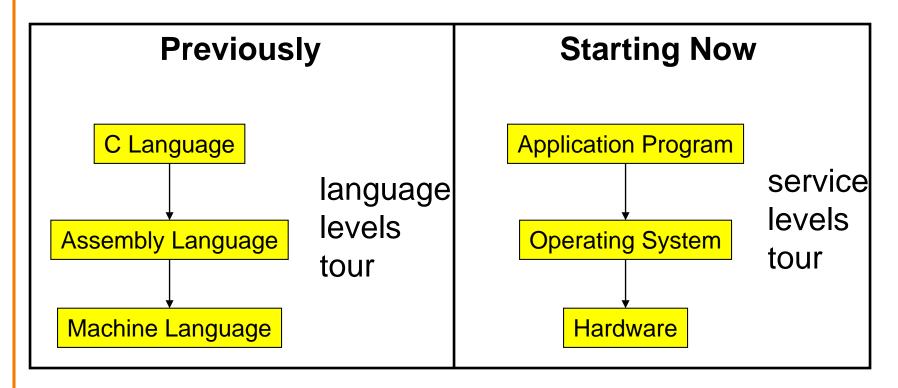
Princeton University

Computer Science 217: Introduction to Programming Systems



Processes and Exceptions

Much of the material for this lecture is drawn from Computer Systems: A Programmer's Perspective (Bryant & O' Hallaron) Chapter 8

Context of this Lecture

Second half of the course

Goals of this Lecture

Help you learn about:

- The process concept
- Exceptions
- ... and thereby...
- How operating systems work
- How application programs interact with operating systems and hardware

Processes

Illusion: Private address space

Illusion: Private control flow

Exceptions

5

Processes

Program

- Executable code
- A static entity

Process

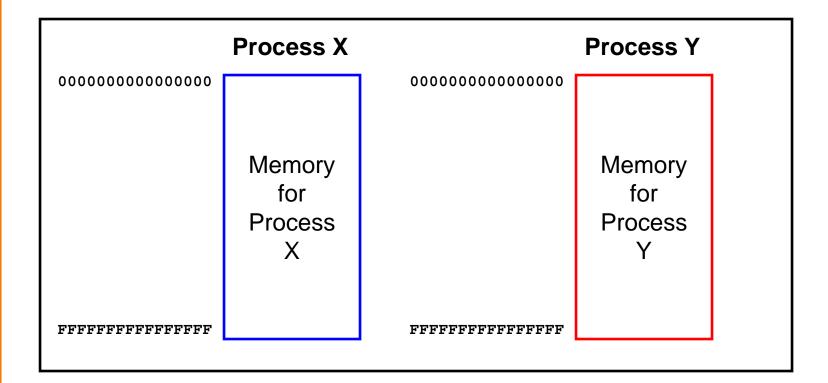
- An instance of a program in execution
- A dynamic entity: has a time dimension
- Each process runs one program
 - E.g. process 12345 might be running emacs
- One program can run in multiple processes
 - E.g. Process 12345 might be running emacs, and process 54321 might also be running emacs – for the same user or for different users

Processes Significance

Process abstraction provides application pgms with two key illusions:

- Private address space
- Private control flow

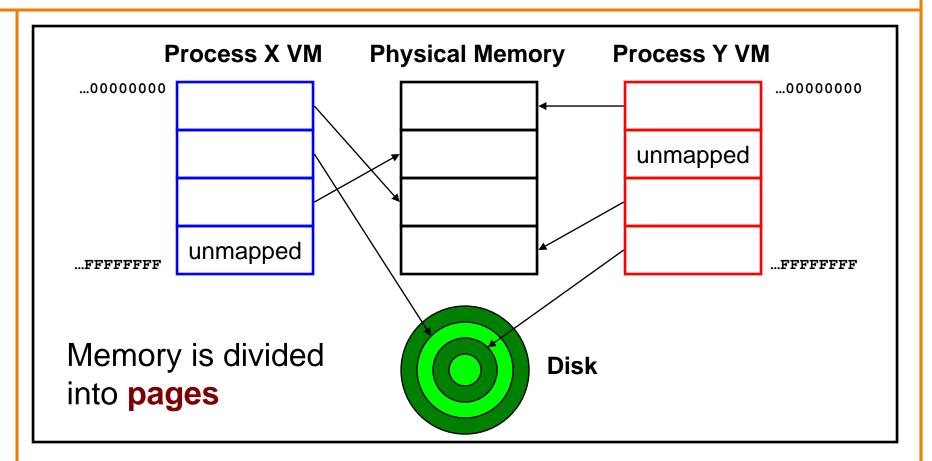
Process is a profound abstraction in computer science


