Algorithms

4.4 Shortest Paths

- APls
- shortest-paths properties
- Dijkstra's algorithm
- edge-weighted DAGs
- negative weights
http://algs4.cs.princeton.edu

Shortest paths in an edge-weighted digraph
Given an edge-weighted digraph, find the shortest path from s to t.

Google maps

Car navigation

Shortest path applications

- PERT/CPM.
- Map routing.
- Seam carving.
- Robot navigation.
- Texture mapping.
- Typesetting in TeX.
- Urban traffic planning.
- Optimal pipelining of VLSI chip.
- Telemarketer operator scheduling.
- Routing of telecommunications messages.
- Network routing protocols (OSPF, BGP, RIP).

http://en.wikipedia.org/wiki/Seam_carving

- Exploiting arbitrage opportunities in currency exchange.
- Optimal truck routing through given traffic congestion pattern.

[^0]
Shortest path variants

Which vertices?

- Single source: from one vertex s to every other vertex.
- Source-sink: from one vertex s to another t.
- All pairs: between all pairs of vertices.

Restrictions on edge weights?

- Nonnegative weights.
- Euclidean weights.
- Arbitrary weights.

Cycles?

- No directed cycles.
- No "negative cycles."

Simplifying assumption. Shortest paths from s to each vertex v exist.

4.4 Shortest Paths

- APls
- shortestippaths properties
- Dijkstra's algorithm
- edge-weighted DAGs
- negative weights
http://algs4.cs.princeton.edu

Weighted directed edge API

```
public class DirectedEdge
                    DirectedEdge(int v, int w, doub7e weight) weighted edge v->w
        int from() vertexv
        int to() vertexw
doub7e weight() weight of this edge
String toString() string representation
```


Idiom for processing an edge e: int v = e.from(), w = e.to();

Weighted directed edge: implementation in Java

Similar to Edge for undirected graphs, but a bit simpler.

```
public class DirectedEdge
{
    private final int v, w;
    private final double weight;
    public DirectedEdge(int v, int w, double weight)
    {
        this.v = v;
        this.w = w;
        this.weight = weight;
    }
    public int from()
    { return v; }
    public int to()
    { return w; }
    public int weight()
    { return weight; }
}
```


Edge-weighted digraph API

public class EdgeWeightedDigraph
EdgeWeightedDigraph(int V) edge-weighted digraph with V vertices
EdgeWeightedDigraph(In in) edge-weighted digraph from input stream void addEdge(DirectedEdge e) add weighted directed edge e

Iterable<DirectedEdge> adj(int v)
int V() number of vertices
int E()
number of edges
Iterable<DirectedEdge> edges()
all edges
String toString()

Conventions. Allow self-loops and parallel edges.

Edge-weighted digraph: adjacency-lists representation

Edge-weighted digraph: adjacency-lists implementation in Java

Same as EdgeWeightedGraph except replace Graph with Digraph.

```
public class EdgeWeightedDigraph
{
    private final int V;
    private final Bag<DirectedEdge>[] adj;
    public EdgeWeightedDigraph(int V)
    {
        this.V = V;
        adj = (Bag<DirectedEdge>[]) new Bag[V];
        for (int v = 0; v < V; v++)
            adj[v] = new Bag<DirectedEdge>();
    }
    public void addEdge(DirectedEdge e)
    {
        int v = e.from();
        adj[v].add(e);
    }
    public Iterable<DirectedEdge> adj(int v)
    { return adj[v]; }
}
```


Single-source shortest paths API

Goal. Find the shortest path from s to every other vertex.

```
public class SP
```

SP(EdgeWeightedDigraph G, int s) shortest paths from sin graph G double distTo(int v) length of shortest path from sto v

Iterable <DirectedEdge> pathTo(int v) shortest path from s to v
boolean hasPathTo(int v)
is there a path from sto v ?

```
SP sp = new SP(G, s);
for (int v = 0; v < G.V(); v++)
{
    StdOut.printf("%d to %d (%.2f): ", s, v, sp.distTo(v));
    for (DirectedEdge e : sp.pathTo(v))
        StdOut.print(e + " ");
    StdOut.println();
}
```


