
MIT 6.02 DRAFT Lecture Notes
Last update: September 22, 2012

CHAPTER 8
Viterbi Decoding of Convolutional

Codes

This chapter describes an elegant and efficient method to decode convolutional codes,
whose construction and encoding we described in the previous chapter. This decoding
method avoids explicitly enumerating the 2N possible combinations of N -bit parity bit
sequences. This method was invented by Andrew Viterbi ’57 and bears his name.

⌅ 8.1 The Problem

At the receiver, we have a sequence of voltage samples corresponding to the parity bits
that the transmitter has sent. For simplicity, and without loss of generality, we will assume
that the receiver picks a suitable sample for the bit, or averages the set of samples corre
sponding to a bit, digitizes that value to a “0” or “1” by comparing to the threshold voltage
(the demapping step), and propagates that bit decision to the decoder.

Thus, we have a received bit sequence, which for a convolutionally-coded stream cor
responds to the stream of parity bits. If we decode this received bit sequence with no
other information from the receiver’s sampling and demapper, then the decoding pro
cess is termed hard-decision decoding (“hard decoding”). If, instead (or in addition), the
decoder is given the stream of voltage samples and uses that “analog” information (in
digitized form, using an analog-to-digital conversion) in decoding the data, we term the
process soft-decision decoding (“soft decoding”).

The Viterbi decoder can be used in either case. Intuitively, because hard-decision de
coding makes an early decision regarding whether a bit is 0 or 1, it throws away infor
mation in the digitizing process. It might make a wrong decision, especially for voltages
near the threshold, introducing a greater number of bit errors in the received bit sequence.
Although it still produces the most likely transmitted sequence given the received bit se
quence, by introducing additional errors in the early digitization, the overall reduction in
the probability of bit error will be smaller than with soft decision decoding. But it is con
ceptually easier to understand hard decoding, so we will start with that, before going on
to soft decoding.

91

92 CHAPTER 8. VITERBI DECODING OF CONVOLUTIONAL CODES

Figure 8-1: The trellis is a convenient way of viewing the decoding task and understanding the time evo
lution of the state machine.

As mentioned in the previous chapter, the trellis provides a good framework for under
standing the decoding procedure for convolutional codes (Figure 8-1). Suppose we have
the entire trellis in front of us for a code, and now receive a sequence of digitized bits (or
voltage samples). If there are no errors, then there will be some path through the states
of the trellis that would exactly match the received sequence. That path (specifically, the
concatenation of the parity bits “spit out” on the traversed edges) corresponds to the trans
mitted parity bits. From there, getting to the original encoded message is easy because the
top arc emanating from each node in the trellis corresponds to a “0” bit and the bottom
arrow corresponds to a “1” bit.

When there are bit errors, what can we do? As explained earlier, finding the most likely
transmitted message sequence is appealing because it minimizes the probability of a bit
error in the decoding. If we can come up with a way to capture the errors introduced by
going from one state to the next, then we can accumulate those errors along a path and
come up with an estimate of the total number of errors along the path. Then, the path with
the smallest such accumulation of errors is the path we want, and the transmitted message
sequence can be easily determined by the concatenation of states explained above.

To solve this problem, we need a way to capture any errors that occur in going through
the states of the trellis, and a way to navigate the trellis without actually materializing the
entire trellis (i.e., without enumerating all possible paths through it and then finding the
one with smallest accumulated error). The Viterbi decoder solves these problems. It is
an example of a more general approach to solving optimization problems, called dynamic
programming. Later in the course, we will apply similar concepts in network routing, an
unrelated problem, to find good paths in multi-hop networks.

93 SECTION 8.2. THE VITERBI DECODER

Figure 8-2: The branch metric for hard decision decoding. In this example, the receiver gets the parity bits

00.

⌅ 8.2 The Viterbi Decoder

The decoding algorithm uses two metrics: the branch metric (BM) and the path metric
(PM). The branch metric is a measure of the “distance” between what was transmitted and
what was received, and is defined for each arc in the trellis. In hard decision decoding,
where we are given a sequence of digitized parity bits, the branch metric is the Hamming
distance between the expected parity bits and the received ones. An example is shown in
Figure 8-2, where the received bits are 00. For each state transition, the number on the arc
shows the branch metric for that transition. Two of the branch metrics are 0, corresponding
to the only states and transitions where the corresponding Hamming distance is 0. The
other non-zero branch metrics correspond to cases when there are bit errors.

The path metric is a value associated with a state in the trellis (i.e., a value associated
with each node). For hard decision decoding, it corresponds to the Hamming distance with
respect to the received parity bit sequence over the most likely path from the initial state to
the current state in the trellis. By “most likely”, we mean the path with smallest Hamming
distance between the initial state and the current state, measured over all possible paths
between the two states. The path with the smallest Hamming distance minimizes the total
number of bit errors, and is most likely when the BER is low.