Processes

Illusion: Private address space

Illusion: Private control flow

Exceptions


Private Address Space: Illusion

Hardware and OS give each application process the illusion that it is the only process using memory

• Enables multiple simultaneous instances of one program!

Private Address Space: Reality

All processes use the same physical memory. Hardware and OS provide application pgms with a **virtual** view of memory, i.e. **virtual memory (VM)**

Private Address Space: Implementation

Question:

- How do the CPU and OS implement the illusion of private address space?
- That is, how do the CPU and OS implement virtual memory?

Answer:

- Page tables: "directory" mapping virtual to physical addresses
- Page faults
- Overview now, details next lecture...

Private Address Space Example 1

Private Address Space Example 1

- Process executes instruction that references virtual memory
- CPU determines virtual page
- CPU checks if required virtual page is in physical memory: yes
- CPU does load/store from/to physical memory

Private Address Space Example 2

Private Address Space Example 2

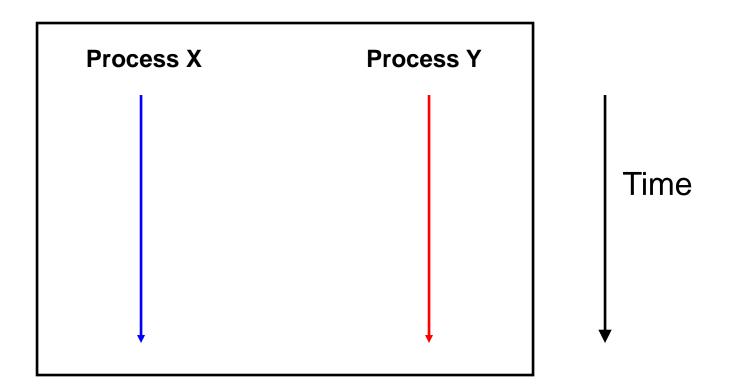
- Process executes instruction that references virtual memory
- CPU determines virtual page
- CPU checks if required virtual page is in physical memory: no!
 - CPU generates page fault
 - OS gains control of CPU
 - OS (potentially) evicts some page from physical memory to disk, loads required page from disk to physical memory
 - OS returns control of CPU to process to same instruction
- Process executes instruction that references virtual memory
- CPU checks if required virtual page is in physical memory: yes
- CPU does load/store from/to physical memory

Virtual memory enables the illusion of private address spaces

iClicker Question

Q: What effect does virtual memory have on the performance and security of processes?

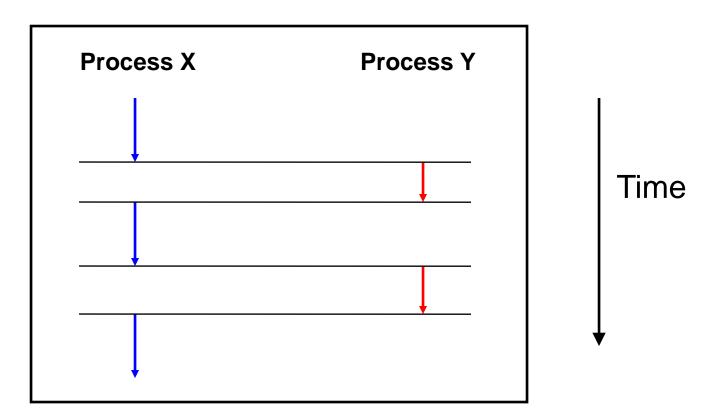
- A. Increases performance, increases security
- B. Decreases performance, increases security
- C. Increases performance, decreases security
- D. Decreases performance, decreases security