Single-source shortest paths API

Goal. Find the shortest path from s to every other vertex.

```
public class SP
```

 SP(EdgeWeightedDigraph G, int s) shortest paths from sin graph \(G\)
 double distTo(int v)
 length of shortest path from s to v
shortest path from s to v
is there a path from s to v ?

```
% java SP tinyEWD.txt 0
0 to 0 (0.00):
0 to 1 (1.05): 0->4 0.38
4->5 0.35 5->1 0.32
0 to 2 (0.26): 0->2 0.26
0 to 3 (0.99): 0->2 0.26
    2->7 0.34 7->3 0.39
0 to 4 (0.38): 0->4 0.38
0 to 5 (0.73): 0->4 0.38 4->5 0.35
0 to 6 (1.51): 0->2 0.26 2->7 0.34
7->3 0.39 3->6 0.52
0 to 7 (0.60): 0->2 0.26 2->7 0.34
```


4.4 Shortest Paths

- APls
- shortestippaths properties
- Dijkstra's algorithm
- edge-weighted DAGs
- negative weights
http://algs4.cs.princeton.edu

4.4 Shortest Paths

Algorithms

Robert Sedgewick । Kevin Wayne

- APH
- shortest-paths properties
- Dïkstra's algorithm
- edge-weighted DAGs
- negative weights

Data structures for single-source shortest paths

Goal. Find the shortest path from s to every other vertex.

Observation. A shortest-paths tree (SPT) solution exists. Why?

Consequence. Can represent the SPT with two vertex-indexed arrays:

- distTo[v] is length of shortest path from s to v.
- edgeTo[v] is last edge on shortest path from s to v.

shortest-paths tree from 0

		edgeTo[]	
0	distTo[]		
	nul1	0	
2	$5->1$	0.32	1.05
3	$0->2$	0.26	0.26
4	$7->3$	0.37	0.97
5	$0->4$	0.38	0.38
6	$4->5$	0.35	0.73
7	$3->6$	0.52	1.49
7	$2->7$	0.34	0.60

parent-link representation

Data structures for single-source shortest paths

Goal. Find the shortest path from s to every other vertex.

Observation. A shortest-paths tree (SPT) solution exists. Why?

Consequence. Can represent the SPT with two vertex-indexed arrays:

- distTo[v] is length of shortest path from s to v.
- edgeTo[v] is last edge on shortest path from s to v.

```
public double distTo(int v)
{ return distTo[v]; }
public Iterable<DirectedEdge> pathTo(int v)
{
    Stack<DirectedEdge> path = new Stack<DirectedEdge>();
    for (DirectedEdge e = edgeTo[v]; e != nul1; e = edgeTo[e.from()])
        path.push(e);
    return path;
}
```


Edge relaxation

Relax edge $e=v \rightarrow w$.

- distTo[v] is length of shortest known path from s to v .
- distTo[w] is length of shortest known path from s to w.
- edgeTo[w] is last edge on shortest known path from stow.
- If $e=v \rightarrow w$ gives shorter path to w through v, update both distTo [w] and edgeTo[w].
$v \rightarrow w$ successfully relaxes

Edge relaxation

Relax edge $e=v \rightarrow w$.

- distTo[v] is length of shortest known path from s to v .
- distTo[w] is length of shortest known path from s to w.
- edgeTo[w] is last edge on shortest known path from sto w.
- If $e=v \rightarrow w$ gives shorter path to w through v, update both distTo [w] and edgeTo[w].

```
private void relax(DirectedEdge e)
{
    int v = e.from(), w = e.to();
    if (distTo[w] > distTo[v] + e.weight())
    {
            distTo[w] = distTo[v] + e.weight();
            edgeTo[w] = e;
    }
}
```


Shortest-paths optimality conditions

Proposition. Let G be an edge-weighted digraph.
Then distTo[] are the shortest path distances from s iff:

- For each vertex v, distTo[v] is the length of some path from s to v.
- For each edge $\mathrm{e}=\mathrm{v} \rightarrow \mathrm{w}$, distTo[w] $\leq \operatorname{distTo[v]}+\mathrm{e}$. weight().