The key insight in the Viterbi algorithm is that the receiver can compute the path metric
for a (state, time) pair incrementally using the path metrics of previously computed states
and the branch metrics.

⌅ 8.2.1 Computing the Path Metric

Suppose the receiver has computed the path metric PM[s, i] for each state s at time step
i (recall that there are 2K-1 states, where K is the constraint length of the convolutional
code). In hard decision decoding, the value of PM[s, i] is the total number of bit errors
detected when comparing the received parity bits to the most likely transmitted message,
considering all messages that could have been sent by the transmitter until time step i
(starting from state “00”, which we will take to be the starting state always, by convention).

94 CHAPTER 8. VITERBI DECODING OF CONVOLUTIONAL CODES

Among all the possible states at time step i, the most likely state is the one with the
smallest path metric. If there is more than one such state, they are all equally good possi
bilities.

Now, how do we determine the path metric at time step i + 1, PM[s, i + 1], for each
state s? To answer this question, first observe that if the transmitter is at state s at time step
i +1, then it must have been in only one of two possible states at time step i. These two predecessor
states, labeled ↵ and (, are always the same for a given state. In fact, they depend only on
the constraint length of the code and not on the parity functions. Figure 8-2 shows the
predecessor states for each state (the other end of each arrow). For instance, for state 00,
↵ = 00 and (= 01; for state 01, ↵ = 10 and (= 11.

Any message sequence that leaves the transmitter in state s at time i + 1 must have left
the transmitter in state ↵ or state (at time i. For example, in Figure 8-2, to arrive in state
’01’ at time i + 1, one of the following two properties must hold:

1. The transmitter was in state ‘10’ at time i and the ith message bit was a 0. If that is
the case, then the transmitter sent ‘11’ as the parity bits and there were two bit errors,
because we received the bits 00. Then, the path metric of the new state, PM[‘01’, i +1]
is equal to PM[‘10’, i] + 2, because the new state is ‘01’ and the corresponding path
metric is larger by 2 because there are 2 errors.

2. The other (mutually exclusive) possibility is that the transmitter was in state ‘11’ at
time i and the ith message bit was a 0. If that is the case, then the transmitter sent
01 as the parity bits and there was one bit error, because we received 00. The path
metric of the new state, PM[‘01’, i + 1] is equal to PM[‘11’, i] + 1.

Formalizing the above intuition, we can see that

PM[s, i + 1] = min(PM[↵, i] + BM[↵ ! s], PM[(, i] + BM[(! s]), (8.1)

where ↵ and (are the two predecessor states.
In the decoding algorithm, it is important to remember which arc corresponds to the

minimum, because we need to traverse this path from the final state to the initial one
keeping track of the arcs we used, and then finally reverse the order of the bits to produce
the most likely message.

⌅ 8.2.2 Finding the Most Likely Path

We can now describe how the decoder finds the maximum-likelihood path. Initially, state
‘00’ has a cost of 0 and the other 2K-1

- 1 states have a cost of 1.
The main loop of the algorithm consists of two main steps: first, calculating the branch

metric for the next set of parity bits, and second, computing the path metric for the next
column. The path metric computation may be thought of as an add-compare-select proce
dure:

1.	 Add the branch metric to the path metric for the old state.
2.	 Compare the sums for paths arriving at the new state (there are only two such paths

to compare at each new state because there are only two incoming arcs from the
previous column).

3.	 Select the path with the smallest value, breaking ties arbitrarily. This path corre
sponds to the one with fewest errors.

95 SECTION 8.3. SOFT-DECISION DECODING

Figure 8-3 shows the decoding algorithm in action from one time step to the next. This
example shows a received bit sequence of 11 10 11 00 01 10 and how the receiver processes
it. The fourth picture from the top shows all four states with the same path metric. At this
stage, any of these four states and the paths leading up to them are most likely transmitted
bit sequences (they all have a Hamming distance of 2). The bottom-most picture shows
the same situation with only the survivor paths shown. A survivor path is one that has
a chance of being the maximum-likelihood path; there are many other paths that can be
pruned away because there is no way in which they can be most likely. The reason why
the Viterbi decoder is practical is that the number of survivor paths is much, much smaller
than the total number of paths in the trellis.

Another important point about the Viterbi decoder is that future knowledge will help it
break any ties, and in fact may even cause paths that were considered “most likely” at a
certain time step to change. Figure 8-4 continues the example in Figure 8-3, proceeding un
til all the received parity bits are decoded to produce the most likely transmitted message,
which has two bit errors.