Processes

Illusion: Private address space

Illusion: Private control flow

Exceptions


Private Control Flow: Illusion

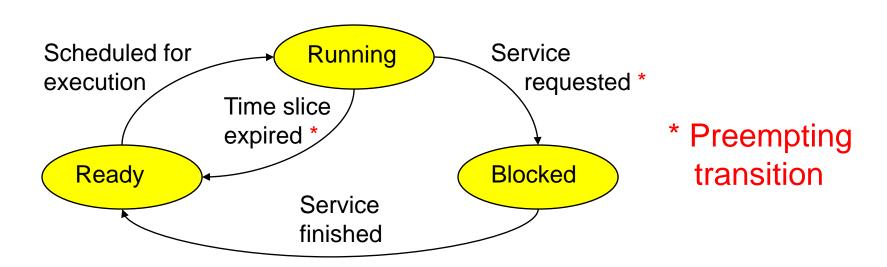
Simplifying assumption: only one CPU / core

Hardware and OS give each application process the illusion that it is the only process running on the CPU

Private Control Flow: Reality

Multiple processes are time-sliced to run **concurrently**

OS occasionally **preempts** running process to give other processes their fair share of CPU time



More specifically...

At any time a process has **status**:

- Running: CPU is executing instructions for the process
- **Ready**: Process is ready for OS to assign it to the CPU
- Blocked: Process is waiting for some requested service (typically I/O) to finish

Process Status Transitions

Scheduled for execution: OS selects some process from ready set and assigns CPU to it Time slice expired: OS moves running process to ready set because process consumed its fair share of CPU time Service requested: OS moves running process to blocked set because it requested a (time consuming) system service (often I/O) Service finished: OS moves blocked process to ready set because the requested service finished

Process Status Transitions Over Time

Process X		Process Y	
X time slice expired — Y service requested — Y service finished — Y time slice expired —	running	ready	
	ready	running	Time
	running	blocked	
	ready	running	
	running	ready	↓
	•		

Throughout its lifetime a process's status switches between running, ready, and blocked

Private Control Flow: Implementation (1)

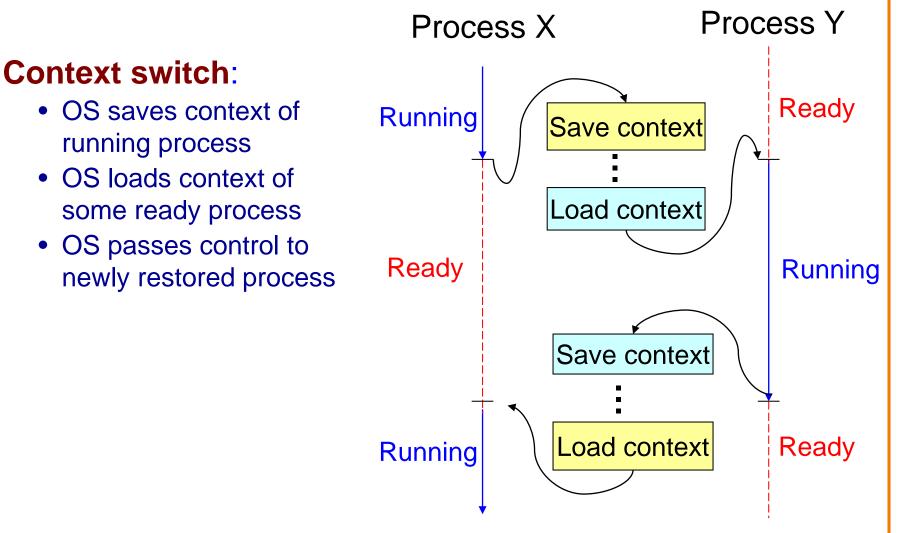
Question:

- How do CPU and OS implement the illusion of private control flow?
- That is, how to CPU and OS implement process status transitions?

