
Programming Exam: Polynomials

In this exam, your task is to implement a data structure to store, manipulate and evaluate polynomials. The
focus of the exam will be on implementing a sparse version of this data structure: in a sparse data structure,
coefficients which are equal to zero are not stored.

This leads to very efficient memory usage and operations when we are manipulating polynomials which
contain many zero coefficients.

Introduction

Recall that a polynomial is a sum of terms.

For instance, for the polynomial 7.0x2 + 2.0x5 + 4.5x10, the terms are 7.0x2, 2.0x5 and 4.5x10. Each term
is composed of a coefficient and an exponent. For the term 7.0x2, the coefficient is the Double 7.0 and the
exponent is the Integer 2. (Note that in this exam, exponents are always non-negative.)

As such, a polynomial can alternatively be thought of as a symbol table which maps integers (the exponents)
to doubles (the coefficients):

{ 2 -> 7.0, 5 -> 2.0, 10 -> 4.5 }

or as a list of pairs of a double and integer:

[(7.0, 2), (2.0, 5), (4.5, 10)].

Furthermore, polynomials can be added and multiplied. Here are a few examples.

Let P1 = 7.0x2 + 2.0x5 + 4.5x10 and P2 = 3.0 + 1.0x5. The addition of P1 and P2 is

P1 + P2 = (7.0x2 + 2.0x5 + 4.5x10) + (3.0 + 1.0x5) = 3.0 + 7.0x2 + 3.0x5 + 4.5x10

where, when polynomials have terms of the same exponent, the coefficients of these terms are added together.
For instance, here, both P1 and P2 have a term of exponent 5, so the corresponding coefficients 2.0 and 1.0
are added.

Likewise, we have the product of P1 and P2,

P1 · P2 = (7.0x2 + 2.0x5 + 4.5x10) · (3.0 + 1.0x5) = 21.0x2 + 6.0x5 + 7.0x7 + 15.5x10 + 4.5x15

following the standard properties of distributivity of multiplication over addition.

Below is another, longer example of polynomial addition and multiplication:

(2x2 + 5x3 + 3x4) (6x1 + 7x2 + 4x3).

2x2

5x3

3x4

=

+

+

(6x1 + 7x2 + 4x3).

(6x1 + 7x2 + 4x3).

(6x1 + 7x2 + 4x3).

+= 12x3 14x4

30x4

8x5

35x5

18x5

20x6

21x6 12x7

+

+

+

+

+

+ +

= 12x3 12x744x4 61x5 41x6+ + + +

(2x2 + 5x3 + 3x4) (6x1 + 7x2 + 4x3)+

= 2x2 5x3 3x4+ +

+6x1 7x2 4x3++

= 6x1 9x2 9x3 3x4+ + +

In case it may be helpful, these operations are also defined a bit more formally in the Formal Description of
Operations appendix.

1

Finally, polynomials can also be evaluated: to this end, every occurrence of the formal variable x is replaced
by an actual value. For instance, to evaluate P1 at x = 2.0, we replace every occurrence of x in P1 by 2.0 and
then we compute the result:

P1(2.0) = 7.0 · (2.0)2 + 2.0 · (2.0)5 + 4.5 · (2.0)10 = 4700.0

API and Specification

The API of the class you must implement is provided below:

public class Polynomial immutable polynomial class
Polynomial(double[] coeffs) create a polynomial from an array coeffs in

which coeffs[i] is coefficient of xi

double coeff(int expo) return the value of the coefficient of the term
with exponent expo (and 0.0 if such a
coefficient doesn’t exist)

Polynomial add(Polynomial that) create a new immutable polynomial resulting
from the addition of the instance polynomial
to that

Polynomial multiply(Polynomial that) create a new immutable polynomial resulting
from the product of the instance polynomial
and that

double evaluate(double x) evaluate the polynomial at some value x

String toString() return a string representation of the
polynomial (provided)

In addition, the Polynomial class contains a public static constant MAX_EXPONENT which indicates the largest
possible exponent of any term contained by a Polynomial object.

String Format

For convenience, we provide a static class called PolynomialTools which already contains a method
toString(Polynomial obj) able to nicely format a Polynomial object using only its coeff(int expo)
method and the constant MAX_EXPONENT. You need only make sure that you compile the PolynomialTools
class separately before running your program.

The pretty printer represents polynomials as a sequence of non-zero terms, concatenated by " + " and sorted
from lowest to highest exponent—with the final requirement that no two terms have the same exponent and
that xˆ0 is omitted. The special case of the zero polynomial is displayed as 0.0.