⌅ 8.3 Soft-Decision Decoding

Hard decision decoding digitizes the received voltage signals by comparing it to a thresh
old, before passing it to the decoder. As a result, we lose information: if the voltage was
0.500001, the confidence in the digitization is surely much lower than if the voltage was
0.999999. Both are treated as “1”, and the decoder now treats them the same way, even
though it is overwhelmingly more likely that 0.999999 is a “1” compared to the other value.

Soft-decision decoding (also sometimes known as “soft input Viterbi decoding”) builds
on this observation. It does not digitize the incoming samples prior to decoding. Rather, it uses
a continuous function of the analog sample as the input to the decoder. For example, if the
expected parity bit is 0 and the received voltage is 0.3 V, we might use 0.3 (or 0.32, or some
such function) as the value of the “bit” instead of digitizing it.

For technical reasons that will become apparent later, an attractive soft decision metric
is the square of the difference between the received voltage and the expected one. If the
convolutional code produces p parity bits, and the p corresponding analog samples are
v = v

1

, v
2

, . . . , vp, one can construct a soft decision branch metric as follows

pX
(ui - vi)

2 , (8.2)BMsoft[u, v] =
i=1

where u = u
1

, u
2

, . . . , up are the expected p parity bits (each a 0 or 1). Figure 8-5 shows the
soft decision branch metric for p = 2 when u is 00.

With soft decision decoding, the decoding algorithm is identical to the one previously
described for hard decision decoding, except that the branch metric is no longer an integer
Hamming distance but a positive real number (if the voltages are all between 0 and 1, then
the branch metric is between 0 and 1 as well).

It turns out that this soft decision metric is closely related to the probability of the decoding
being correct when the channel experiences additive Gaussian noise. First, let’s look at the
simple case of 1 parity bit (the more general case is a straightforward extension). Suppose

96 CHAPTER 8. VITERBI DECODING OF CONVOLUTIONAL CODES

the receiver gets the ith parity bit as vi volts. (In hard decision decoding, it would decode
- as 0 or 1 depending on whether vi was smaller or larger than 0.5.) What is the probability
that vi would have been received given that bit ui (either 0 or 1) was sent? With zero-mean
additive Gaussian noise, the PDF of this event is given by

-d2/2 2
ie

f(vi|ui) = p , (8.3)
2⇡ 2

2where di = v if ui = 0 and di = (vi - 1)

2 if ui = 1.i

The log likelihood of this PDF is proportional to -d2. Moreover, along a path, the PDF i

of the sequence V = v
1

, v
2

, . . . , vp being received given that a code word U = ui, u2, . . . , up

was sent, is given by the product of a number of terms each resembling Eq. (8.3). The
logarithm of this PDF for the path is equal to the sum of the individual log likelihoods,
and is proportional to -

P
d2
i . But that’s precisely the negative of the branch metric we i

defined in Eq. (8.2), which the Viterbi decoder minimizes along the different possible
paths! Minimizing this path metric is identical to maximizing the log likelihood along
the different paths, implying that the soft decision decoder produces the most likely path
that is consistent with the received voltage sequence.

This direct relationship with the logarithm of the probability is the reason why we chose
the sum of squares as the branch metric in Eq. (8.2). A different noise distribution (other
than Gaussian) may entail a different soft decoding branch metric to obtain an analogous
connection to the PDF of a correct decoding.

⌅ 8.4 Achieving Higher and Finer-Grained Rates: Puncturing

As described thus far, a convolutional code achieves a maximum rate of 1/r, where r is
the number of parity bit streams produced by the code. But what if we want a rate greater
than 1/2, or a rate between 1/r and 1/(r+ 1) for some r?

A general technique called puncturing gives us a way to do that. The idea is straight
forward: the encoder does not send every parity bit produced on each stream, but “punc
tures” the stream sending only a subset of the bits that are agreed-upon between the en
coder and decoder. For example, one might use a rate-1/2 code along with the puncturing
schedule specified as a vector; for example, we might use the vector (101) on the first par
ity stream and (110) on the second. This notation means that the encoder sends the first
and third bits but not the second bit on the first stream, and sends the first and second bits
but not the third bit on the second stream. Thus, whereas the encoder would have sent
two parity bits for every message bit without puncturing, it would now send four parity
bits (instead of six) for every three message bits, giving a rate of 3/4.

In this example, suppose the sender in the rate-1/2 code, without puncturing, emitted
bits p

0

[0]p
1

[0]p
0

[1]p
1

[1]p
0

[2]p
1

[2] Then, with the puncturing schedule given, the bits
emitted would be p

0

[0]p
1

[0] - p
1

[1]p
0

[2] - . . ., where each - refers to an omitted bit.
At the decoder, when using a punctured code, missing parity bits don’t participate in

the calculation of branch metrics. Otherwise, the procedure is the same as before. We can
think of each missing parity bit as a blank (’-’) and run the decoder by just skipping over
the blanks.