Answer (Part 1):

• Contexts and context switches...

Process Contexts



Each process has a context

- The process's state, that is...
- Register contents
 - RIP, EFLAGS, RDI, RSI, etc. registers
- Memory contents
 - TEXT, RODATA, DATA, BSS, HEAP, and STACK

Context Switch

Aside: Process Control Blocks

Question:

• Where does OS save a process's context?

Answer:

• In its process control block (PCB)

Process control block (PCB)

- A data structure
- Contains all data that OS needs to manage the process

Aside: Process Control Block Details

Process control block (PCB):

Field	Description
ID	Unique integer assigned by OS when process is created
Status	Running, ready, or waiting
Hierarchy	ID of parent process ID of child processes (if any) (See <i>Process Management</i> Lecture)
Priority	High, medium, low
Time consumed	Time consumed within current time slice
Context	When process is not running Contents of all registers (In principle) contents of all of memory
Etc.	

Context Switch Efficiency

Observation:

- During context switch, OS must:
 - Save context (register and memory contents) of running process to its PCB
 - Restore context (register and memory contents) of some ready process from its PCB

Question:

• Isn't that very expensive (in terms of time and space)?

Context Switch Efficiency

Answer:

- Not really!
- During context switch, OS does save/load register contents
 - But there are few registers
- During context switch, OS does not save/load memory contents
 - Each process has a **page table** that maps virtual memory pages to physical memory pages
 - During context switch, OS tells hardware to start using a different process's page tables
 - See Virtual Memory lecture

Private Control Flow: Implementation (2)

Question:

- How do CPU and OS implement the illusion of private control flow?
- That is, how do CPU and OS implement process status transitions?
- That is, how do CPU and OS implement context switches?

Answer (Part 2):

Context switches occur while the OS handles exceptions...