Pf. \Leftarrow [necessary]

- Suppose that distTo [w] > distTo[v] +e.weight() for some edge $e=v \rightarrow w$.
- Then, e gives a path from s to w (through v) of length less than distTo[w].

Shortest-paths optimality conditions

Proposition. Let G be an edge-weighted digraph.
Then distTo[] are the shortest path distances from s iff:

- For each vertex v, distTo[v] is the length of some path from s to v.
- For each edge $e=v \rightarrow w$, distTo $[w] \leq \operatorname{distTo}[v]+e . w e i g h t()$.

Pf. \Rightarrow [sufficient]

- Suppose that $s=v_{0} \rightarrow v_{l} \rightarrow v_{2} \rightarrow \ldots \rightarrow v_{k}=w$ is a shortest path from s to w.
- Then, distTo $\left[\mathrm{v}_{1}\right] \leq \operatorname{distTo}\left[\mathrm{v}_{0}\right]+\mathrm{e}_{1}$. weight()

$$
\operatorname{distTo}\left[\mathrm{v}_{2}\right] \leq \operatorname{distTo}\left[\mathrm{v}_{1}\right]+\mathrm{e}_{2} . \text { weight() }
$$

...

$\mathrm{e}_{\mathrm{i}}=\mathrm{i}^{\text {th }}$ edge on shortest
path from s to w
distTo $\left[\mathrm{v}_{\mathrm{k}}\right] \leq \operatorname{distTo}\left[\mathrm{v}_{\mathrm{k}-1}\right]+\mathrm{e}_{\mathrm{k}}$. weight()

- Add inequalities; simplify; and substitute distTo[vo] = distTo[s] = 0 :

$$
\operatorname{distTo}[w]=\operatorname{distTo}\left[v_{k}\right] \leq \frac{e_{1} \cdot w e i g h t()+e_{2} \cdot w e i g h t()+\ldots+e_{k} \cdot w e i g h t()}{\text { weight of shortest path from stow }}
$$

- Thus, distTo[w] is the weight of shortest path to w. .

Generic shortest-paths algorithm

Generic algorithm (to compute SPT from s)
Initialize distTo[s] = 0 and distTo[v] $=\infty$ for all other vertices.
Repeat until optimality conditions are satisfied:

- Relax any edge.

Proposition. Generic algorithm computes SPT (if it exists) from s.
Pf sketch.

- Throughout algorithm, distTo[v] is the length of a simple path from s to v (and edgeTo[v] is last edge on path).
- Each successful relaxation decreases distTo[v] for some v.
- The entry distTo[v] can decrease at most a finite number of times.

Generic shortest-paths algorithm

Generic algorithm (to compute SPT from s)

Initialize distTo[s] = 0 and distTo[v] $=\infty$ for all other vertices.
Repeat until optimality conditions are satisfied:

- Relax any edge.

Efficient implementations. How to choose which edge to relax?
Ex 1. Dijkstra's algorithm (nonnegative weights).
Ex 2. Topological sort algorithm (no directed cycles).
Ex 3. Bellman-Ford algorithm (no negative cycles).

4.4 Shortest Paths

Algorithms

Robert Sedgewick । Kevin Wayne

- APH
- shortest-paths properties
- Dïkstra's algorithm
- edge-weighted DAGs
- negative weights

4.4 Shortest Paths

Algorithms

Robert Sedgewick I Kevin Wayne
APHS

- shontestipaths properties
- Dijkstra's algorithm
- edge-weighted DAGs
- negative weights
http://algs4.cs.princeton.edu

Edsger W. Dijkstra: select quotes

" Do only what only you can do. "
" In their capacity as a tool, computers will be but a ripple on the surface of our culture. In their capacity as intellectual challenge, they are without precedent in the cultural history of mankind. "
" The use of COBOL cripples the mind; its teaching should, therefore, be regarded as a criminal offence. "

Edsger W. Dijkstra Turing award 1972
" It is practically impossible to teach good programming to students that have had a prior exposure to BASIC: as potential programmers they are mentally mutilated beyond hope of regeneration. '
" APL is a mistake, carried through to perfection. It is the language of the future for the programming techniques of the past: it creates a new generation of coding bums. '

Edsger W. Dijkstra: select quotes

Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges pointing from that vertex.

Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges pointing from that vertex.

shortest-paths tree from vertex s

Dijkstra's algorithm visualization

Dijkstra's algorithm visualization

Dijkstra's algorithm: correctness proof

Proposition. Dijkstra's algorithm computes a SPT in any edge-weighted digraph with nonnegative weights.

Pf.

- Each edge $\mathrm{e}=\mathrm{v} \rightarrow \mathrm{w}$ is relaxed exactly once (when v is relaxed), leaving distTo[w] $\leq \operatorname{distTo[v]~+~e.weight().~}$
- Inequality holds until algorithm terminates because:
- distTo[w] cannot increase \qquad distTo[] values are monotone decreasing
- distTo[v] will not change

we choose lowest distTo[] value at each step (and edge weights are nonnegative)
- Thus, upon termination, shortest-paths optimality conditions hold. .

Dijkstra's algorithm: Java implementation

```
public class DijkstraSP
{
    private DirectedEdge[] edgeTo;
    private doub7e[] distTo;
    private IndexMinPQ<Doub7e> pq;
    public DijkstraSP(EdgeWeightedDigraph G, int s)
    {
        edgeTo = new DirectedEdge[G.V()];
        distTo = new double[G.V()];
        pq = new IndexMinPQ<Double>(G.V());
            for (int v = 0; v < G.V(); v++)
            distTo[v] = Double.POSITIVE_INFINITY;
            distTo[s] = 0.0;
            pq.insert(s, 0.0);
            while (!pq.isEmpty())
            {
                int v = pq.de\Min();
                for (DirectedEdge e : G.adj(v))
                        relax(e);
            }
    }
}
```


Dijkstra's algorithm: Java implementation

```
private void relax(DirectedEdge e)
{
    int v = e.from(), w = e.to();
    if (distTo[w] > distTo[v] + e.weight())
    {
        distTo[w] = distTo[v] + e.weight();
        edgeTo[w] = e;
        if (pq.contains(w)) pq.decreaseKey(w, distTo[w]);
            else pq.insert (w, distTo[w]);
    }
}
```

Computing spanning trees in graphs

Dijkstra's algorithm seem familiar?

- Prim's algorithm is essentially the same algorithm.
- Both are in a family of algorithms that compute a graph's spanning tree.

Main distinction: Rule used to choose next vertex for the tree.

- Prim's: Closest vertex to the tree (via an undirected edge).
- Dijkstra's: Closest vertex to the source (via a directed path).

Note: DFS and BFS are also in this family of algorithms.

Dijkstra's algorithm: which priority queve?

Depends on PQ implementation: V insert, V delete-min, E decrease-key.

PQ implementation	insert	delete-min	decrease-key	total
unordered array	1	V	1	V^{2}
binary heap	$\log \mathrm{V}$	$\log \mathrm{V}$	$\log \mathrm{V}$	E log V
d-way heap (Johnson 1975)	$\mathrm{d} \log _{\mathrm{d}} \mathrm{V}$	$\mathrm{d} \log _{\mathrm{d}} \mathrm{V}$	$\log _{d} \mathrm{~V}$	$E \log _{\mathrm{E} / \mathrm{V}} \mathrm{V}$
Fibonacci heap (Fredman-Tarjan 1984)	$1 \dagger$	$\boldsymbol{l o g} \mathrm{V} \dagger$	$1 \dagger$	$\mathrm{E}+\mathrm{V} \log \mathrm{V}$

\dagger amortized
Bottom line.

- Array implementation optimal for dense graphs.
- Binary heap much faster for sparse graphs.
- 4-way heap worth the trouble in performance-critical situations.
- Fibonacci heap best in theory, but not worth implementing.

4.4 Shortest Paths

Algorithms

Robert Sedgewick I Kevin Wayne
APHS

- shontestipaths properties
- Dijkstra's algorithm
- edge-weighted DAGs
- negative weights
http://algs4.cs.princeton.edu

4.4 Shortest Paths

Algorithms

Robert Sedgewick I Kevin Wayne

APHS

- shortestipaths properties
- Dïkstra's algorithm
- edge-weighted DAGs
- negative weights

Acyclic edge-weighted digraphs
Q. Suppose that an edge-weighted digraph has no directed cycles.