As examples, 3.0*xˆ1 + 5.0*xˆ10 + 14.0*xˆ15 and 4.5 + 1.0*xˆ10 are string representations of two
polynomials.

The goal of the pretty printer is to help you print some information about your class which might be helpful
for both tests (such as those provided in the main method) and debugging.

2

Exceptions

You should throw a RuntimeException in three situations:

• in the constructor Polynomial(double[] cs) if the length of cs is equal or larger to MAX_EXPONENT;

• in the method coeff when expo is negative, or when it is equal or larger than MAX_EXPONENT;

• finally, in the method multiply if ever the exponent of a term, while computing the the product of two
polynomials, is equal or larger than MAX_EXPONENT.

Submission Requirements

You must submit a file Polynomial.java which implements the constructor and the methods add, multiply
and evaluate, as well as the helper method coeff, from the template code.

Your code will be evaluated based on both correctness and style. Furthermore, it is much more important to
submit code that compiles rather than unfinished code that does not.

You must also submit a file readme.txt that contains the order of growth of the run time of your add and
multiply methods.

For full credit, the run time of your methods add and multiply must depend only on the number of non-zero
coefficients of the Polynomial object. For example, if Pa and Pb are two Polynomials each with N non-zero
coefficients, then N2 log N is an acceptable run time for the multiplication of Pa and Pb (note that it is one
out of many acceptable run times).

There are no run time requirements for methods coeff and evaluate (besides returning the correct result!).

Possible Progress Steps

Note that a Polynomial may, at most, have only a unique coefficient associated to a given exponent.

For this reason, one solution (out of several posibilities) involves using a symbol table, such as ST.java, with
Integer exponents as keys and Double coefficients as values. In this case, it may be useful to note that ST
iterates over keys in sorted order.

An instance variable of type ST<Integer, Double> has been defined for your convenience. Your next progress
steps may be:

• Define the constructor, coeff and add, then submit.

• Test your data structure to make sure it compiles and that add works properly. (If the tests all fail,
this could also mean that your coeff method does not work properly: if so you may have to test it
manually.)

• Implement multiply, test and submit.

• Implement evaluate, test and submit. Remember that 7.85.0 can be computed in Java with
Math.pow(7.8, 5.0).

• Complete readme.txt and submit.

Do not forget to also compile PolynomialTools.java before running your class, we suggest you use the
command line in the folder in which you are working:

javac-algs4 *.java && java-algs4 -ea Polynomial

3

Appendix: Formal Description of Operations

The examples provided in the main description of the exam, combined with your existing knowledge of
mathematical operations, should be sufficient to understand how the operations on polynomials work. But if
needed, below is a more formal description of both addition and multiplication.

More formally, a polynomial P is the sum of (possibly zero) terms Mi, which themselves are the product of a
coefficient ci and the variable x raised to the i-th power — and i is called the exponent of Mi.

Let Pa be a polynomial with coefficients ai and Pb be a polynomial with coefficients bi.

• The polynomial Pc = Pa + Pb which results from adding Pa and Pb, has coefficients ci defined by:

ci := ai + bi.

• The polynomial Pd = Pa · Pb which results from multiplying Pa and Pb, has coefficients di defined by
the following sum, with k iterating from 0 to i:

di :=
i∑

k=0
ak · bi−k.

Pj = 2x2 + 5x3 + 3x4 Pk = 6x1 + 7x2 + 4x3.

2x2

i = 0

i = 1

i = 2

i = 3

i = 4

i = 5

i = 6

i = 7

6x1.

2x2 .7x2 + 5x3 6x1.

2x2 4x3. + 5x3. 7x2 + 3x4 .6x1

5x3 4x3. + 3x4. 7x2

3x4 4x3.

12x3

44x4

61x5

41x6

12x7

12x3 + 44x4 + 61x5 + 41x6 + 12x7

=

=

=

=

=

Figure 1: Example illustrating the process of multiplying two polynomials: notice how the coefficient for x5 in
the final product Pj · Pk is the sum of the coefficient of all pair of terms, one of which is from Pj and the other
of which is from Pk, such that their exponents sum to 5. Indeed, 61 = 2 · 4 + 5 · 7 + 3 · 6 = 8 + 35 + 18 = 61.

	Programming Exam: Polynomials
	Introduction
	API and Specification
	String Format
	Exceptions
	Submission Requirements

	Possible Progress Steps
	Appendix: Formal Description of Operations

