Algorithm design patterns and antipatterns

Algorithm design patterns.
- Greedy.
- Divide and conquer.
- Dynamic programming.
- Duality.
- Reductions.
- Local search.
- Randomization.

Algorithm design antipatterns.
- NP-completeness. \(O(n^k)\) algorithm unlikely.
- PSPACE-completeness. \(O(n^k)\) certification algorithm unlikely.
- Undecidability. No algorithm possible.

Classify problems according to computational requirements

Q. Which problems will we be able to solve in practice?

A working definition. Those with poly-time algorithms.

Theory. Definition is broad and robust.

Practice. Poly-time algorithms scale to huge problems.

Turing machine, word RAM, uniform circuits, ...

\(n\) constants tend to be small, e.g., \(3n^2\)
Classify problems according to computational requirements

Q. Which problems will we be able to solve in practice?

A working definition. Those with poly-time algorithms.

<table>
<thead>
<tr>
<th>yes</th>
<th>probably no</th>
</tr>
</thead>
<tbody>
<tr>
<td>shortest path</td>
<td>longest path</td>
</tr>
<tr>
<td>min cut</td>
<td>max cut</td>
</tr>
<tr>
<td>2-satisfiability</td>
<td>3-satisfiability</td>
</tr>
<tr>
<td>planar 4-colorability</td>
<td>planar 3-colorability</td>
</tr>
<tr>
<td>bipartite vertex cover</td>
<td>vertex cover</td>
</tr>
<tr>
<td>matching</td>
<td>3d-matching</td>
</tr>
<tr>
<td>primality testing</td>
<td>factoring</td>
</tr>
<tr>
<td>linear programming</td>
<td>integer linear programming</td>
</tr>
</tbody>
</table>

Poly-time reductions

Desiderata’. Suppose we could solve problem Y in polynomial time. What else could we solve in polynomial time?

Reduction. Problem X polynomial-time (Cook) reduces to problem Y if arbitrary instances of problem X can be solved using:

- Polynomial number of standard computational steps, plus
- Polynomial number of calls to oracle that solves problem Y.

input size = $c + \log k$

Frustrating news. Huge number of fundamental problems have defied classification for decades.

Poly-time reductions

Desiderata’. Suppose we could solve problem Y in polynomial time. What else could we solve in polynomial time?

Reduction. Problem X polynomial-time (Cook) reduces to problem Y if arbitrary instances of problem X can be solved using:

- Polynomial number of standard computational steps, plus
- Polynomial number of calls to oracle that solves problem Y.

Notation. $X \leq_p Y$.

Note. We pay for time to write down instances of Y sent to oracle \Rightarrow instances of Y must be of polynomial size.

Novice mistake. Confusing $X \leq_p Y$ with $Y \leq_p X$.
Intractability: quiz 1

Suppose that $X \leq_P Y$. Which of the following can we infer?

A. If X can be solved in polynomial time, then so can Y.
B. X can be solved in poly time iff Y can be solved in poly time.
C. If X cannot be solved in polynomial time, then neither can Y.
D. If Y cannot be solved in polynomial time, then neither can X.

Intractability: quiz 2

Which of the following poly–time reductions are known?

A. $\text{FIND-MAX-FLOW} \leq_P \text{FIND-MIN-CUT}$.
B. $\text{FIND-MIN-CUT} \leq_P \text{FIND-MAX-FLOW}$.
C. Both A and B.
D. Neither A nor B.

Poly-time reductions

Design algorithms. If $X \leq_P Y$ and Y can be solved in polynomial time, then X can be solved in polynomial time.

Establish intractability. If $X \leq_P Y$ and X cannot be solved in polynomial time, then Y cannot be solved in polynomial time.

Establish equivalence. If both $X \leq_P Y$ and $Y \leq_P X$, we use notation $X \equiv_P Y$. In this case, X can be solved in polynomial time iff Y can be.

Bottom line. Reductions classify problems according to relative difficulty.

8. Intractability I

- poly-time reductions
- packing and covering problems
- constraint satisfaction problems
- sequencing problems
- partitioning problems
- graph coloring
- numerical problems
Intractability: quiz 3

Consider the following graph G. Which are true?

