Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

Critical components in the world's computational infrastructure.

- Full scientific understanding of their properties has enabled us to develop them into practical system sorts.
- Quicksort honored as one of top 10 algorithms of 20th century in science and engineering.

Mergesort.

← last lecture

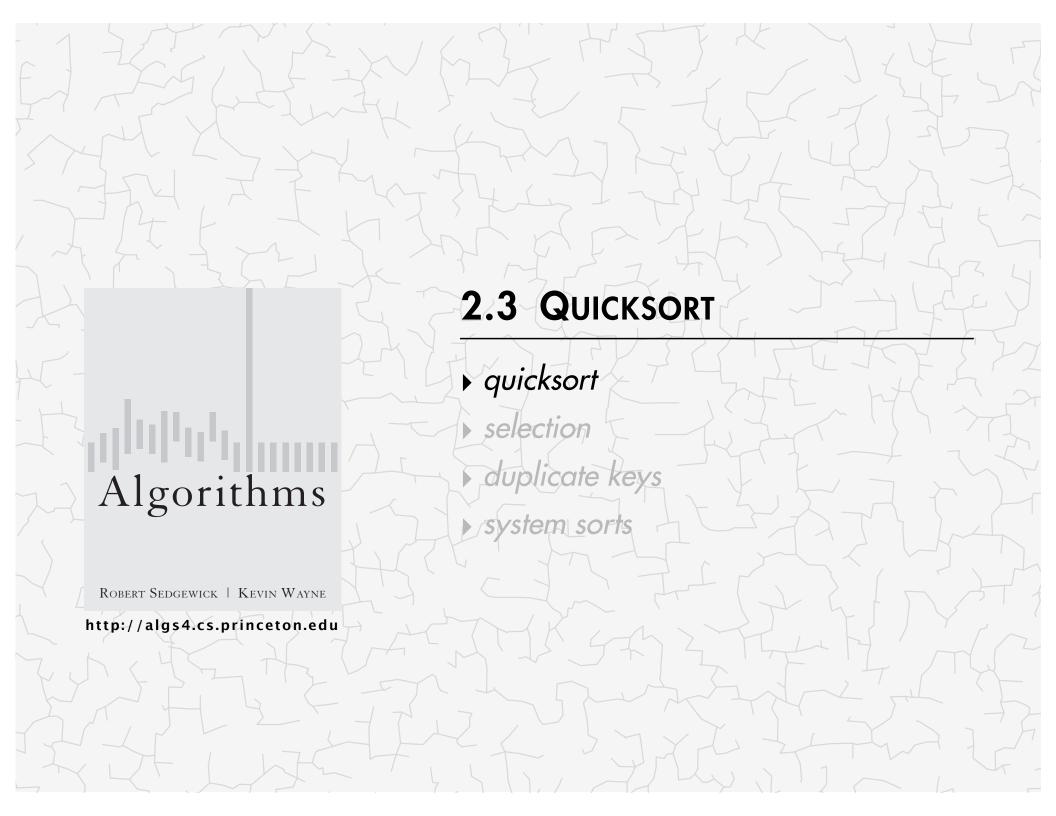
- Java sort for objects.
- Perl, C++ stable sort, Python stable sort, Firefox JavaScript, ...

Quicksort.

----- this lecture

- Java sort for primitive types.
- C qsort, Unix, Visual C++, Python, Matlab, Chrome JavaScript, ...

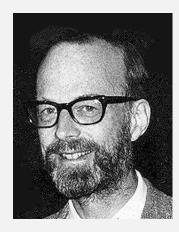
Quicksort t-shirt



Quicksort

Basic plan.

- Shuffle the array.
- Partition so that, for some j
 - entry a[j] is in place
 - no larger entry to the left of ${\tt j}$
 - no smaller entry to the right of j
- Sort each piece recursively.



Sir Charles Antony Richard Hoare 1980 Turing Award

input	Q	U	I	С	K	S	0	R	Т	E	Х	A	М	Р	L	E	
shuffle	Κ -	R	А	Т	Е	L	Е	Ρ	U	Ι	М	Q	С	Х	0	S	
							7	ра	rtitic	oning	g iten	1					
partition	E	С	А	Ι	Е	ĸ	Ĺ_	Ρ	U	Т	Μ	Q	R	Х	0	S	
			×	` no	t gree	ater			n	ot les	is –						
sort left	А	С	Е	Е	Ι	К	L	Р	U	Т	Μ	Q	R	Х	0	S	
sort right	А	С	Е	Е	Ι	К	L	М	0	Ρ	Q	R	S	Т	U	Х	
result	А	С	Е	Е	Ι	Κ	L	М	0	Ρ	Q	R	S	Т	U	Х	

Repeat until i and j pointers cross.

- Scan i from left to right so long as (a[i] < a[10]).
- Scan j from right to left so long as (a[j] > a[lo]).
- Exchange a[i] with a[j].

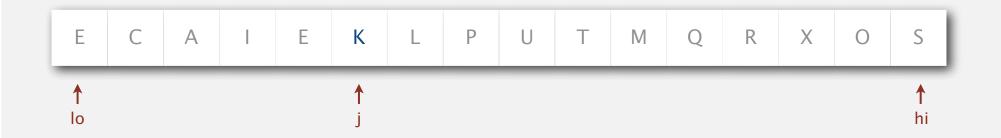
K	R	А	Т	E	L	E	Р	U	I	Μ	Q	С	Х	0	S
∱ Io	↑ i														∱ j

Repeat until i and j pointers cross.

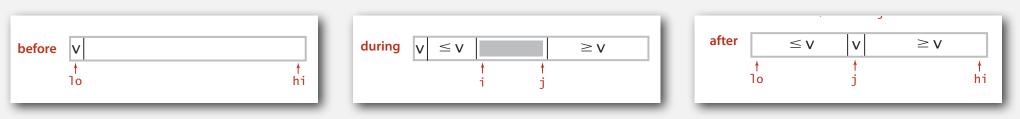
- Scan i from left to right so long as (a[i] < a[10]).
- Scan j from right to left so long as (a[j] > a[lo]).
- Exchange a[i] with a[j].