Processes

Illusion: Private address space

Illusion: Private control flow

Exceptions

Exceptions

Exception

• An abrupt change in control flow in response to a change in processor state

Synchronous Exceptions

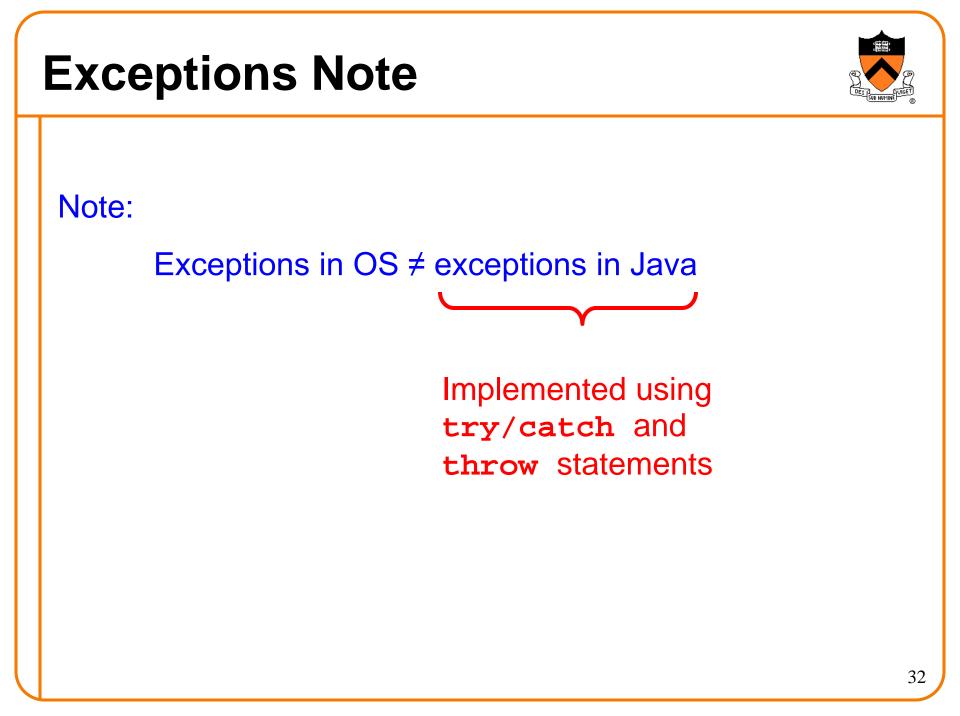
Some exceptions are synchronous

- Occur as result of actions of executing program
- Examples:
 - System call: Application requests I/O
 - System call: Application requests more heap memory
 - Application pgm attempts integer division by 0
 - Application pgm attempts to access privileged memory
 - Application pgm accesses variable that is not in physical memory

Asynchronous Exceptions

CET LSE NUTINE

Some exceptions are asynchronous


- Do not occur (directly) as result of actions of executing program
- Examples:
 - User presses key on keyboard

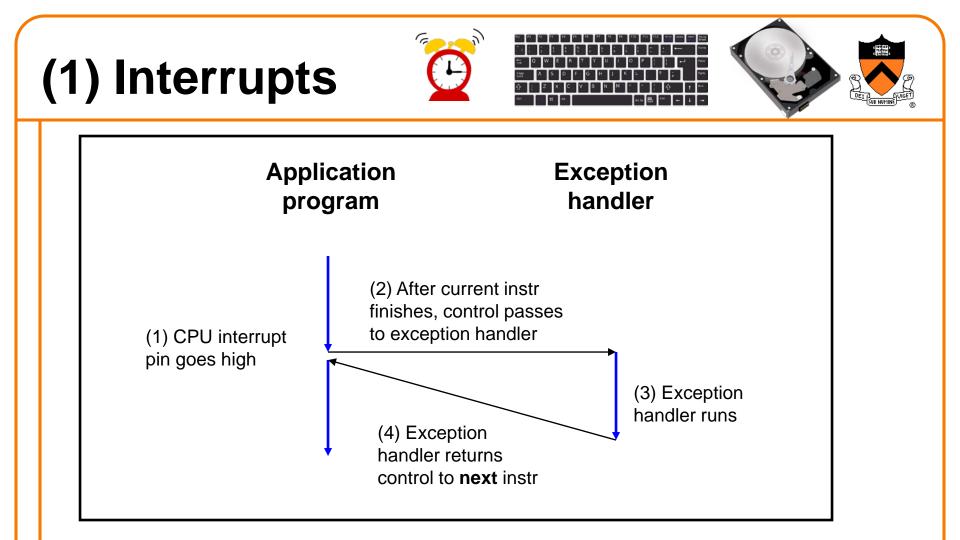


• Hardware timer expires

Exceptions vs. Function Calls

Handling an exception is similar to calling a function

- CPU pushes arguments onto stack
- Control transfers from original code to other code
- Other code executes
- Control returns to some instruction in original code