A. The white vertices are a vertex cover of size 7.
B. The black vertices are an independent set of size 3.
C. Both A and B.
D. Neither A nor B.
Vertex cover and independent set reduce to one another

Theorem. \(\text{INDEPENDENT-SET} \equiv_p \text{VERTEX-COVER} \).

Pf. We show \(S \) is an independent set of size \(k \) iff \(V - S \) is a vertex cover of size \(n - k \).

\[\Rightarrow \]

• Let \(S \) be any independent set of size \(k \).
• \(V - S \) is of size \(n - k \).
• Consider an arbitrary edge \((u, v) \in E\).
• \(S \) independent \(\Rightarrow \) either \(u \notin S \), or \(v \notin S \), or both.
 \[\Rightarrow \text{either } u \in V - S \text{, or } v \in V - S \text{, or both.} \]
• Thus, \(V - S \) covers \((u, v)\).

\[\Leftarrow \]

• Let \(V - S \) be any vertex cover of size \(n - k \).
• \(S \) is of size \(k \).
• Consider an arbitrary edge \((u, v) \in E\).
• \(V - S \) is a vertex cover \(\Rightarrow \) either \(u \in V - S \), or \(v \in V - S \), or both.
 \[\Rightarrow \text{either } u \notin S \text{, or } v \notin S \text{, or both.} \]
• Thus, \(S \) is an independent set.

Set cover

SET-COVER. Given a set \(U \) of elements, a collection \(S \) of subsets of \(U \), and an integer \(k \), are there \(\leq k \) of these subsets whose union is equal to \(U \)?

Sample application.

• \(m \) available pieces of software.
• Set \(U \) of \(n \) capabilities that we would like our system to have.
• The \(i \)-th piece of software provides the set \(S_i \subseteq U \) of capabilities.
• Goal: achieve all \(n \) capabilities using fewest pieces of software.

Intractability: quiz 4

Given the universe \(U = \{ 1, 2, 3, 4, 5, 6, 7 \} \) and the following sets, which is the minimum size of a set cover?

- **A.** 1
- **B.** 2
- **C.** 3
- **D.** None of the above.

\[
\begin{align*}
U &= \{ 1, 2, 3, 4, 5, 6, 7 \} \\
S_a &= \{ 3, 7 \} & S_b &= \{ 2, 4 \} \\
S_c &= \{ 3, 4, 5, 6 \} & S_d &= \{ 5 \} \\
S_e &= \{ 1 \} & S_f &= \{ 1, 2, 6, 7 \} \\
k &= 2
\end{align*}
\]
Vertex cover reduces to set cover

Theorem. \(\text{VERTEX-COVER} \leq_p \text{SET-COVER} \).

Pf. Given a \(\text{VERTEX-COVER} \) instance \(G = (V, E) \) and \(k \), we construct a \(\text{SET-COVER} \) instance \((U, S, k) \) that has a set cover of size \(k \) iff \(G \) has a vertex cover of size \(k \).

Construction.
- Universe \(U = E \).
- Include one subset for each node \(v \in V \) \(: \) \(S_v = \{ e \in E : e \text{ incident to } v \} \).

Lemma. \(G = (V, E) \) contains a vertex cover of size \(k \) iff \((U, S, k) \) contains a set cover of size \(k \).

Pf. \(\Rightarrow \) Let \(X \subseteq V \) be a vertex cover of size \(k \) in \(G \).
- Then \(Y = \{ S_v : v \in X \} \) is a set cover of size \(k \).

Pf. \(\Leftarrow \) Let \(Y \subseteq S \) be a set cover of size \(k \) in \((U, S, k) \).
- Then \(X = \{ v : S_v \in Y \} \) is a vertex cover of size \(k \) in \(G \).

8. INTRACTABILITY

- poly-time reductions
- packing and covering problems
- constraint satisfaction problems
- sequencing problems
- partitioning problems
- graph coloring
- numerical problems
Satisfiability

Literal. A Boolean variable or its negation. \(x_i \) or \(\overline{x_i} \)

Clause. A disjunction of literals. \(C_j = x_i \lor \overline{x_i} \lor x_j \)

Conjunctive normal form (CNF). A propositional formula \(\Phi \) that is a conjunction of clauses.