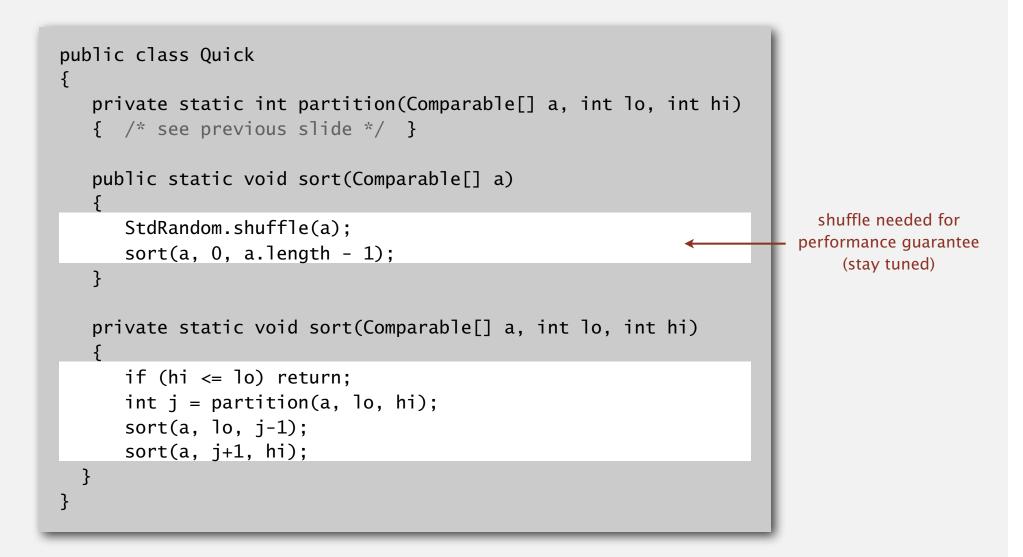
When pointers cross.

• Exchange a[lo] with a[j].



```
private static int partition(Comparable[] a, int lo, int hi)
   int i = lo, j = hi+1;
   while (true)
      while (less(a[++i], a[lo]))
                                           find item on left to swap
          if (i == hi) break;
      while (less(a[lo], a[--j]))
                                          find item on right to swap
          if (j == lo) break;
      if (i >= j) break;
                                             check if pointers cross
      exch(a, i, j);
                                                           swap
   }
   exch(a, lo, j);
                                         swap with partitioning item
   return j;
                return index of item now known to be in place
}
```



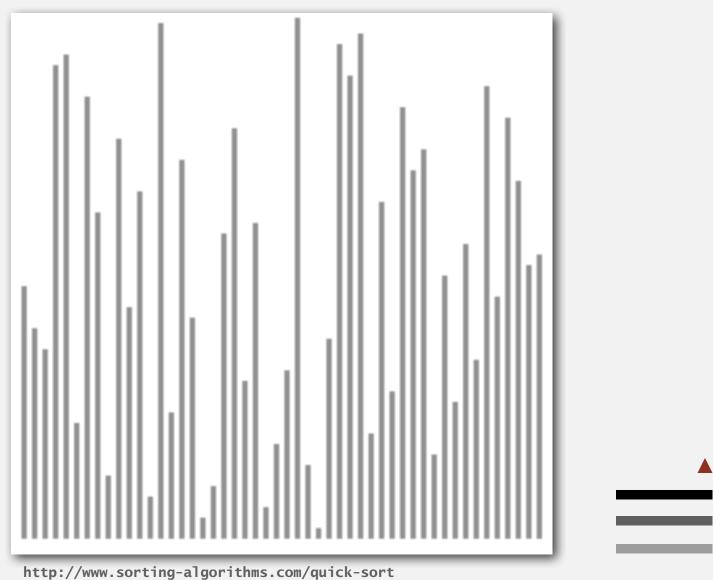


Quicksort trace

10	o j	hi	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
initial values	J		Q	 U	I	C	K	S	0	R	T	E	X	A	M	<u>Р</u>	<u>1</u>	E
random shuffle			K	R	Ă	Т	E	I	Ē	P	U	I	M	Q	C	X	0	S
	0 5	15	E	C	A	Ť	E	K	I	P	U	Ť	М	Q	R	X	0	S
	0 3	4	Ē	C	A	Ē	I	K		P	U	Ť	М	0	R	Х	0	S
	0 2	2	Ā	C	E	F	Т	K		P	Ŭ	Т	М	0	R	X	0	S
	0 0	-	Α	C	F	F	Т	K		P	Ŭ	Т	М	0	R	X	0	S
	1	1	A	C	F	F	Т	K		P	Ŭ	Т	М	0	R	X	0	S
	4	4	A	C	F	F	т	K		P	Ŭ	Т	М	0	R	Х	0	S
	6 <mark>6</mark>	15	A	C	F	F	Т	K		Р	U	Т	М	Q	R	X	0	S
no partition 🥢 👘	7 9	15	A	C	F	F	Т	K	1	M	0	P	Т	Q	R	Х	U	S
for subarrays	7 7	8	A	C	F	F	Т	K		М	0	P	Ť	0	R	Х	U	S
of size 1	8	8	Α	C	F	F	Т	K		М	0	P	Т	0	R	X	U	S
	-	15	A	C	F	F	Т	K		M	0	P	S	Q	R	Т	Ŭ	X
		12	A	C	F	F	Т	K		M	0	P	R	Q	S	Ť	Ŭ	Х
		11	Α	C	F	F	Т	K		М	0	P	Q	R	S	Т	U	X
		10	A	C	F	F	Т	K		M	0	P	Q	R	S	Ť	U	X
		15	A	C	F	F	Т	K		M	0	P	0	R	S	Ť	Ŭ	X
¥_		15	A	C	F	F	Т	K		M	0	P	0	R	S	T		X
- 444		10	1				-				0		~		0		0	~
result			А	С	Е	Е	Ι	Κ	L	М	0	Ρ	Q	R	S	Т	U	Х
	Q	uicksor	t trac	e (ar	rayo	cont	ents	afte	r ea	ch pa	artiti	on)						

Quicksort animation

50 random items



11

algorithm position

current subarray

not in order

in order

Partitioning in-place. Using an extra array makes partitioning easier (and stable), but is not worth the cost.

Terminating the loop. Testing whether the pointers cross is a bit trickier than it might seem.

Staying in bounds. The (j == 10) test is redundant (why?), but the (i == hi) test is not.

Preserving randomness. Shuffling is needed for performance guarantee.

Equal keys. When duplicates are present, it is (counter-intuitively) better to stop on keys equal to the partitioning item's key.