97 SECTION 8.5. ENCODER AND DECODER IMPLEMENTATION COMPLEXITY

⌅ 8.5 Encoder and Decoder Implementation Complexity

There are two important questions we must answer concerning the time and space com
plexity of the convolutional encoder and Viterbi decoder.

1. How much state and space does the encoder need?

2. How much time does the decoder take?

The first question is easy to answer: at the encoder, the amount of space is linear in K,
the constraint length; the time required is linear in the message length, n. The encoder is
much easier to implement than the Viterbi decoder. The decoding time depends both on
K and the length of the coded (parity) bit stream (which is linear in n). At each time step,
the decoder must compare the branch metrics over two state transitions into each state, for
each of 2(K - 1) states. The number of comparisons required is 2K in each step, giving us
a total time complexity of O(n · 2K

) for decoding an n-bit message.
Moreover, as described thus far, we can decode the first bits of the message only at the

very end. A little thought will show that although a little future knowledge is useful, it is
unlikely that what happens at bit time 1000 will change our decoding decision for bit 1, if
the constraint length is, say, 6. In fact, in practice the decoder starts to decode bits once it
has reached a time step that is a small multiple of the constraint length; experimental data
suggests that 5 · K message bit times (or thereabouts) is a reasonable decoding window,
regardless of how long the parity bit stream corresponding to the message is.

⌅ 8.6 Designing Good Convolutional Codes

At this stage, a natural question one might wonder about is, “What makes a set of parity
equations a good convolutional code?” In other words, is there a systematic method to
generate good convolutional codes? Or, given two convolutional codes, is there a way to
analyze their generators and determine how they might perform relative to each other in
their primary task, which is to enable communication over a noisy channel at as high a
rate as they can?

In principle, many factors determine the effectiveness of a convolutional code. One
would expect the ability of a convolutional code to correct errors depends on the con
straint length, K, because the larger the constraint length, the greater the degree to which
any given message bit contributes to some parity bit, and the greater the resilience to bit
errors. One would also expect the resilience to errors to be higher as the number of gen
erators (parity streams) increases, because that corresponds to a lower rate (more redun
dancy). And last but not least, the coefficients of the generators surely have a role to play
in determining the code’s effectiveness.

Fortunately, there is one metric, called the free distance of the convolutional code,
which captures these different axes and is a primary determinant of the error-reducing
capability of a convolutional code, when hard-decision decoding is used.

⌅ 8.6.1 Free Distance

Because convolutional codes are linear, everything we learned about linear codes applies
here. In particular, the Hamming distance of any linear code, i.e., the minimum Hamming

98 CHAPTER 8. VITERBI DECODING OF CONVOLUTIONAL CODES

distance between any two valid codewords, is equal to the number of ones in the smallest
non-zero codeword with minimum weight, where the weight of a codeword is the number of
ones it contains.

In the context of convolutional codes, the smallest Hamming distance between any two
valid codewords is called the free distance. Specifically, the free distance of a convolutional
code is the difference in path metrics between the all-zeroes output and the path with
the smallest non-zero path metric going from the initial 00 state to some future 00 state.
Figure 8-6 illustrates this notion with an example. In this example, the free distance is 4,
and it takes 8 output bits to get back to the correct state, so one would expect this code
to be able to correct up to b(4 - 1)/2c = 1 bit error in blocks of 8 bits, if the block starts at
the first parity bit. In fact, this error correction power is essentially the same as an (8, 4, 3)
rectangular parity code. Note that the free distance in this example is 4, not 5: the smallest
non-zero path metric between the initial 00 state and a future 00 state goes like this: 00 !
10 ! 11 ! 01 ! 00 and the corresponding path metrics increase as 0 ! 2 ! 2 ! 3 ! 4.
In the next section, we will find that a small change to the generator—replacing 110 with
101—makes a huge difference in the performance of the code.

Why do we define a “free distance”, rather than just call it the Hamming distance, if it
is defined the same way? The reason is that any code with Hamming distance D (whether
linear or not) can correct all patterns of up to bD-1

c errors. If we just applied the same
2

notion to convolutional codes, we will conclude that we can correct all single-bit errors in
the example given, or in general, we can correct some fixed number of errors.

Now, convolutional coding produces an unbounded bit stream; these codes are
markedly distinct from block codes in this regard. As a result, the bD-1

c formula is not
2

too instructive because it doesn’t capture the true error correction properties of the code.
A convolutional code (with Viterbi decoding) can correct t = bD-1

c errors as long as these
2

errors are “far enough apart”. So the notion we use is the free distance because, in a sense,
errors can keep occurring and as long as no more than t of them occur in a closely spaced
burst, the decoder can correct them all.