SAT. Given a CNF formula \(\Phi \), does it have a satisfying truth assignment?

3-SAT. SAT where each clause contains exactly 3 literals (and each literal corresponds to a different variable).

\[\Phi = \left(\overline{x_1} \lor x_2 \lor x_3 \right) \land \left(x_1 \lor \overline{x_2} \lor x_3 \right) \land \left(\overline{x_1} \lor x_2 \lor x_4 \right) \]

yes instance: \(x_1 = \text{true}, x_2 = \text{true}, x_3 = \text{false}, x_4 = \text{false} \)

Key application. Electronic design automation (EDA).

Satisfiability is hard

Scientific hypothesis. There does not exists a poly-time algorithm for 3-SAT.

P vs. NP. This hypothesis is equivalent to \(P \neq NP \) conjecture.

3-satisfiability reduces to independent set

Theorem. 3-SAT \(\leq_p \) INDEPENDENT-SET.

Pf. Given an instance \(\Phi \) of 3-SAT, we construct an instance \((G,k)\) of INDEPENDENT-SET that has an independent set of size \(k = |\Phi| \) iff \(\Phi \) is satisfiable.

Construction.
- \(G \) contains 3 nodes for each clause, one for each literal.
- Connect 3 literals in a clause in a triangle.
- Connect literal to each of its negations.

3-satisfiability reduces to independent set

Lemma. \(\Phi \) is satisfiable iff \(G \) contains an independent set of size \(k = |\Phi| \).

Pf. \(\Rightarrow \) Consider any satisfying assignment for \(\Phi \).
- Select one true literal from each clause/triangle.
- This is an independent set of size \(k = |\Phi| \).

\[\Phi = \left(\overline{x_1} \lor x_2 \lor x_3 \right) \land \left(x_1 \lor \overline{x_2} \lor x_3 \right) \land \left(\overline{x_1} \lor x_2 \lor x_4 \right) \]

\(k = 3 \)

\[\Phi = \left(\overline{x_1} \lor x_2 \lor x_3 \right) \land \left(x_1 \lor \overline{x_2} \lor x_3 \right) \land \left(\overline{x_1} \lor x_2 \lor x_4 \right) \]

\(k = 3 \)
3-satisfiability reduces to independent set

Lemma. \(\Phi \) is satisfiable iff \(G \) contains an independent set of size \(k = |\Phi| \).

Pf. \(\iff \) Let \(S \) be independent set of size \(k \).
- \(S \) must contain exactly one node in each triangle.
- Set these literals to \textit{true} (and remaining literals consistently).
- All clauses in \(\Phi \) are satisfied. \(\blacksquare \)

\[G \]

\[\Phi = \left(\overline{x_1} \lor x_2 \lor x_3 \right) \land \left(x_1 \lor \overline{x_2} \lor x_3 \right) \land \left(\overline{x_1} \lor x_2 \lor x_4 \right) \]

\(k = 3 \)

Review

Basic reduction strategies.
- Simple equivalence: \textsc{Independent-Set} \(\leq_p \textsc{Vertex-Cover} \).
- Special case to general case: \textsc{Vertex-Cover} \(\leq_p \textsc{Set-Cover} \).
- Encoding with gadgets: 3-SAT \(\leq_p \textsc{Independent-Set} \).

Transitivity. If \(X \leq_p Y \) and \(Y \leq_p Z \), then \(X \leq_p Z \).

Pf idea. Compose the two algorithms.

Ex. 3-SAT \(\leq_p \textsc{Independent-Set} \leq_p \textsc{Vertex-Cover} \leq_p \textsc{Set-Cover} \).

Decision, search, and optimization problems

Decision problem. Does there exist a vertex cover of size \(\leq k \)?

Search problem. Find a vertex cover of size \(\leq k \).

Optimization problem. Find a vertex cover of minimum size.

Goal. Show that all three problems poly-time reduce to one another.

8. Intractability I

- poly-time reductions
- packing and covering problems
- constraint satisfaction problems
- sequencing problems
- partitioning problems
- graph coloring
- numerical problems
Hamilton cycle

Hamilton Cycle. Given an undirected graph $G = (V, E)$, does there exist a cycle Γ that visits every node exactly once?