Quicksort: empirical analysis

Running time estimates:

- Home PC executes 10⁸ compares/second.
- Supercomputer executes 10¹² compares/second.

	ins	ertion sort (N ²)	mer	gesort (N lo	g N)	quicksort (N log N)					
computer	thousand	million	billion	thousand	million	billion	thousand	million	billion			
home	instant	2.8 hours	317 years	instant	1 second	18 min	instant	0.6 sec	12 min			
super	instant	1 second	1 week	instant	instant	instant	instant	instant	instant			

Lesson 1. Good algorithms are better than supercomputers.

Lesson 2. Great algorithms are better than good ones.

Quicksort: best-case analysis

Best case. Number of compares is $\sim N \lg N$.

										a	[]						
lo	j	hi	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
initia	al valı	les	Н	А	С	В	F	Е	G	D	L	I	К	J	Ν	М	0
rand	om sl	nuffle	Н	А	С	В	F	Е	G	D	L	I	К	J	Ν	М	0
0	7	14	D	А	С	В	F	Е	G	Н	L	I	К	J	Ν	М	0
0	3	6	В	А	С	D	F	Ε	G	Н	L		К	J	Ν	М	0
0	1	2	А	В	С	D	F	Е	G	Н	L		К	J	Ν	Μ	0
0		0	Α	В	С	D	F	Е	G	Н	L		К	J	Ν	Μ	0
2		2	А	В	С	D	F	Е	G	Н	L		К	J	Ν	Μ	0
4	5	6	А	В	С	D	Ε	F	G	Н	L		К	J	Ν	М	0
4		4	А	В	С	D	Ε	F	G	Н	L		К	J	Ν	М	0
6		6	А	В	С	D	Е	F	G	Н	L		К	J	Ν	Μ	0
8	11	14	А	В	С	D	Е	F	G	Н	J	I	К	L	Ν	М	0
8	9	10	А	В	С	D	E	F	G	Η	Ι	J	К	L	Ν	Μ	0
8		8	А	В	С	D	E	F	G	Н	T	J	К	L	Ν	Μ	0
10		10	А	В	С	D	Ε	F	G	Н		J	K	L	Ν	Μ	0
12	13	14	А	В	С	D	Ε	F	G	Н		J	К	L	М	Ν	0
12		12	А	В	С	D	E	F	G	Н		J	К	L	М	Ν	0
14		14	А	В	С	D	E	F	G	Η		J	К	L	Μ	Ν	0
			А	В	С	D	Ε	F	G	Η	I	J	К	L	М	Ν	0

Quicksort: worst-case analysis

Worst case. Number of compares is $\sim \frac{1}{2} N^2$.

										a	[]						
lo	j	hi	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
initia	al valı	les	А	В	С	D	Е	F	G	Н	l	J	К	L	М	Ν	0
rand	lom sł	nuffle	A	В	С	D	Ε	F	G	Н	Ι	J	К	L	М	Ν	0
0	0	14	Α	В	С	D	Ε	F	G	Н	I	J	К	L	М	Ν	0
1	1	14	А	В	С	D	Ε	F	G	Н	l	J	К	L	М	Ν	0
2	2	14	А	В	С	D	Ε	F	G	Н	Ι	J	К	L	М	Ν	0
3	3	14	А	В	С	D	Ε	F	G	Н	I	J	К	L	М	Ν	0
4	4	14	А	В	С	D	Е	F	G	Н	I	J	К	L	М	Ν	0
5	5	14	А	В	С	D	Е	F	G	Н	I	J	К	L	М	Ν	0
6	6	14	А	В	С	D	Е	F	G	Η	Ι	J	К	L	М	Ν	0
7	7	14	А	В	С	D	E	F	G	Η	Ι	J	К	L	М	Ν	0
8	8	14	А	В	С	D	E	F	G	Η	I	J	К	L	М	Ν	0
9	9	14	А	В	С	D	E	F	G	Η		J	К	L	М	Ν	0
10	10	14	А	В	С	D	E	F	G	Н		J	К	L	М	Ν	0
11	11	14	А	В	С	D	E	F	G	Н		J	К	L	М	Ν	0
12	12	14	А	В	С	D	E	F	G	Н		J	К	L	М	Ν	0
13	13	14	А	В	С	D	E	F	G	Н		J	К	L	Μ	Ν	0
14		14	А	В	С	D	E	F	G	Η		J	К	L	Μ	Ν	0
			А	В	С	D	Ε	F	G	Η	I	J	К	L	М	Ν	0

Quicksort: average-case analysis

Proposition. The average number of compares C_N to quicksort an array of N distinct keys is $\sim 2N \ln N$ (and the number of exchanges is $\sim \frac{1}{3} N \ln N$).

Pf. C_N satisfies the recurrence $C_0 = C_1 = 0$ and for $N \ge 2$:

partitioning

$$C_N = (N+1) + \left(\frac{C_0 + C_{N-1}}{N}\right) + \left(\frac{C_1 + C_{N-2}}{N}\right) + \dots + \left(\frac{C_{N-1} + C_0}{N}\right)$$

• Multiply both sides by *N* and collect terms:

partitioning probability

$$NC_N = N(N+1) + 2(C_0 + C_1 + \dots + C_{N-1})$$

• Subtract this from the same equation for N - 1:

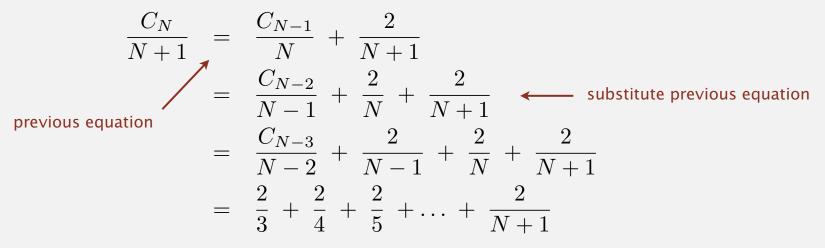
$$NC_N - (N-1)C_{N-1} = 2N + 2C_{N-1}$$

• Rearrange terms and divide by N(N+1):

$$\frac{C_N}{N+1} = \frac{C_{N-1}}{N} + \frac{2}{N+1}$$

Quicksort: average-case analysis

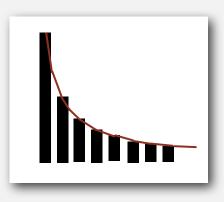
Repeatedly apply above equation:



• Approximate sum by an integral:

$$C_N = 2(N+1)\left(\frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \dots + \frac{1}{N+1}\right)$$

~ $2(N+1)\int_3^{N+1}\frac{1}{x}\,dx$



• Finally, the desired result:

 $C_N \sim 2(N+1) \ln N \approx 1.39 N \lg N$

Quicksort: summary of performance characteristics

Worst case. Number of compares is quadratic.