⌅ 8.6.2 Selecting Good Convolutional Codes

The free distance concept also provides a way to construct good convolutional codes.
Given a decoding budget (e.g., hardware resources), one first determines an appropri
ate bound on K. Then, one picks an upper bound on r depending on the maximum rate.
Given a specific K and r, there is a finite number of generators that are feasible. One can
write a program to exhaustively go through all feasible combinations of generators, com
pute the free distance, and pick the code (or codes) with the largest free distance. The
convolutional code is specified completely by specifying the generators (both K and r are
implied if one lists the set of generators).

⌅ 8.7 Comparing the Error-Correction Performance of Codes

This section discusses how to compare the error-correction performance of different codes
and discusses simulation results obtained by implementing different codes and evaluat
ing them under controlled conditions. We have two goals in this section: first, to describe
the “best practices” in comparing codes and discuss common pitfalls, and second, to com

99 SECTION 8.7. COMPARING THE ERROR-CORRECTION PERFORMANCE OF CODES

pare some specific convolutional and block codes and discuss the reasons why some codes
perform better than others.

There are two metrics of interest. The first is the bit error rate (BER) after decoding,
which is sometimes also known as the probability of decoding error. The second is the rate
achieved by the code. For both metrics, we are interested in how they vary as a function
of the channel’s parameters, such as the value of " in a BSC (i.e., the channel’s underlying
bit error probability) or the degree of noise on the channel (for a channel with additive
Gaussian noise, which we will describe in detail in the next chapter).

Here, we focus only on the post-decoding BER of a code.

⌅ 8.7.1 Post-decoding BER over the BSC

For the BSC, the variable is ", and one can ask how different codes perform (in terms of the
BER) as we vary ". Figure 8-7 shows the post-decoding BER of a few different linear block
codes and convolutional codes as a function of the BSC error rate, ". From this graph, it
would appear that the rate-1/3 repetition code (3, 1) with a Hamming distance of 3 is the
most robust code at high BSC error probabilities (right-side of the picture), and that the
two rate-1/2 convolutional codes are very good ones at other BERs. It would also appear
from this curve that the (7, 4) and (15, 11) Hamming codes are inferior to the other codes.

The problem with these conclusions is that they don’t take the rate of the code into
account; some of these codes incur much higher overhead than the others. As such, on a
curve such as Figure 8-7 that plots the post-decoding BER against the BSC error probability,
it is sensible only to compare codes of the same rate. Thus, one can compare the (8, 4) block
code to the three other convolutional code, and form the following conclusions:

1. The two best convolutional codes,	 (3, (7, 5)) (i.e., with generators (111, 101)) and
(4, (14, 13)) (i.e., with generators (1110, 1101)), perform the best. Both these codes
handily beat the third convolutional code, (3, (7, 6)), which we picked from Buss
gang’s paper on generating good convolutional codes.1

The reason for the superior performance of the (3, (7, 5)) and (4, (14, 13)) codes is
that they have a greater free distance (5 and 6 respectively) than the (3, (7, 6)) code
(whose free distance is 4). The greater free distance allows for a larger number of
closely-spaced errors to be corrected.

2. Interestingly,	 these results show that the (3, (7, 5)) code with free distance 5 is
stronger than the (4, (14, 13)) code with free distance 6. The reason is that the num
ber of trellis edges to go from state 00 back to state 00 in the (3, (7, 5)) case is only
3, corresponding to a group of 6 consecutive coded bits. The relevant state transi
tions are 00 ! 10 ! 01 ! 00 and the corresponding path metrics are 0 ! 2 ! 3 ! 5.
In contrast, the (1110, 1101) code has a slightly bigger free distance, but it takes 7
trellis edges to achieve that (000 ! 100 ! 010 ! 001 ! 000), meaning that the code
can correct up to 2 bit errors in sliding windows of length 2 · 4 = 8 bits. Moreover,
an increase in the free distance from 5 to 6 (an even number) does not improve the
error-correcting power of the code.

1Julian Bussgang, “Some Properties of Binary Convolutional Code Generators,” IEEE Transactions on In
formation Theory, pp. 90–100, Jan. 1965.

100 CHAPTER 8. VITERBI DECODING OF CONVOLUTIONAL CODES

3. The post-decoding BER is roughly the same for the (8, 4) rectangular parity code and
the (3, (111, 110)) convolutional code. The reason is that the free distance of the K = 3
convolutional code is 4, which means it can correct one bit error over blocks that are
similar in length to the rectangular parity code we are comparing with. Intuitively,
both schemes essentially produce parity bits that are built from similar amounts of
history. In the rectangular parity case, the row parity bit comes from two succes
sive message bits, while the column parity comes from two message bits with one
skipped in between. But we also send the message bits, so we’re mimicking a similar
constraint length (amount of memory) to the K = 3 convolutional code. The bottom
line is that (3, (111, 110)) is not such a good convolutional code.