Is it easier to find shortest paths than in a general digraph?
A. Yes!

Acyclic shortest paths demo

- Consider vertices in topological order.
- Relax all edges pointing from that vertex.

Acyclic shortest paths demo

- Consider vertices in topological order.
- Relax all edges pointing from that vertex.

$\mathbf{0}$	$\mathbf{1}$	$\mathbf{4}$	$\mathbf{7}$	$\mathbf{5}$	$\mathbf{2}$
		$\mathbf{3}$	6		
v	distTo[]	edgeTo[]			
0	0.0	-			
1	5.0		$0 \rightarrow 1$		
2	14.0		$5 \rightarrow 2$		
3	17.0		$2 \rightarrow 3$		
4	9.0		$0 \rightarrow 4$		
5	13.0	$4 \rightarrow 5$			
6	25.0	$2 \rightarrow 6$			
7	8.0	$0 \rightarrow 7$			

shortest-paths tree from vertex s

Shortest paths in edge-weighted DAGs

Proposition. Topological sort algorithm computes SPT in any edgeweighted DAG in time proportional to $E+V$.

Pf.

- Each edge $\mathrm{e}=\mathrm{v} \rightarrow \mathrm{w}$ is relaxed exactly once (when v is relaxed), leaving distTo[w] \leq distTo[v] + e.weight().
- Inequality holds until algorithm terminates because:
- distTo[w] cannot increase \square distTo[] values are monotone decreasing
- distTo[v] will not Change «_ because of topological order, no edge pointing to v will be relaxed after v is relaxed
- Thus, upon termination, shortest-paths optimality conditions hold.

Shortest paths in edge-weighted DAGs

```
public class AcyclicSP
{
    private DirectedEdge[] edgeTo;
    private double[] distTo;
    public AcyclicSP(EdgeWeightedDigraph G, int s)
    {
        edgeTo = new DirectedEdge[G.V()];
        distTo = new double[G.V()];
            for (int v = 0; v < G.V(); v++)
            distTo[v] = Double.POSITIVE_INFINITY;
            distTo[s] = 0.0;
            Topologica1 topologica1 = new Topologica1(G);
            for (int v : topological.order())
            for (DirectedEdge e : G.adj(v))
                relax(e);
    }
}
```


Content-aware resizing

Seam carving. [Avidan and Shamir] Resize an image without distortion for display on cell phones and web browsers.

Shai Avidan
Mitsubishi Electric Research Lab
Ariel Shamir
The interdisciplinary Center \& MERL

Content-aware resizing

Seam carving. [Avidan and Shamir] Resize an image without distortion for display on cell phones and web browsers.

In the wild. Photoshop CS 5, Imagemagick, GIMP, ...

Content-aware resizing

To find vertical seam:

- Grid DAG: vertex = pixel; edge = from pixel to 3 downward neighbors.
- Weight of pixel = energy function of 8 neighboring pixels.
- Seam = shortest path (sum of vertex weights) from top to bottom.

Content-aware resizing

To find vertical seam:

- Grid DAG: vertex = pixel; edge = from pixel to 3 downward neighbors.
- Weight of pixel = energy function of 8 neighboring pixels.
- Seam = shortest path (sum of vertex weights) from top to bottom.

Content-aware resizing

To remove vertical seam:

- Delete pixels on seam (one in each row).

Content-aware resizing

To remove vertical seam:

- Delete pixels on seam (one in each row).

Longest paths in edge-weighted DAGs

Formulate as a shortest paths problem in edge-weighted DAGs.

