
Princeton University
COS 217: Introduction to Programming Systems

Spring 2018 Midterm Exam Preparation

Topics

You are responsible for all material covered in lectures, precepts, assignments, and required readings. This
is a non-exhaustive list of topics that were covered. Topics that are crossed out will not appear on the
midterm exam but may appear on the final exam.

1. Number systems
 Binary, octal, and hexadecimal
 Finite unsigned integers, operations, and overflow
 Finite two’s complement signed integers, operations, and overflow
 Floating-point numbers

2. C programming
 From source to executable: preprocess, compile, assemble, link
 Program structure: multi-file programs with header files
 Process memory layout: text, stack, heap, rodata, data, bss sections
 Primitive data types
 Variable declarations and definitions
 Variable scope, linkage, and duration/extent
 Constants: #define, constant variables, enumerations
 Operators
 Statements
 Function declarations and definitions
 Pointers and arrays

 Call-by-reference, arrays as parameters, strings
 Command-line arguments

 Input/output facilities: getchar(), fgetc(), putchar(), fputc(), gets(),
fgets(), puts(), fputs(), scanf(), fscanf(), printf(), fprintf()

 Structures
 Dynamic memory management

 malloc(), calloc(), realloc(), free()
 Common errors: dereference of dangling pointer, memory leak, double free

 Abstract data types; opaque pointer types
 Generic data structures and functions

 Void pointers
 Function pointers and function callbacks

 Parameterized macros and their dangers (see King Section 14.3)
3. Programming in the large

 Modules and interfaces
 Abstract data types and ADT design in C
 Heuristics for effective modules: encapsulates data, manages resources, is

consistent, has a minimal interface, detects and handles/reports errors,
establishes contracts, has strong cohesion, has weak coupling

 Program and programming style
 Bottom-up design, top-down design, least-risk design

 Building

Page 1 of 2

 Motivation for make, make fundamentals, macros, implicit rules
 Testing

 External testing
 Internal testing and assertions: validating parameters and return values,

checking invariants, checking array subscripts, checking function values
 Unit testing with scaffolds and stubs
 Test coverage: statement, path, boundary

 Debugging
 General heuristics for debugging: understand error messages, think before

writing, look for familiar bugs, divide and conquer, add more internal tests,
display output, use a debugger, focus on recent changes

 Heuristics for debugging dynamic memory management: look for common
DMM bugs, diagnose seg faults using gdb, manually inspect malloc(), calls,
comment-out free() calls, use Meminfo, use Valgrind

 Performance improvement
4. Tools and the GNU/Linux programming environment

 Linux, bash, emacs, gcc, gdb, make, OProfile
5. Common algorithms and data structures

 Finite-state automata
 Linked lists
 Hash tables: hashing algorithms, key ownership and defensive copies

6. Applications
 De-commenting
 String manipulation
 Symbol tables
 Dynamically expanding arrays

Readings

As specified by the course "Schedule" web page...

Required:
 C Programming (King): 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,

19, 20.1, 22, 24.1
 Computer Systems (Bryant & O'Hallaron): 1

Recommended:
 Computer Systems (Bryant & O'Hallaron): 2, 5.1-5
 The Practice of Programming (Kernighan & Pike): 1, 2, 4, 5, 6, 7, 8
 Unix Tutorial for Beginners (website)
 GNU Emacs Tutorial (website)
 Linux Pocket Guide (Barrett) pp. 166-179
 Deterministic Finite Automaton Wikipedia article (website)
 GNU GDB Tutorial (website)
 GNU Make Tutorial (website)
 OProfile Manual (website)

Copyright © 2018 by Robert M. Dondero, Jr. and Szymon Rusinkiewicz

Page 2 of 2

	Princeton University
	COS 217: Introduction to Programming Systems
	Spring 2018 Midterm Exam Preparation
	Topics
	Readings