- $N + (N 1) + (N 2) + \dots + 1 \sim \frac{1}{2} N^2$.
- More likely that your computer is struck by lightning bolt.

Average case. Number of compares is $\sim 1.39 N \lg N$.

- 39% more compares than mergesort.
- But faster than mergesort in practice because of less data movement.

Random shuffle.

- Probabilistic guarantee against worst case.
- Basis for math model that can be validated with experiments.

Caveat emptor. Many textbook implementations go quadratic if array

- Is sorted or reverse sorted.
- Has many duplicates (even if randomized!)

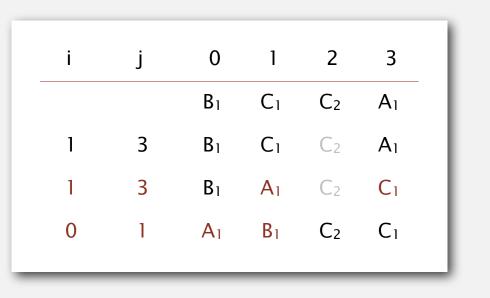
Proposition. Quicksort is an in-place sorting algorithm. Pf.

- Partitioning: constant extra space.
- Depth of recursion: logarithmic extra space (with high probability).

can guarantee logarithmic depth by recurring on smaller subarray before larger subarray

Proposition. Quicksort is not stable.

Pf.



Insertion sort small subarrays.

- Even quicksort has too much overhead for tiny subarrays.
- Cutoff to insertion sort for ≈ 10 items.
- Note: could delay insertion sort until one pass at end.

```
private static void sort(Comparable[] a, int lo, int hi)
{
    if (hi <= lo + CUTOFF - 1)
    {
        Insertion.sort(a, lo, hi);
        return;
    }
    int j = partition(a, lo, hi);
    sort(a, lo, j-1);
    sort(a, j+1, hi);
}</pre>
```

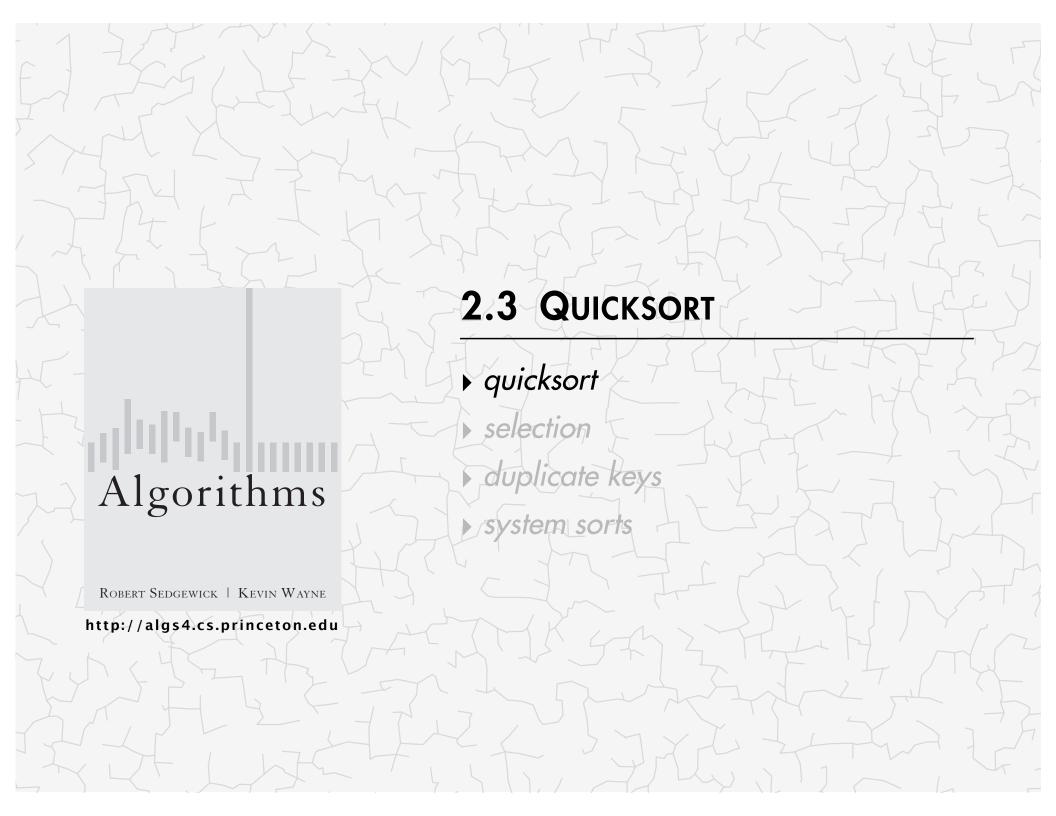
Median of sample.

