (fixed) real numbers. Let G be the class of all functions g of the form

g(z) =
n∑

i=1

aifi(z)

where fi ∈ Fi for i = 1, . . . , n. For any sample S, find R̂S(G) exactly in terms of a1, . . . , an,
and R̂S(F1), . . . , R̂S(Fn). Be sure to justify your answer.

Problem 2

[15] Suppose, in the usual boosting set-up, that the weak learning condition is guaranteed
to hold so that εt ≤ 1

2−γ for some γ > 0 which is known before boosting begins. Describe a
modified version of AdaBoost whose final classifier is a simple (unweighted) majority vote,
and show that its training error is at most (1− 4γ2)T/2.

Problem 3

Let Xn = {0, 1}n, and let Gn be any class of boolean functions g : Xn → {−1,+1}. In this
problem, we will see, roughly speaking, that if a function f can be written as a majority
vote of polynomially many functions in Gn, then under any distribution, f can be weakly
approximated by some function in Gn. But if f cannot be so written as a majority vote,
then there exists some “hard” distribution under which f cannot be approximated by any
function in Gn.

Let Mn,k be the class of all boolean functions that can be written as a simple majority
vote of k (not necessarily distinct) functions in Gn; that is, Mn,k consists of all functions f
of the form

f(x) = sign

 k∑
j=1

gj(x)


for some g1, . . . , gk ∈ Gn. Assume k is odd.

• [15] Show that if f ∈Mn,k then for all distributions D on Xn, there exists a function
g ∈ Gn for which

Prx∼D [f(x) 6= g(x)] ≤ 1

2
− 1

2k
.

• [15] Show that if f 6∈ Mn,k then there exists a distribution D on Xn such that for
every g ∈ Gn,

Prx∼D [f(x) 6= g(x)] >
1

2
−

√
n ln 2

2k
.



Problem 4 – Optional (Extra Credit)

[15] Consider the following “mini” boosting algorithm which runs for exactly three rounds:

• Given training data as in AdaBoost, let D1, h1, ε1, and D2, h2, ε2 be computed exactly
as in AdaBoost on the first two rounds.

• Compute, for i = 1, . . . ,m:

D3(i) =

{
D1(i)/Z if h1(xi) 6= h2(xi)
0 else

where Z is a normalization factor (chosen so that D3 will be a distribution).

• Get weak hypothesis h3.

• Output the final hypothesis:

H(x) = sign (h1(x) + h2(x) + h3(x)) .

We will see that this three-round procedure can effect a small but significant boost in
accuracy. As a side note (not shown in this problem), this technique can then be applied
recursively to boost the accuracy to an arbitrary degree. This exact three-round approach
was the main idea underlying the very first known provable boosting algorithm.

As usual, εt = Pri∼Dt [ht(xi) 6= yi] is the error of ht on Dt. We assume 0 < εt <
1
2 for

t = 1, 2, 3. Let
b = Pri∼D2 [h1(xi) 6= yi ∧ h2(xi) 6= yi] ,

that is, b is the probability with respect to D2 that both h1 and h2 are incorrect.

a. In terms of ε1, ε2, ε3 and b, write exact expressions for each of the following:

• Pri∼D1 [h1(xi) 6= yi ∧ h2(xi) 6= yi].

• Pri∼D1 [h1(xi) 6= yi ∧ h2(xi) = yi].

• Pri∼D1 [h1(xi) = yi ∧ h2(xi) 6= yi].

• Pri∼D1 [h1(xi) 6= h2(xi) ∧ h3(xi) 6= yi].

• Pri∼D1 [H(xi) 6= yi].

b. Suppose ε = max{ε1, ε2, ε3}. Show that the training error of the final classifier H is
at most

3ε2 − 2ε3,

and show that this quantity is strictly less than ε, the (worst) error of the weak
hypotheses. Thus, the accuracy receives a boost which is small, but which turns out
to be enough, when applied recursively, to achieve arbitrarily high accuracy.
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