- Negate all weights.
- Find shortest paths.
- Negate weights in result.
longest paths input

$$
\begin{array}{ll}
5->4 & 0.35 \\
4->7 & 0.37 \\
5->7 & 0.28 \\
5->1 & 0.32 \\
4->0 & 0.38 \\
0->2 & 0.26 \\
3->7 & 0.39 \\
1->3 & 0.29 \\
7->2 & 0.34 \\
6->2 & 0.40 \\
3->6 & 0.52 \\
6->0 & 0.58 \\
6->4 & 0.93
\end{array}
$$

shortest paths input

$$
\begin{array}{ll}
5->4 & -0.35 \\
4->7 & -0.37 \\
5->7 & -0.28 \\
5->1 & -0.32 \\
4->0 & -0.38 \\
0->2 & -0.26 \\
3->7 & -0.39 \\
1->3 & -0.29 \\
7->2 & -0.34 \\
6->2 & -0.40 \\
3->6 & -0.52 \\
6->0 & -0.58 \\
6->4 & -0.93
\end{array}
$$

Longest paths in edge-weighted DAGs: application

Parallel job scheduling. Given a set of jobs with durations and precedence constraints, schedule the jobs (by finding a start time for each) so as to achieve the minimum completion time, while respecting the constraints.

job	duration	must complete before		
0	41.0	1	7	9
1	51.0	2		
2	50.0			
3	36.0			
4	38.0			
5	45.0			
6	21.0	3	8	
7	32.0	3	8	
8	32.0	2		
9	29.0	4	6	

Critical path method

CPM. To solve a parallel job-scheduling problem, create edge-weighted DAG:

- Source and sink vertices.
- Two vertices (begin and end) for each job.
- Three edges for each job.
- begin to end (weighted by duration)
- source to begin (0 weight)
- end to sink (0 weight)
- One edge for each precedence constraint (0 weight).

job	duration	must complete before		
0	41.0	1	7	9
1	51.0	2		
2	50.0			
3	36.0			
4	38.0			
5	45.0			
6	21.0	3	8	
7	32.0	3	8	
8	32.0	2		
9	29.0	4	6	

Critical path method

CPM. Use longest path from the source to schedule each job.

4.4 Shortest Paths

Algorithms

Robert Sedgewick I Kevin Wayne

APHS

- shortestipaths properties
- Dïkstra's algorithm
- edge-weighted DAGs
- negative weights

4.4 Shortest Paths

Algorithms

Robert Sedgewick । Kevin Wayne

- ÁPls
- shortestipaths properties
- Diikstra's algorithm
- edge-weighted DAGś
- negative weights

Shortest paths with negative weights: failed attempts

Dijkstra. Doesn't work with negative edge weights.

Dijkstra selects vertex 3 immediately after 0 .
But shortest path from 0 to 3 is $0 \rightarrow 1 \rightarrow 2 \rightarrow 3$.

Re-weighting. Add a constant to every edge weight doesn't work.

Adding 9 to each edge weight changes the shortest path from $0 \rightarrow 1 \rightarrow 2 \rightarrow 3$ to $0 \rightarrow 3$.

Conclusion. Need a different algorithm.

Negative cycles

Def. A negative cycle is a directed cycle whose sum of edge weights is negative.

Proposition. A SPT exists iff no negative cycles.
assuming all vertices reachable from s

Bellman-Ford algorithm

Bellman-Ford algorithm
Initialize distTo[s] = 0 and distTo[v] $=\infty$ for all other vertices.
Repeat V times:

- Relax each edge.

```
for (int i = 0; i < G.V(); i++)
    for (int v = 0; v < G.V(); v++)
        for (DirectedEdge e : G.adj(v))
            relax(e);
```


Bellman-Ford algorithm demo

Repeat V times: relax all E edges.

an edge-weighted digraph

Bellman-Ford algorithm demo

Repeat V times: relax all E edges.

shortest-paths tree from vertex s

Bellman-Ford algorithm visualization

Bellman-Ford algorithm: analysis

Bellman-Ford algorithm

Initialize distTo[s] = 0 and distTo[v] $=\infty$ for all other vertices.
Repeat V times:

- Relax each edge.

Proposition. Dynamic programming algorithm computes SPT in any edgeweighted digraph with no negative cycles in time proportional to $E \times V$.

Pf idea. After pass i, found shortest path containing at most i edges.

Bellman-Ford algorithm: practical improvement

Observation. If distTo[v] does not change during pass i, no need to relax any edge pointing from v in pass $i+1$.

FIFO implementation. Maintain queue of vertices whose distTo[] changed.