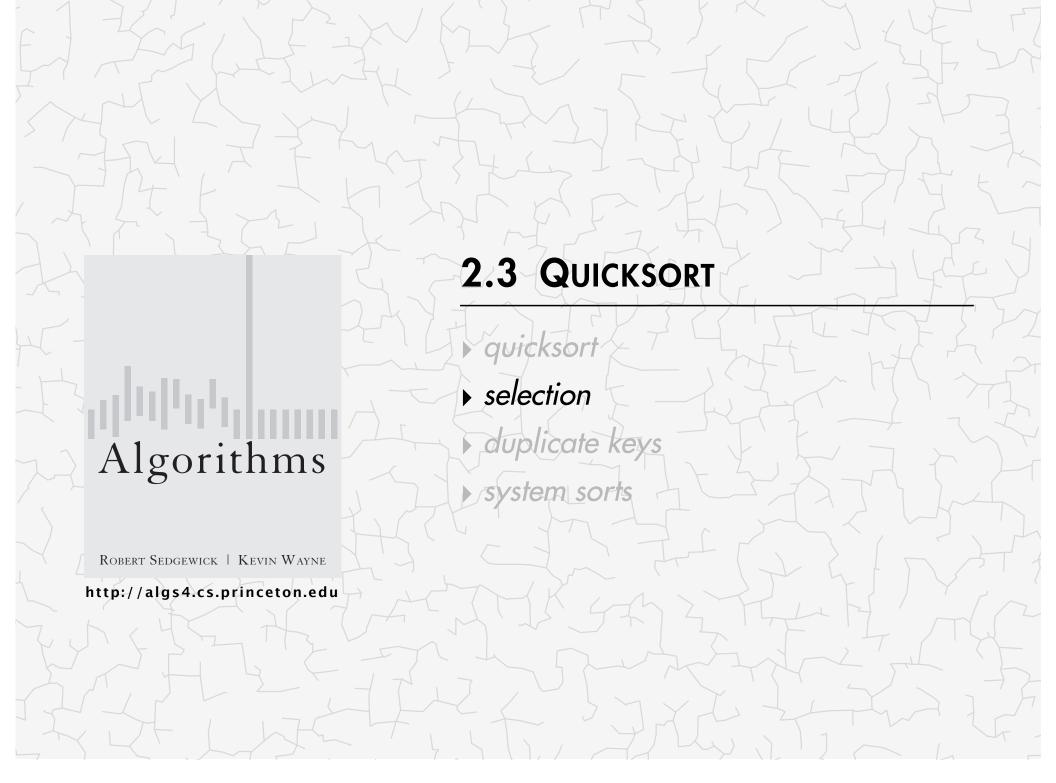
- Best choice of pivot item = median.
- Estimate true median by taking median of sample.
- Median-of-3 (random) items.
 - $\sim 12/7$ N ln N compares (slightly fewer)
 - ~ 12/35 N In N exchanges (slightly more)

```
private static void sort(Comparable[] a, int lo, int hi)
{
    if (hi <= lo) return;
    int m = medianOf3(a, lo, lo + (hi - lo)/2, hi);
    swap(a, lo, m);
    int j = partition(a, lo, hi);
    sort(a, lo, j-1);
    sort(a, j+1, hi);
}</pre>
```

Quicksort with median-of-3 and cutoff to insertion sort: visualization

input	.luululllll.ulululululululululululu
result of first partition	
left subarray partially sorted	
both subarrays partially sorted	
result	





Selection

Goal. Given an array of *N* items, find a k^{th} smallest item. Ex. Min (k = 0), max (k = N - 1), median (k = N/2).

Applications.

- Order statistics.
- Find the "top k."

Use theory as a guide.

- Easy $N \log N$ upper bound. How?
- Easy *N* upper bound for k = 1, 2, 3. How?
- Easy *N* lower bound. Why?

Which is true?

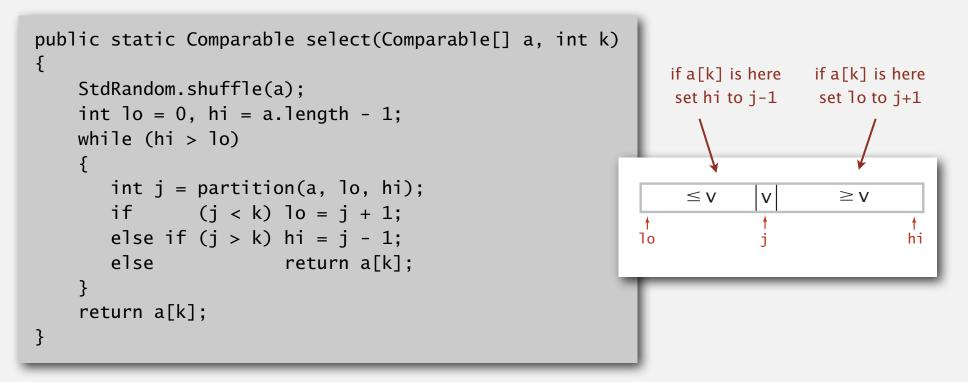
- N log N lower bound?
 <----- is selection as hard as sorting?
- *N* upper bound?
- is there a linear-time algorithm for each k?

Quick-select

Partition array so that:

- Entry a[j] is in place.
- No larger entry to the left of j.
- No smaller entry to the right of j.

Repeat in one subarray, depending on j; finished when j equals k.



Proposition. Quick-select takes linear time on average.

Pf sketch.

- Intuitively, each partitioning step splits array approximately in half: $N+N/2+N/4+...+1 \sim 2N$ compares.
- Formal analysis similar to quicksort analysis yields:

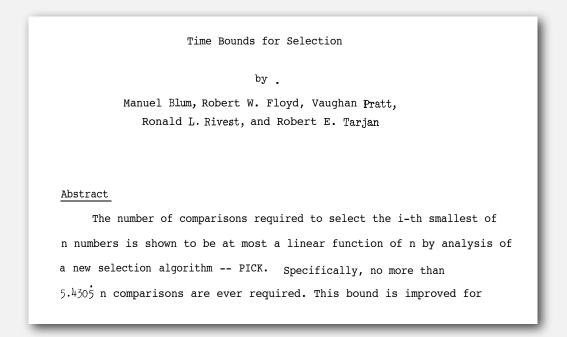
$$C_N = 2 N + 2 k \ln (N / k) + 2 (N - k) \ln (N / (N - k))$$

(2 + 2 ln 2) N to find the median

Remark. Quick-select uses $\sim \frac{1}{2} N^2$ compares in the worst case, but (as with quicksort) the random shuffle provides a probabilistic guarantee.