4. The (7, 4) Hamming code performs similarly to the (8, 4) rectangular parity code,
but it has a higher code rate (4/7 versus 1/2), which means it provides the same
correction capabilities with lower overhead. One may therefore conclude that it is a
better code than the (8, 4) rectangular parity code.

But how does one go about comparing the post-decoding BER of codes with different
rates? We need a way to capture the different amounts of redundancy exhibited by codes
of different rates. To do that, we need to change the model to account for what happens
at the physical (analog) level. A standard way of handling this issue is to use the signal-
to-noise ratio (SNR) as the control variable (on the x-axis) and introduce Gaussian noise
to perturb the signals sent over the channel. The next chapter studies this noise model
in detail, but here we describe the basic intuition and results obtained when comparing
the performance of codes under this model. This model is also essential to understand
the benefits of soft-decision decoding, because soft decoding uses the received voltage
samples directly as input to the decoder without first digitizing each sample. The question
is how much gain we observe by doing soft-decision decoding compared to hard-decision
decoding.

⌅ 8.7.2 Gaussian Noise Model and the Eb/N0 Concept

Consider a message k bits long. We have two codes: C
1 has rate k/n

1 and C
2 has rate k/n

2

,
and suppose n

2 > n
1

. Hence, for the k-bit message, when encoded with C
1

, we transmit
n
1 bits, and when encoded with C

2

, we transmit n
2 bits. Clearly, using C

2 consumes more
resources because it uses the channel more often than C

1

.
An elegant way to account for the greater resource consumption of C

1 is to run an
experiment where each “1” bit is mapped to a certain voltage level, V

1

, and each “0” is
mapped to a voltage V

0

. For reasons that will become apparent in the next chapter, what
matters for decoding is the difference in separation between the voltages, V

1 - V
0

, and
not their actual values, so we can assume that the two voltages are centered about 0. For

p p

convenience, assume V
1 = Es and V

0 = - Es, where Es is the energy per sample. The
energy, or power, is proportional to the square of the voltage of used.

Now, when we use code C
1

, k message bits get tranformed to n
1 coded bits. Assum

ing that each coded bit is sent as one voltage sample (for simplicity), the energy per bit is
equal to n

1

/k · Es. Similarly, for code C
2

, it is equal to n
2

/k · Es. Each voltage sample in
the additive Gaussian noise channel model (see the next chapter) is perturbed according
to a Gaussian distribution with some variance; the variance is the amount of noise (the

101 SECTION 8.8. SUMMARY

greater the variance, the greater the noise, and the greater the bit-error probability of the
equivalent BSC). Hence, the correct “scaled” x-axis for comparing the post-decoding BER
of codes of different rates is Eb/N0

, the ratio of the energy-per-message-bit to the channel
Gaussian noise.

Figure 8-8 shows some representative performance results of experiments done over a
simulated Gaussian channel for different values of Eb/N0

. Each data point in the experi
ment is the result of simulating about 2 million message bits being encoded and transmit
ted over a noisy channel. The top-most curve shows the uncoded probability of bit error.
The x axis plots the Eb/N0 on the decibel (dB) scale, defined in Chapter 9 (lower noise is
toward the right). The y axis shows the probability of a decoding error on a log scale.

Some observations from these results are noteworthy:

1. Good convolutional codes are noticeably superior to the Hamming and rectangular
parity codes.

2. Soft-decision decoding is a significant win over hard-decision decoding; for the same
post-decoding BER, soft decoding has a 2 to 2.3 db gain; i.e., with hard decoding, you
would have to increase the signal-to-noise ratio by that amount (which is a factor of
1.6⇥, as explained in Chapter 9) to achieve the same post-decoding BER.

⌅ 8.8 Summary

From its relatively modest, though hugely impactful, beginnings as a method to decode
convolutional codes, Viterbi decoding has become one of the most widely used algorithms
in a wide range of fields and engineering systems. Modern disk drives with “PRML”
technology to speed-up accesses, speech recognition systems, natural language systems,
and a variety of communication networks use this scheme or its variants.

In fact, a more modern view of the soft decision decoding technique described in this
lecture is to think of the procedure as finding the most likely set of traversed states in
a Hidden Markov Model (HMM). Some underlying phenomenon is modeled as a Markov
state machine with probabilistic transitions between its states; we see noisy observations
from each state, and would like to piece together the observations to determine the most
likely sequence of states traversed. It turns out that the Viterbi decoder is an excellent
starting point to solve this class of problems (and sometimes the complete solution).

On the other hand, despite its undeniable success, Viterbi decoding isn’t the only way
to decode convolutional codes. For one thing, its computational complexity is exponential
in the constraint length, K, because it does require each of these states to be enumerated.
When K is large, one may use other decoding methods such as BCJR or Fano’s sequential
decoding scheme, for instance.