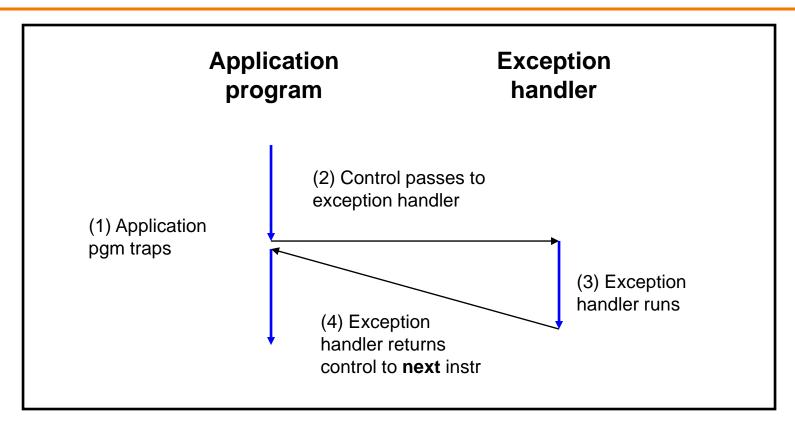

Handling an exception is different from calling a function

- CPU pushes additional data onto stack
 - E.g. values of all registers
- CPU pushes data onto **OS's stack**, not application pgm's stack
- Handler runs in kernel/privileged mode, not in user mode
 - Handler can execute all instructions and access all memory
- Control might return to some instruction in original code
 - Sometimes control returns to next instruction
 - Sometimes control returns to current instruction
 - Sometimes control does not return at all!

Classes of Exceptions

There are 4 classes of exceptions...

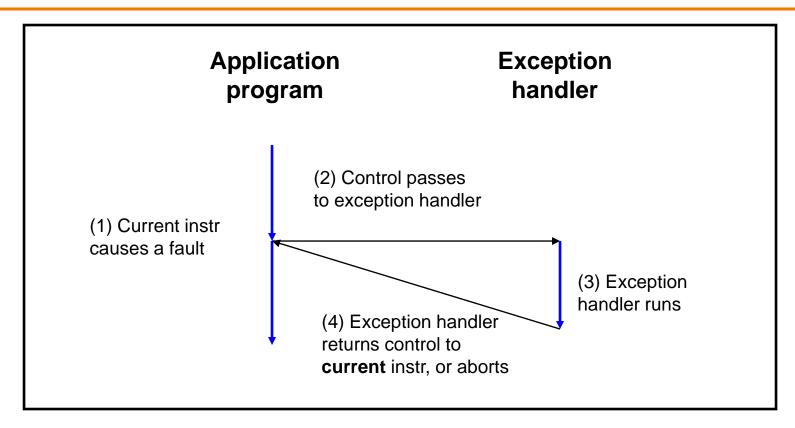
Occurs when: External (off-CPU) device requests attention **Examples**:


User presses key

Disk controller finishes reading/writing data

Hardware timer expires

(2) Traps

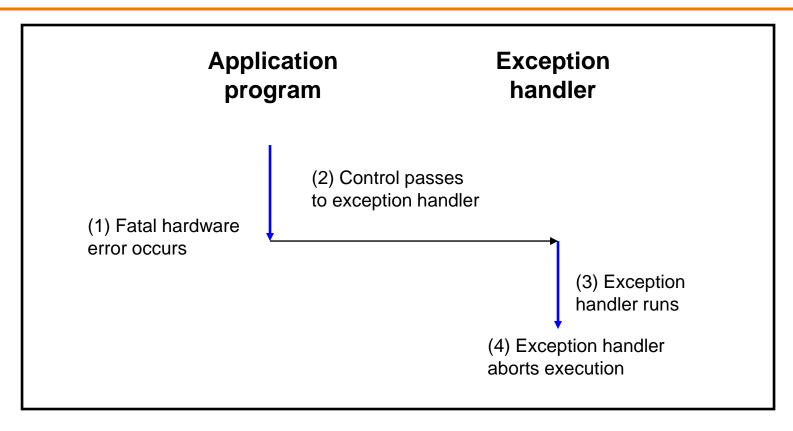

Occurs when: Application pgm requests OS service **Examples**:

- Application pgm requests I/O
- Application pgm requests more heap memory

Traps provide a function-call-like interface between application pgm and OS

(3) Faults

Occurs when: Application pgm causes a (possibly recoverable) error **Examples**:


Application pgm divides by 0

Application pgm accesses privileged memory (seg fault)

Application pgm accesses data that is not in physical memory (page fault)

(4) Aborts

Occurs when: HW detects a non-recoverable error **Example**:

Parity check indicates corruption of memory bit (overheating, cosmic ray!, etc.)