Theoretical context for selection

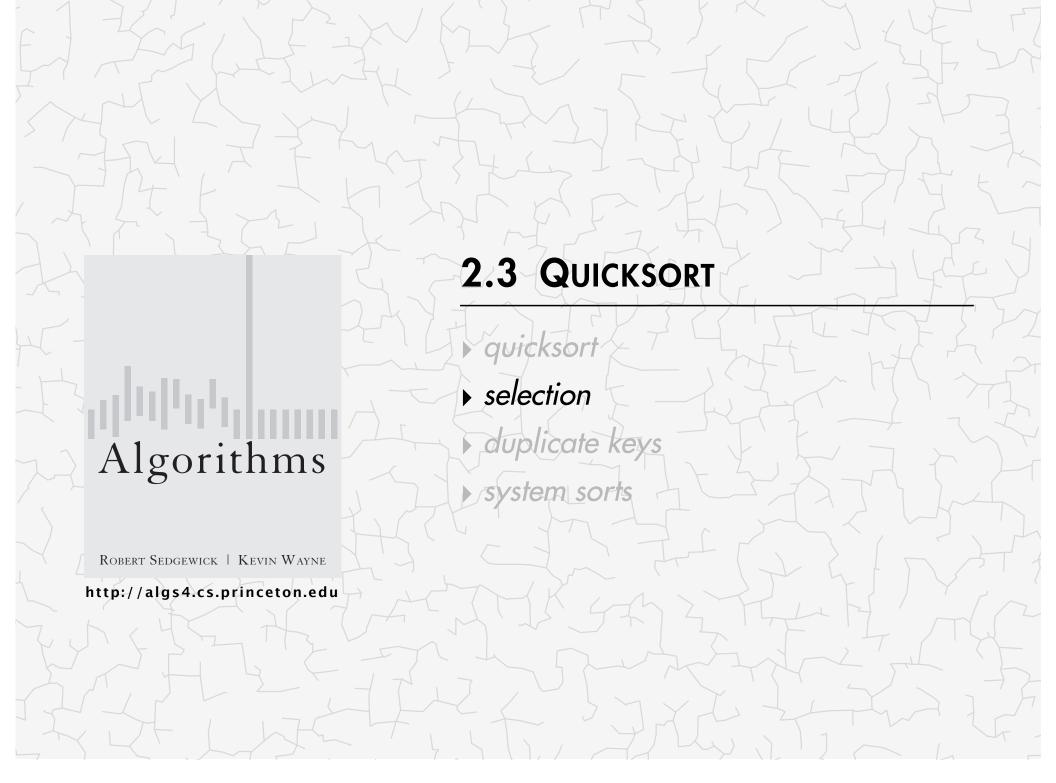
Proposition. [Blum, Floyd, Pratt, Rivest, Tarjan, 1973] Compare-based selection algorithm whose worst-case running time is linear.



Remark. But, constants are too high \Rightarrow not used in practice.

Use theory as a guide.

- Still worthwhile to seek practical linear-time (worst-case) algorithm.
- Until one is discovered, use quick-select if you don't need a full sort.



2.3 QUICKSORT

quicksort

• selection

duplicate keys

system sorts

Algorithms

Robert Sedgewick | Kevin Wayne

http://algs4.cs.princeton.edu

Duplicate keys

Often, purpose of sort is to bring items with equal keys together.

- Sort population by age.
- Remove duplicates from mailing list.
- Sort job applicants by college attended.

Typical characteristics of such applications.

- Huge array.
- Small number of key values.

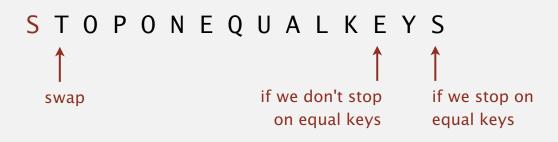
Chicago 09:25:52 Chicago 09:03:13 Chicago 09:21:05 Chicago 09:19:46 Chicago 09:19:32 Chicago 09:00:00 Chicago 09:35:21 Chicago 09:00:59 Houston 09:01:10 Houston 09:00:13 Phoenix 09:37:44 Phoenix 09:00:03 Phoenix 09:14:25 Seattle 09:10:25 Seattle 09:36:14 Seattle 09:22:43 Seattle 09:10:11 Seattle 09:22:54 key

Mergesort with duplicate keys. Between $\frac{1}{2} N \lg N$ and $N \lg N$ compares.

Quicksort with duplicate keys.

- Algorithm goes quadratic unless partitioning stops on equal keys!
- 1990s C user found this defect in qsort().

several textbook and system implementation also have this defect



Duplicate keys: the problem

Mistake. Put all items equal to the partitioning item on one side. Consequence. $\sim \frac{1}{2} N^2$ compares when all keys equal.

BAABABBBCCC AAAAAAAAAAAAA

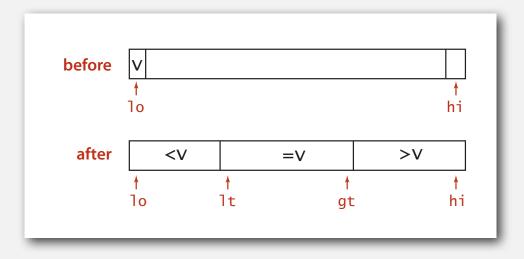
Recommended. Stop scans on items equal to the partitioning item. **Consequence.** $\sim N \lg N$ compares when all keys equal.

Desirable. Put all items equal to the partitioning item in place.

3-way partitioning

Goal. Partition array into 3 parts so that:

- Entries between 1t and gt equal to partition item v.
- No larger entries to left of 1t.
- No smaller entries to right of gt.

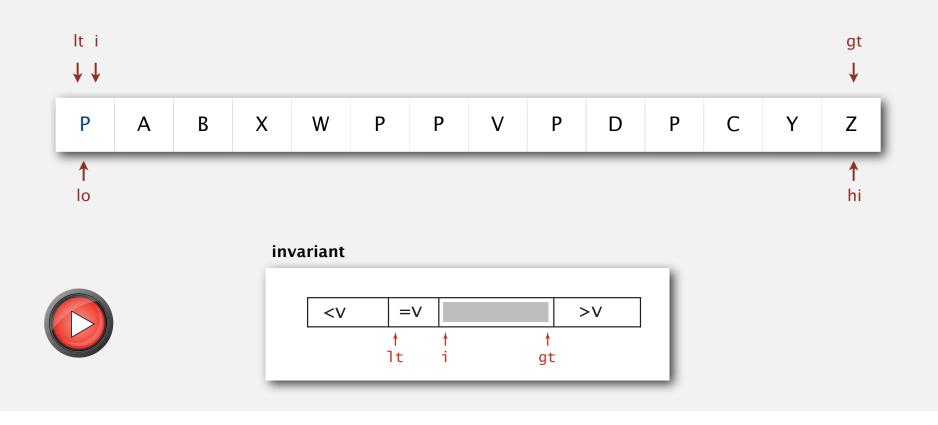


Dutch national flag problem. [Edsger Dijkstra]

- Conventional wisdom until mid 1990s: not worth doing.
- New approach discovered when fixing mistake in C library qsort().
- Now incorporated into qsort() and Java system sort.