Directed Hamilton cycle reduces to Hamilton cycle

Directed-Hamilton-Cycle. Given a directed graph $G = (V, E)$, does there exist a directed cycle Γ that visits every node exactly once?

Theorem. **Directed-Hamilton-Cycle** \leq_p **Hamilton-Cycle**.

Pf. Given a directed graph $G = (V, E)$, construct a graph G' with $3n$ nodes.

Directed Hamilton cycle reduces to Hamilton cycle

Lemma. G has a directed Hamilton cycle iff G' has a Hamilton cycle.

Pf. \Rightarrow

- Suppose G has a directed Hamilton cycle Γ.
- Then G' has an undirected Hamilton cycle (same order).

Pf. \Leftarrow

- Suppose G' has an undirected Hamilton cycle Γ'.
- Γ' must visit nodes in G' using one of following two orders:
 - $\ldots, \text{black, white, blue, black, white, blue, black, white, blue,} \ldots$
 - $\ldots, \text{black, blue, white, black, blue, white, black, blue, white,} \ldots$
- Black nodes in Γ' comprise either a directed Hamilton cycle Γ in G, or reverse of one.
3-satisfiability reduces to directed Hamilton cycle

Theorem. 3-SAT \leq_p DIRECTED-HAMILTON-CYCLE.

Pf. Given an instance Φ of 3-SAT, we construct an instance G of DIRECTED-HAMILTON-CYCLE that has a Hamilton cycle iff Φ is satisfiable.

Construction overview. Let n denote the number of variables in Φ. We will construct a graph G that has 2^n Hamilton cycles, with each cycle corresponding to one of the 2^n possible truth assignments.

Intractability: quiz 5

Which is truth assignment corresponding to Hamilton cycle below?

- **A.** $x_1 = true, x_2 = true, x_3 = true$
- **B.** $x_1 = true, x_2 = true, x_3 = false$
- **C.** $x_1 = false, x_2 = false, x_3 = true$
- **D.** $x_1 = false, x_2 = false, x_3 = false$

Construction. Given 3-SAT instance Φ with n variables x_i and k clauses.
- Construct G to have 2^n Hamilton cycles.
- Intuition: traverse path i from left to right \iff set variable $x_i = true$.

- For each clause: add a node and 2 edges per literal.
- Connect in this way if x_i appears in clause C_j.
- Connect in this way if x_i appears in clause C_k.

- $x_i = true$
- $x_i = false$
Construction

Given 3-SAT instance Φ with n variables x_i and k clauses.
- For each clause: add a node and 2 edges per literal.

![Diagram of construction](image)

- $C_1 = x_1 \lor \overline{x_2} \lor x_3$
- $C_2 = \overline{x_1} \lor x_2 \lor \overline{x_3}$

\[3k + 3 \]

Lemma

Φ is satisfiable iff G has a Hamilton cycle.

Pf. \Rightarrow
- Suppose 3-SAT instance Φ has satisfying assignment x^*.
- Then, define Hamilton cycle Γ in G as follows:
 - if $x_i^* = true$, traverse row i from left to right
 - if $x_i^* = false$, traverse row i from right to left
 - for each clause C_j, there will be at least one row i in which we are going in “correct” direction to splice clause node C_j into cycle (and we splice in C_j exactly once)

Pf. \Leftarrow
- Continue in this way, we are left with a Hamilton cycle Γ' in $G - \{C_j\}$.
- Set $x_i^* = true$ if Γ' traverses row i left-to-right; otherwise, set $x_i^* = false$.
- traversed in “correct” direction, and each clause is satisfied.

Poly-time reductions

- 3-SAT polytime reduces to Independent Set
- 3-SAT polytime reduces to Directed Hamilton cycle
- 3-SAT polytime reduces to Graph-3-Color
- 3-SAT polytime reduces to Subset Sum
- 3-SAT polytime reduces to Vertex Cover
- 3-SAT polytime reduces to Hamilton Cycle
- 3-SAT polytime reduces to Set Cover

packing and covering sequencing partitioning numerical
8. **INTRACTABILITY I**

- poly-time reductions
- packing and covering problems
- constraint satisfaction problems
- sequencing problems
- partitioning problems
- graph coloring
- numerical problems

Subset sum

SUBSET-SUM. Given natural numbers \(w_1, \ldots, w_n\) and an integer \(W\), is there a subset that adds up to exactly \(W\) ?

