COS 423 Theory of Algorithms Spring 2018 Problem Set 8

This assignment is due at 5pm on Tuesday, May 15 (Dean's Date) via electronic submission. Collaboration is not permitted, except with the course instructor and two preceptors. No extensions or late days (without the recommendation of a Dean).
Read Chapter 8 and Section 10.2 in Algorithm Design.

1. Consider the following decision and optimization versions of the longest path problem:

- Longest-Path: Given an undirected G with integer edge weights $w(e) \geq 1$ and an integer L, does there exist a simple path (no repeated nodes) whose length is $\geq L$?
- Find-Longest-Path: Given an undirected graph G with integer edge weights $w(e) \geq 1$, find a longest simple path.

Prove that Find-Longest-Path $\equiv{ }_{\mathrm{P}}$ Longest-Path.
2. Consider the following two related problems:

- Subset-Sum: Given n natural numbers w_{1}, \ldots, w_{n} and an integer W, is there a subset that adds up to exactly W ? A subset may contain each number at most once.
- Coin-Changing: Given m coin denominations $1=c_{1}<\ldots<c_{m}$ and an amount S, can you make change for the amount S using at most T coins? You may use as many coins of each coin denomination as desired.
(a) Prove that Subset-Sum \leq_{P} Coin-Changing.

Hint: as in the reduction from 3-Sat to Subset-Sum, use the individual digits of the Coin-Changing instance to impose any desired constraints (e.g., that you will take at most one coin of each denomination). Express the digits in base b for a value of b that is sufficiently large that there are no carries.
(b) Prove that Coin-Changing is NP-complete.
3. Design a linear-time algorithm for Find-Longest-Path (defined above) when G is a tree.