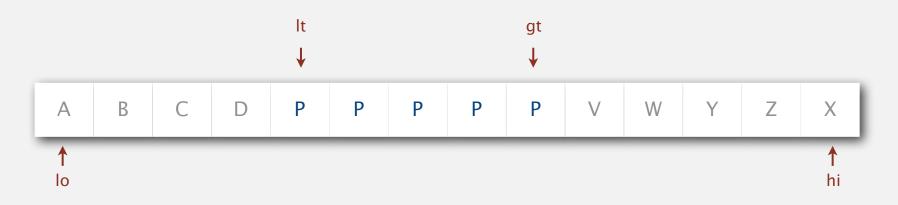
Dijkstra 3-way partitioning demo

- Let v be partitioning item a[1o].
- Scan i from left to right.
 - (a[i] < v): exchange a[lt] with a[i]; increment both lt and i
 - (a[i] > v): exchange a[gt] with a[i]; decrement gt
 - (a[i] == v): increment i

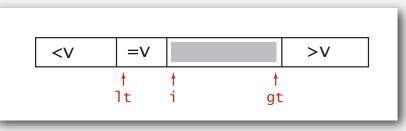


Dijkstra 3-way partitioning demo

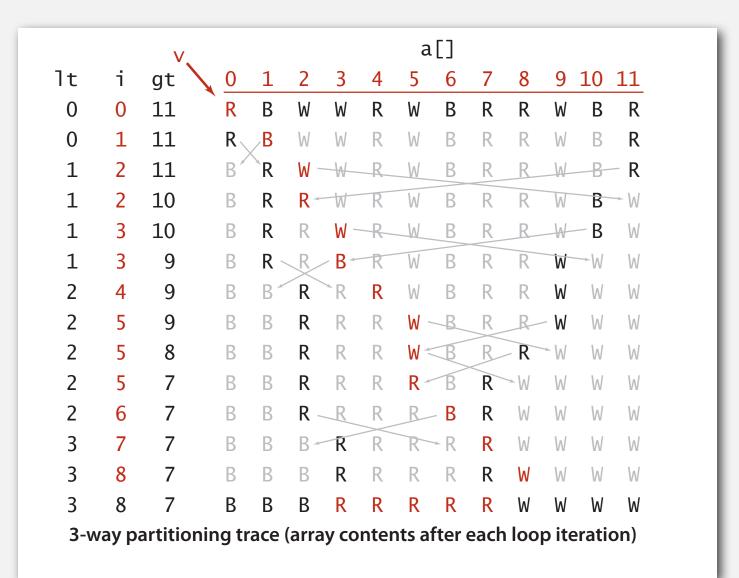
- Let v be partitioning item a[1o].
- Scan i from left to right.
 - (a[i] < v): exchange a[lt] with a[i]; increment both lt and i</pre>
 - (a[i] > v): exchange a[gt] with a[i]; decrement gt
 - (a[i] == v): increment i



invariant



Dijkstra's 3-way partitioning: trace



```
private static void sort(Comparable[] a, int lo, int hi)
{
  if (hi <= lo) return;
   int lt = lo, qt = hi;
   Comparable v = a[lo];
   int i = lo;
   while (i <= gt)</pre>
   {
      int cmp = a[i].compareTo(v);
      if (cmp < 0) exch(a, 1t++, i++);
      else if (cmp > 0) exch(a, i, gt--);
              i++;
      else
   }
                                          before
                                              V
   sort(a, lo, lt - 1);
                                              10
   sort(a, gt + 1, hi);
                                         during
                                               <V
                                                     =V
}
                                                     ł
                                                    1t
                                                        i.
```

hi

hi

>V

>V

gt

ł

gt

=V

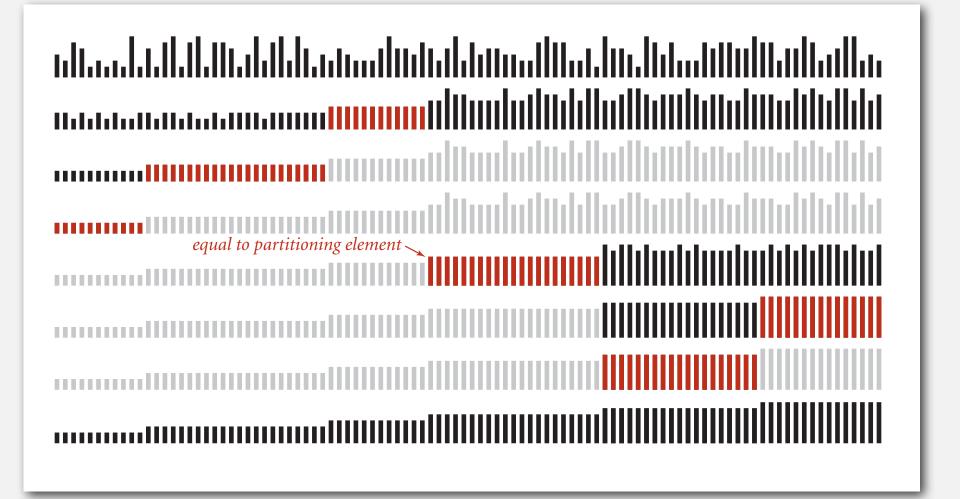
<V

ł

lt

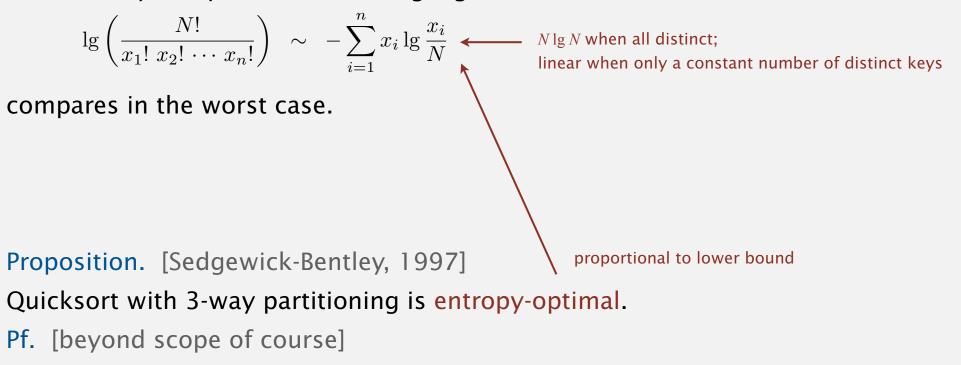
after

10



Duplicate keys: lower bound

Sorting lower bound. If there are *n* distinct keys and the i^{th} one occurs x_i times, any compare-based sorting algorithm must use at least



Bottom line. Randomized quicksort with 3-way partitioning reduces running time from linearithmic to linear in broad class of applications.