Convolutional codes themselves are very popular over both wired and wireless links.
They are sometimes used as the “inner code” with an outer block error correcting code,
but they may also be used with just an outer error detection code. They are also used
as a component in more powerful codes like turbo codes, which are currently one of the
highest-performing codes used in practice.

102 CHAPTER 8. VITERBI DECODING OF CONVOLUTIONAL CODES

⌅ Problems and Exercises

1. Consider a convolutional code whose parity equations are

p
0

[n] = x[n] + x[n - 1] + x[n - 3]

p
1

[n] = x[n] + x[n - 1] + x[n - 2]

p
2

[n] = x[n] + x[n - 2] + x[n - 3]

(a) What is the rate of this code? How many states are in the state machine repre
sentation of this code?

(b) Suppose the decoder reaches the state “110” during the forward pass of the
Viterbi algorithm with this convolutional code.

i. How many predecessor states (i.e., immediately preceding states) does state
“110” have?

ii. What are the bit-sequence representations of the predecessor states of state
“110”?

iii. What are the expected parity bits for the transitions from each of these pre
decessor states to state “110”? Specify each predecessor state and the ex
pected parity bits associated with the corresponding transition below.

(c) To increase the rate of the given code, Lem E. Tweakit punctures the p
0 parity

stream using the vector (1 0 1 1 0), which means that every second and fifth bit
produced on the stream are not sent. In addition, she punctures the p

1 parity
stream using the vector (1 1 0 1 1). She sends the p

2 parity stream unchanged.
What is the rate of the punctured code?

2. Let conv encode(x) be the resulting bit-stream after encoding bit-string x with a
convolutional code, C. Similarly, let conv decode(y) be the result of decoding y
to produce the maximum-likelihood estimate of the encoded message. Suppose we
send a message M using code C over some channel. Let P = conv encode(M) and
let R be the result of sending P over the channel and digitizing the received samples
at the receiver (i.e., R is another bit-stream). Suppose we use Viterbi decoding on
R, knowing C, and find that the maximum-likelihood estimate of M is Mˆ . During
the decoding, we find that the minimum path metric among all the states in the final
stage of the trellis is D

min

.

D
min is the Hamming distance between and . Fill in the

blanks, explaining your answer.

3. Consider the trellis in Figure 8-9 showing the operation of the Viterbi algorithm us
ing a hard branch metric at the receiver as it processes a message encoded with a
convolutional code, C. Most of the path metrics have been filled in for each state at
each time and the predecessor states determined by the Viterbi algorithm are shown
by a solid transition arrow.

SECTION 8.8. SUMMARY 103

(a) What is the code rate of C?

(b) What is the constraint length of C?

(c) What bits would be transmitted if the message 1011 were encoded using C?
Note this is not the message being decoding in the example above.

(d) Compute the missing path metrics in the top two boxes of rightmost column
and enter their value in the appropriate boxes in the trellis diagram (Figure 8-
9). Remember to draw the solid transition arrow showing the predecessor state
for each metric you compute.

(e) The received parity bits for time 5 are missing from the trellis diagram. What
values for the parity bits are consistent with the other information in the trellis?
Note that there may be more than one set of such values.

(f) In the trellis diagram shown (Figure 8-9), circle the states along the most-likely
path through the trellis. Determine the decoded message that corresponds to
that most-likely path.

(g) Based on your answer to the previous part, how many bit errors were detected
in the received transmission and at what time(s) did those error(s) occur?

4. Convolutionally yours. Dona Ferentes is debugging a Viterbi decoder for her client,
The TD Company, which is building a wireless network to send gifts from mobile
phones. She picks a rate-1/2 code with constraint length 4, no puncturing. Parity
stream p

0

has the generator g
0

= 1110. Parity stream p
1

has the generator g
1

= 1xyz,
but she needs your help determining x, y, z, as well as some other things about the
code. In these questions, each state is labeled with the most-recent bit on the left and
the least-recent bit on the right.

These questions are about the state transitions and generators.

(a) From state 010, the possible next states are and .

From state 010, the possible predecessor states are and .

(b) Given the following facts, find g
1

, the generator for parity stream p
1

. g
1

has the
form 1xyz, with the standard convention that the left-most bit of the generator
multiplies the most-recent input bit.

Starting at state 011, receiving a 0 produces p
1

= 0.
Starting at state 110, receiving a 0 produces p

1

= 1.
Starting at state 111, receiving a 1 produces p

1

= 1.

(c) Dona has just completed the forward pass through the trellis and has figured
out the path metrics for all the end states. Suppose the state with smallest path
metric is 110. The traceback from this state looks as follows:

000 100 010 001 100 110

What is the most likely transmitted message? Explain your answer, and if there
is not enough information to produce a unique answer, say why.