Summary of Exception Classes

Class	Occurs when	Asynch /Synch	Return Behavior
Interrupt	External device requests attention	Asynch	Return to next instr
Trap	Application pgm requests OS service	Sync	Return to next instr
Fault	Application pgm causes (maybe recoverable) error	Sync	Return to current instr (maybe)
Abort	HW detects non- recoverable error	Sync	Do not return

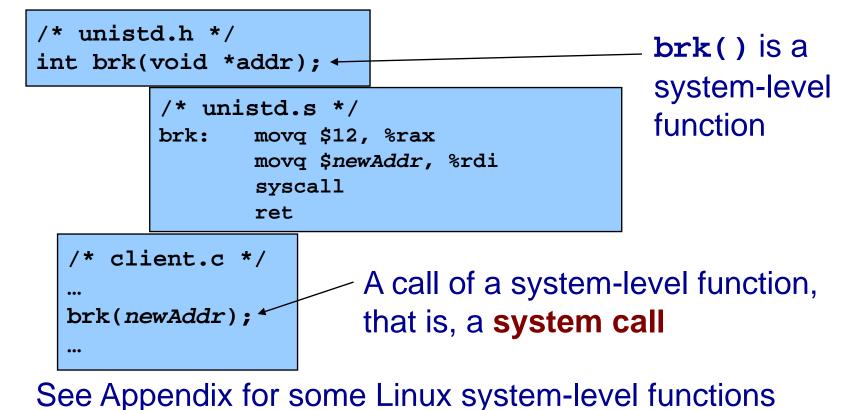
Aside: Traps in x86-64 Processors

To execute a trap, application program should:

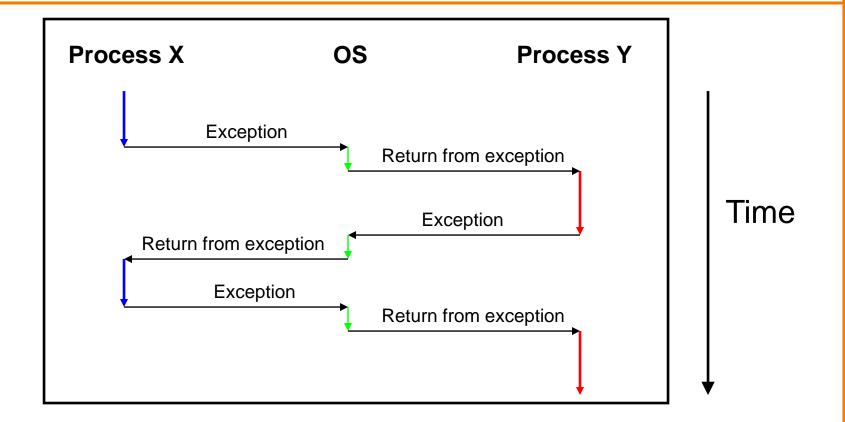
- Place number in RAX register indicating desired OS service
- Place arguments in RDI, RSI, RDX, RCX, R8, R9 registers
- Execute assembly language instruction syscall

Example: To request change in size of heap section of memory (see *Dynamic Memory Management* lecture)...

movq \$12, %rax
movq \$newAddr, %rdi
syscall


Place 12 (change size of heap section) in RAX Place new address of end of heap in RDI Execute trap

Aside: System-Level Functions


Traps are wrapped in system-level functions

- Part of C library, but not portable to other OS-es
- Example: To change size of heap section of memory...