2.3 QUICKSORT

quicksort

• selection

duplicate keys

system sorts

Algorithms

Robert Sedgewick | Kevin Wayne

http://algs4.cs.princeton.edu

2.3 QUICKSORT

Algorithms

system sorts

duplicate keys

quicksort

selection

Robert Sedgewick | Kevin Wayne

http://algs4.cs.princeton.edu

Sorting applications

Sorting algorithms are essential in a broad variety of applications:

- Sort a list of names.
- Organize an MP3 library.
- Display Google PageRank results.
- List RSS feed in reverse chronological order.
- Find the median.
- Identify statistical outliers.
- Binary search in a database.
- Find duplicates in a mailing list.
- Data compression.
- Computer graphics.

. . .

- Computational biology.
- Load balancing on a parallel computer.

problems become easy once items are in sorted order

non-obvious applications

obvious applications

Arrays.sort().

- Has different method for each primitive type.
- Has a method for data types that implement Comparable.
- Has a method that uses a Comparator.
- Uses tuned quicksort for primitive types; tuned mergesort for objects.

```
import java.util.Arrays;

public class StringSort
{
    public static void main(String[] args)
    {
        String[] a = StdIn.readStrings());
        Arrays.sort(a);
        for (int i = 0; i < N; i++)
            StdOut.println(a[i]);
    }
}</pre>
```

Q. Why use different algorithms for primitive and reference types?

War story (C qsort function)

AT&T Bell Labs (1991). Allan Wilks and Rick Becker discovered that a qsort() call that should have taken seconds was taking minutes.

At the time, almost all qsort() implementations based on those in:

- Version 7 Unix (1979): quadratic time to sort organ-pipe arrays.
- BSD Unix (1983): quadratic time to sort random arrays of 0s and 1s.

Basic algorithm = quicksort.

- Cutoff to insertion sort for small subarrays.
- Partitioning scheme: Bentley-McIlroy 3-way partitioning.
- Partitioning item.
 - small arrays: middle entry
 - medium arrays: median of 3
 - large arrays: Tukey's ninther [next slide]

Engineering a Sort Function

JON L. BENTLEY M. DOUGLAS McILROY AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974, U.S.A.

SUMMARY

We recount the history of a new qsort function for a C library. Our function is clearer, faster and more robust than existing sorts. It chooses partitioning elements by a new sampling scheme; it partitions by a novel solution to Dijkstra's Dutch National Flag problem; and it swaps efficiently. Its behavior was assessed with timing and debugging testbeds, and with a program to certify performance. The design techniques apply in domains beyond sorting.

Now widely used. C, C++, Java 6,

Tukey's ninther

Tukey's ninther. Median of the median of 3 samples, each of 3 entries.

- Approximates the median of 9.
- Uses at most 12 compares.

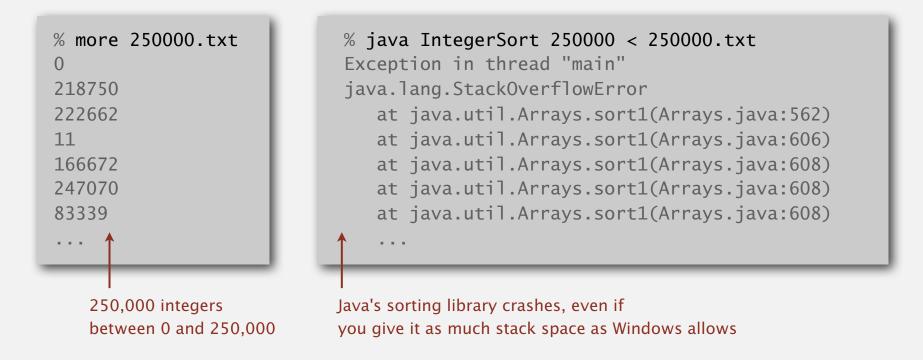
A. Better partitioning than random shuffle and less costly.

Q. Why use Tukey's ninther?

Achilles heel in Bentley-McIlroy implementation (Java system sort)

Q. Based on all this research, Java's system sort is solid, right?

- A. No: a killer input.
 - Overflows function call stack in Java and crashes program.
 - Would take quadratic time if it didn't crash first.



Many sorting algorithms to choose from:

Internal sorts.

- Insertion sort, selection sort, bubblesort, shaker sort.
- Quicksort, mergesort, heapsort, samplesort, shellsort.
- Solitaire sort, red-black sort, splaysort, Yaroslavskiy sort, psort, ...

External sorts. Poly-phase mergesort, cascade-merge, oscillating sort.

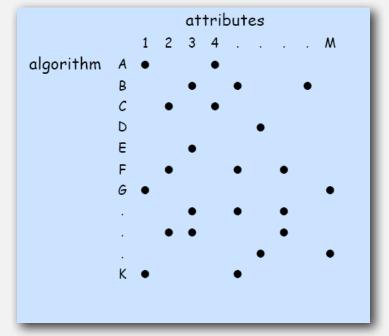
String/radix sorts. Distribution, MSD, LSD, 3-way string quicksort.

Parallel sorts.

- Bitonic sort, Batcher even-odd sort.
- Smooth sort, cube sort, column sort.
- GPUsort.

Applications have diverse attributes.

- Stable?
- Parallel?
- Deterministic?
- Keys all distinct?
- Multiple key types?
- Linked list or arrays?
- Large or small items?
- Is your array randomly ordered?
- Need guaranteed performance?



many more combinations of attributes than algorithms

Elementary sort may be method of choice for some combination. Cannot cover all combinations of attributes.

- Q. Is the system sort good enough?
- A. Usually.

	inplace?	stable?	worst	average	best	remarks
selection	~		N ² / 2	N ² / 2	N ² / 2	N exchanges
insertion	~	V	N ² / 2	N ² / 4	Ν	use for small N or partially ordered
shell	~		?	?	Ν	tight code, subquadratic
merge		V	N lg N	N lg N	N lg N	N log N guarantee, stable
quick	~		N ² / 2	2 N In N	N lg N	<i>N</i> log <i>N</i> probabilistic guarantee fastest in practice
3-way quick	~		N ² / 2	2 N In N	Ν	improves quicksort in presence of duplicate keys
???	~	~	N lg N	N lg N	Ν	holy sorting grail

2.3 QUICKSORT

Algorithms

system sorts

duplicate keys

quicksort

selection

Robert Sedgewick | Kevin Wayne

http://algs4.cs.princeton.edu

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