Overall effect.

- The running time is still proportional to $E \times V$ in worst case.
- But much faster than that in practice.

Single source shortest-paths implementation: cost summary

algorithm	restriction	typical case	worst case	extra space
topological sort	no directed cycles	$\mathrm{E}+\mathrm{V}$	$\mathrm{E}+\mathrm{V}$	V
Dijkstra (binary heap)	no negative weights	E log V	E log V	V
Bellman-Ford	E V	E V	V	
Bellman-Ford (queue-based)	negative cycles	$\mathrm{E}+\mathrm{V}$	E V	V

Remark 1. Directed cycles make the problem harder.
Remark 2. Negative weights make the problem harder.
Remark 3. Negative cycles makes the problem intractable.

Finding a negative cycle

Negative cycle. Add two method to the API for SP.
boolean hasNegativeCycle() is there a negative cycle?
Iterable <DirectedEdge> negativeCycle() negative cycle reachable from s

```
digraph
    4->5 0.35
    5->4 -0.66
    4->7 0.37
    5->7 0.28
    7->5 0.28
    5->1 0.32
    0->4 0.38
    0->2 0.26
    7->3 0.39
    1->3 0.29
    2->7 0.34
    6->2 0.40
    3->6 0.52
    6->0 0.58
    6->4 0.93
```


negative cycle $(-0.66+0.37+0.28)$
$5->4->7->5$

Finding a negative cycle

Observation. If there is a negative cycle, Bellman-Ford gets stuck in loop, updating distTo[] and edgeTo[] entries of vertices in the cycle.

Proposition. If any vertex v is updated in phase v, there exists a negative cycle (and can trace back edgeTo[v] entries to find it).

In practice. Check for negative cycles more frequently.

Negative cycle application: arbitrage detection

Problem. Given table of exchange rates, is there an arbitrage opportunity?

	USD	EUR	GBP	CHF	CAD
USD	1	0.741	0.657	1.061	1.011
EUR	1.350	1	0.888	1.433	1.366
GBP	1.521	1.126	1	1.614	1.538
CHF	0.943	0.698	0.620	1	0.953
CAD	0.995	0.732	0.650	1.049	1

Ex. $\$ 1,000 \Rightarrow 741$ Euros $\Rightarrow 1,012.206$ Canadian dollars $\Rightarrow \$ 1,007.14497$.

$$
1000 \times 0.741 \times 1.366 \times 0.995=1007.14497
$$

Negative cycle application: arbitrage detection

Currency exchange graph.

- Vertex = currency.
- Edge = transaction, with weight equal to exchange rate.
- Find a directed cycle whose product of edge weights is >1.

Challenge. Express as a negative cycle detection problem.

Negative cycle application: arbitrage detection

Model as a negative cycle detection problem by taking logs.

- Let weight of edge $v \rightarrow w$ be $-\ln$ (exchange rate from currency v to w).
- Multiplication turns to addition; > 1 turns to <0.
- Find a directed cycle whose sum of edge weights is <0 (negative cycle).

Remark. Fastest algorithm is extraordinarily valuable!

Shortest paths summary

Dijkstra's algorithm.

- Nearly linear-time when weights are nonnegative.
- Generalization encompasses DFS, BFS, and Prim.

Acyclic edge-weighted digraphs.

- Arise in applications.
- Faster than Dijkstra's algorithm.
- Negative weights are no problem.

Negative weights and negative cycles.

- Arise in applications.
- If no negative cycles, can find shortest paths via Bellman-Ford.
- If negative cycles, can find one via Bellman-Ford.

Shortest-paths is a broadly useful problem-solving model.

4.4 Shortest Paths

Algorithms

Robert Sedgewick । Kevin Wayne

- ÁPls
- shortestipaths properties
- Diikstra's algorithm
- edge-weighted DAGś
- negative weights

Algorithms

4.4 Shortest Paths

- APls
- shortest-paths properties
- Dijkstra's algorithm
- edge-weighted DAGs
- negative weights
http://algs4.cs.princeton.edu

[^0]: Reference: Network Flows: Theory, Algorithms, and Applications, R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Prentice Hall, 1993.