Ex. \(\{215, 215, 275, 275, 355, 355, 420, 420, 580, 655\}\), \(W = 1505\).
Yes. \(215 + 355 + 355 = 1505\).

Remark. With arithmetic problems, input integers are encoded in binary. Poly-time reduction must be polynomial in binary encoding.

My hobby

My hobby: Embedding NP-complete problems in Restaurant orders

Subset sum

Theorem. \(3\text{-SAT} \leq_p \text{SUBSET-SUM.}\)

Pf. Given an instance \(\Phi\) of 3-SAT, we construct an instance of SUBSET-SUM that has solution iff \(\Phi\) is satisfiable.
3-satisfiability reduces to subset sum

Construction. Given 3-SAT instance Φ with n variables and k clauses, form $2n + 2k$ decimal integers, each having $n + k$ digits:
- Include one digit for each variable x_i and one digit for each clause C_j.
- Include two digits for each variable x_i.
- Include two numbers for each clause C_j.
- Sum of each x_i digit is 1; sum of each C_j digit is 4.

Key property. No carries possible \Rightarrow each digit yields one equation.

```
C_1 = \neg x_1 \lor x_2 \lor x_3
C_2 = x_1 \lor \neg x_2 \lor x_3
C_3 = \neg x_1 \lor \neg x_2 \lor \neg x_3
```

3-SAT instance
dummies to get clause columns to sum to 4

x_1 1 0 0 0 1 0 100,010
$\neg x_1$ 1 0 0 1 0 1 100,101
x_2 0 1 0 1 0 0 10,100
$\neg x_2$ 0 1 0 0 1 1 10,011
x_3 0 0 1 1 1 0 1,110
$\neg x_3$ 0 0 1 0 0 1 1,001

Cost: 111,444

```
1 1 4 4 4
```

SUBSET-SUM instance

3-satisfiability reduces to subset sum

Lemma. Φ is satisfiable iff there exists a subset that sums to W.

Pf. \Rightarrow Suppose there exists a subset S^* that sums to W.
- Digit x_i forces subset S^* to select either row x_i or row $\neg x_i$ (but not both).
- If row x_i selected, assign $x_i^* = true$; otherwise, assign $x_i^* = false$.
- Digit C_j forces subset S^* to select at least one literal in clause.

```
C_1 = \neg x_1 \lor x_2 \lor x_3
C_2 = x_1 \lor \neg x_2 \lor x_3
C_3 = \neg x_1 \lor \neg x_2 \lor \neg x_3
```

3-SAT instance
dummies to get clause columns to sum to 4

x_1 1 0 0 0 1 0 100,010
$\neg x_1$ 1 0 0 1 0 1 100,101
x_2 0 1 0 1 0 0 10,100
$\neg x_2$ 0 1 0 0 1 1 10,011
x_3 0 0 1 1 1 0 1,110
$\neg x_3$ 0 0 1 0 0 1 1,001

Cost: 111,444

```
1 1 4 4 4
```

SUBSET-SUM instance

SUBSET SUM REDUCES TO KNAPSACK

SUBSET-SUM. Given a set X, values $u_i \geq 0$, and an integer U, is there a subset $S \subseteq X$ whose elements sum to exactly U?

KNAPSACK. Given a set X, weights $w_i \geq 0$, values $v_i \geq 0$, a weight limit U, and a target value V, is there a subset $S \subseteq X$ such that:

$$\sum_{i \in S} u_i \leq U, \sum_{i \in S} v_i \geq V$$

Theorem. SUBSET-SUM \leq_P KNAPSACK.

Pf. Given instance (w_1, \ldots, w_n, W) of SUBSET-SUM, create KNAPSACK instance:
Poly-time reductions

constraint satisfaction

3-Sat

INDEPENDENT-SET

DIR-HAM-CYCLE

3-COLOR

SUBSET-SUM

VERTEX-COVER

HAM-CYCLE

KNAPSACK

packing and covering

sequencing

partitioning

numerical

Karp’s 21 poly-time reductions from satisfiability

Dick Karp (1972)

1985 Turing Award

FIGURE 1: Complete Problem