Exceptions and Context Switches

Context switches occur while OS is handling exceptions

Exceptions and Context Switches

Exceptions occur frequently

- Process explicitly requests OS service (trap)
- Service request fulfilled (interrupt)
- Process accesses VM page that is not in physical memory (fault)
- Etc.
- ... And if none of them occur for a while ...
- Expiration of hardware timer (interrupt)

Whenever OS gains control of CPU via exception... It has the option of performing context switch

Private Control Flow Example 1

•	Process X is running
•	Hardware clock generates interrupt
•	OS gains control of CPU
•	OS examines "time consumed" field of
	process X's PCB
•	OS decides to do context switch
	• OS saves process X's context in its PCB
	 OS sets "status" field in process X's PCB
	to <i>ready</i>
	• OS adds process X's PCB to the ready set
	• OS removes process Y's PCB from the ready
	set
	 OS sets "status" field in process Y's PCB
	to running
	• OS loads process Y's context from its PCB
•	Process Y is running

Private Control Flow Example 2

•	Process Y is running
•	Process Y executes trap to request read
	from disk
•	OS gains control of CPU
•	OS decides to do context switch
	• OS saves process Y's context in its PCB
	• OS sets "status" field in process Y's PCB
	to blocked
	• OS adds process Y's PCB to the blocked set
	• OS removes process X's PCB from the ready
	set
	• OS sets "status" field in process X's PCB
	to running
	• OS loads process X's context from its PCB
•	Process X is running

Private Control Flow Example 3

•	Process X is running
•	Read operation requested by process Y
	completes => disk controller generates
	interrupt
•	OS gains control of CPU
•	OS sets "status" field in process Y's PCB
	to ready
•	OS moves process Y's PCB from the blocked list
	to the ready list
•	OS examines "time consumed within slice"
	field of process X's PCB
•	OS decides not to do context switch
•	Process X is running

Private Control Flow Example 4

• Process	Χ	is	running
-----------	---	----	---------

- Process X accesses memory, generates page fault
- OS gains control of CPU
- OS evicts page from memory to disk, loads referenced page from disk to memory
- OS examines "time consumed" field of process X's PCB
- OS decides not to do context switch
- Process X is running

Exceptions enable the illusion of private control flow

Summary

Process: An instance of a program in execution

- CPU and OS give each process the illusion of:
 - Private address space
 - Reality: virtual memory
 - Private control flow
 - Reality: Concurrency, preemption, and context switches
- Both illusions are implemented using exceptions

Exception: an abrupt change in control flow

- Interrupt: asynchronous; e.g. I/O completion, hardware timer
- Trap: synchronous; e.g. app pgm requests more heap memory, I/O
- Fault: synchronous; e.g. seg fault, page fault
- Abort: synchronous; e.g. failed parity check

Linux system-level functions for I/O management

Number	Function	Description
0	read()	Read data from file descriptor; called by getchar(), scanf(), etc.
1	write()	Write data to file descriptor; called by putchar(), printf(), etc.
2	open()	Open file or device; called by fopen()
3	close()	Close file descriptor; called by fclose()
85	creat()	Open file or device for writing; called by fopen(, "w")
8	lseek()	Position file offset; called by fseek()

Described in *I/O Management* lecture

Linux system-level functions for process management

Number	Function	Description
60	exit()	Terminate the current process
57	fork()	Create a child process
7	wait()	Wait for child process termination
11	execvp()	Execute a program in the current process
20	getpid()	Return the process id of the current process

Described in Process Management lecture

Linux system-level functions for I/O redirection and interprocess communication

Number	Function	Description
32	dup()	Duplicate an open file descriptor
22	pipe()	Create a channel of communication between processes

Described in Process Management lecture

Linux system-level functions for dynamic memory management

Number	Function	Description
12	brk()	Move the program break, thus changing the amount of memory allocated to the HEAP
12	sbrk()	(Variant of previous)
9	mmap()	Map a virtual memory page
11	munmap()	Unmap a virtual memory page

Described in **Dynamic Memory Management** lecture

Linux system-level functions for signal handling

Number	Function	Description
37	alarm()	Deliver a signal to a process after a specified amount of wall-clock time
62	kill()	Send signal to a process
13	sigaction()	Install a signal handler
38	setitimer()	Deliver a signal to a process after a specified amount of CPU time
14	sigprocmask()	Block/unblock signals

Described in Signals lecture