104 CHAPTER 8. VITERBI DECODING OF CONVOLUTIONAL CODES

(d) During the decoding process, Dona observes the voltage pair (0.9,0.2) volts for
the parity bits p

0

p
1

, where the sender transmits 1.0 volts for a “1” and 0.0 volts
for a “0”. The threshold voltage at the decoder is 0.5 volts. In the portion of the
trellis shown below, each edge shows the expected parity bits p

0

p
1

. The number
in each circle is the path metric of that state.

i. See Figure 8-10. With hard-decision decoding, give the branch metric near
each edge and the path metric inside the circle.

ii. See Figure 8-10. Timmy Dan (founder of TD Corp.) suggests that Dona use
soft-decision decoding using the squared Euclidean distance metric. Give
the branch metric near each edge and the path metric inside the circle.

iii. If we used a puncturing schedule of (1 1 0 1) on the first parity stream and
(0 1 1 0) on the second parity stream, then what is the rate of the resulting
punctured code?

(e) The real purpose behind Dona Ferentes decoding convolutionally is some awful
wordplay with Virgil’s classical Latin. What does Timeo Danaos et dona ferentes
mean?

i. Timmy Dan and Dona are friends.
ii. It’s time to dance with Dona Ferentes.

iii. I fear the Greeks, even those bearing gifts.
iv. I fear the Greeks, especially those bearing debt.
v. You *#@$*@!#s. This is the last straw; I’m reporting you to the Dean. If I’d

wanted to learn this, I’d have gone to that school up the Charles!

SECTION 8.8. SUMMARY 105

Figure 8-3: The Viterbi decoder in action. This picture shows four time steps. The bottom-most picture is
the same as the one just before it, but with only the survivor paths shown.

106 CHAPTER 8. VITERBI DECODING OF CONVOLUTIONAL CODES

Figure 8-4: The Viterbi decoder in action (continued from Figure 8-3. The decoded message is shown. To
produce this message, start from the final state with smallest path metric and work backwards, and then
reverse the bits. At each state during the forward pass, it is important to remeber the arc that got us to this
state, so that the backward pass can be done properly.

SECTION 8.8. SUMMARY 107

�������� ��������

���������

�������	
������
�����������	
���
�
����	������

�������� ��������

�	
���
��	

���

Figure 8-5: Branch metric for soft decision decoding.

00

01

10

11

0/00
1/11

0/10

1/01

1/00
0/11

0/01
1/10

t time

x[n-1]x[n-2]

x[n] 0 0 0 0 0 0

0/00
1/11

0/10

1/01

1/00
0/11

0/01
1/10

0/00
1/11

0/10

1/01

1/00
0/11

0/01
1/10

0/00
1/11

0/10

1/01

1/00
0/11

0/01
1/10

0/00
1/11

0/10

1/01

1/00
0/11

0/01
1/10

0/00
1/11

0/10

1/01

1/00
0/11

0/01
1/10

1/01

1/00 1/ 01/00
0/11 0/

0/000/00 0/00
1/11 1/111

0/1000/1000/100 0

1/00 01/000 1/00

0/0100/01 00
1/10 1/101/10

0/10 0

1/01 /0

/00 1/001/1/1/01/001
0/11 0/

0/010/01
1/10 1/10

0/000/000/00
1/11 1/111

0/1000/10 0

00
2

00 00 00

2

3

4
00

The free distance is the difference in path metrics between the all-zeroes output
and the path with the smallest non-zero path metric going from the initial 00 state
to some future 00 state. It is 4 in this example. The path 00 � 10 �01 � 00 has

a shorter length, but a higher path metric (of 5), so it is not the free distance.

Figure 8-6: The free distance of a convolutional code.

108 CHAPTER 8. VITERBI DECODING OF CONVOLUTIONAL CODES

Figure 8-7: Post-decoding BER v. BSC error probability " for different codes. Note that not all codes have
the same rate, so this comparison is misleading. One should only compare curves of the same rate on a
BER v. BSC error probability curve such as this one; comparisons between codes of different rates on the
x-axis given aren’t meaningful because they don’t account for the different overhead amounts.

Figure 8-8: Post-decoding BER of a few different linear block codes and convolutional codes as a function
of E

b

/N0 in the additive Gaussian noise channel model.

SECTION 8.8. SUMMARY 109

!

Figure 8-9: Figure for Problem 3.

received voltages: .9, .2

5

7

11

10

Figure 8-10: Figure for Problem 4.

MIT OpenCourseWare
http://ocw.mit.edu

6.02 Introduction to EECS II: Digital Communication Systems
Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu/terms
http://ocw.mit.edu

