COS 423	
COS 423	

Spring 2018

Problem Set 1

This problem set is due Wednesday, February $14 \neq at$ 11pm via electronic submission. Collaboration is permitted, according to the rules specified in the syllabus.

Read CHAPTER 1 and review CHAPTER 2 in *Algorithm Design*. Read the course syllabus, including the collaboration policy and instructions for writing and submitting solutions.

- 1. Problem 1.5 in Algorithm Design (stable matching with ties in preference lists).
- 2. Let M_1 and M_2 be two different stable matchings for a given instance of the stable matching problem. Suppose that hospital *h* is matched with student *s* in M_1 but not in M_2 . Prove that *h* prefers M_1 to M_2 if and only if *s* prefers M_2 to M_1 .
- 3. For each of the following pairs of functions f and $g : \mathbb{N} \to \mathbb{R}$, determine whether f is O(g), f is $\Theta(g)$, and/or f is $\Omega(g)$. Justify each answer.
 - (a) $f(n) = 2^n$, $g(n) = 3^n$

(b)
$$f(n) = n^{\log_2 e}$$
, $g(n) = e^{\log_2(n+1)}$

(c) $f(n) = n^{3+\sin n}$, $g(n) = n^2$

	0	if $n = 0$		0	if $n = 0$
(d) $f(n) = \langle$	n^n	if $n > 0$ and n is even	$g(n) = \langle$	n^n	if <i>n</i> is odd
	f(n-1) + 1	if <i>n</i> is odd		g(n-1) + 1	if $n > 0$ is n is even

Observe that f and g are strictly increasing functions.

4. Given an array of n > 0 distinct integers, design an $O(\log n)$ time algorithm to find a local minimum. A *local minimum* in an array is an entry that is smaller than all of its adjacent entries. For example, in the array [23, 45, 32, 12, 5, 3, 6, 56, 77, 33, 55], there are three local minima—23, 3, and 33.