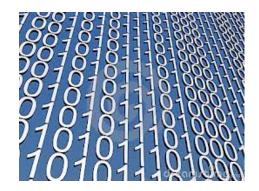
Princeton University

Computer Science 217: Introduction to Programming Systems

Number Systems and Number Representation

Q: Why do computer programmers confuse Christmas and Halloween?

A: Because 25 Dec = 31 Oct



Goals of this Lecture

Help you learn (or refresh your memory) about:

- The binary, hexadecimal, and octal number systems
- Finite representation of unsigned integers
- Finite representation of signed integers
- Finite representation of rational (floating-point) numbers

Why?

• A power programmer must know number systems and data representation to fully understand C's primitive data types

Primitive values and the operations on them

Agenda

Number Systems

Finite representation of unsigned integers

- Finite representation of signed integers
- Finite representation of rational (floating-point) numbers

The Decimal Number System

Name

• "decem" (Latin) \Rightarrow ten

Characteristics

- Ten symbols
 - 0 1 2 3 4 5 6 7 8 9
- Positional
 - 2945 ≠ 2495
 - $2945 = (2*10^3) + (9*10^2) + (4*10^1) + (5*10^0)$

(Most) people use the decimal number system

The Binary Number System

binary

adjective: being in a state of one of two mutually exclusive conditions such as on or off, true or false, molten or frozen, presence or absence of a signal. From Late Latin *bīnārius* ("consisting of two").

Characteristics

- Two symbols
 - 0 1
- Positional
 - 1010_B ≠ 1100_B

Most (digital) computers use the binary number system

Terminology

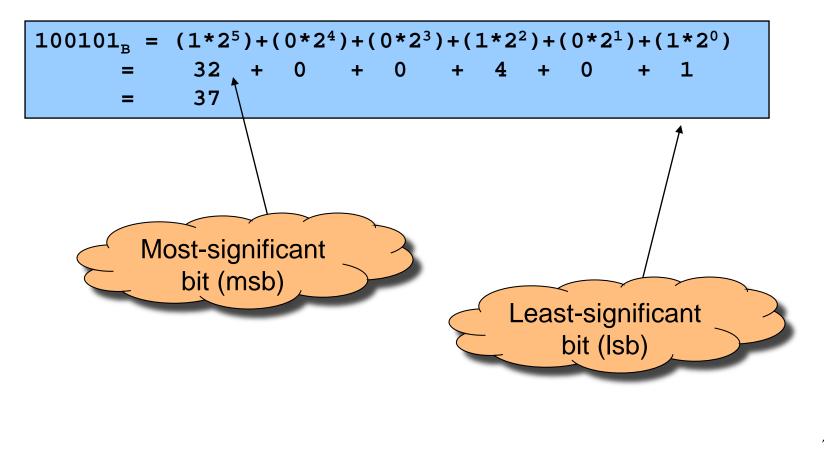
- Bit: a binary digit
- Byte: (typically) 8 bits
- Nibble (or nybble): 4 bits

Decimal-Binary Equivalence

Decimal	Binary		Decimal	Binary
0	0		16	10000
1	1		17	10001
2	10		18	10010
3	11		19	10011
4	100		20	10100
5	101		21	10101
б	110		22	10110
7	111		23	10111
8	1000		24	11000
9	1001		25	11001
10	1010		26	11010
11	1011		27	11011
12	1100		28	11100
13	1101		29	11101
14	1110		30	11110
15	1111		31	11111
		I	• • •	• • •

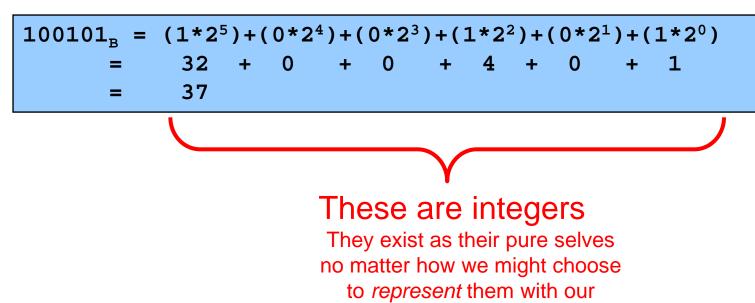
Decimal-Binary Conversion

Binary to decimal: expand using positional notation



Integer Decimal-Binary Conversion

Integer Binary to decimal: expand using positional notation



fingers or toes

Integer-Binary Conversion

Integer to binary: do the reverse

• Determine largest power of 2 ≤ number; write template

 $37 = (?*2^5) + (?*2^4) + (?*2^3) + (?*2^2) + (?*2^1) + (?*2^0)$

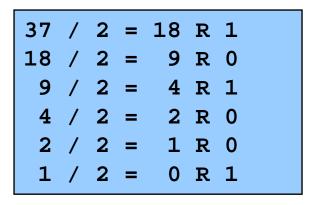
• Fill in template

 $37 = (1*2^{5})+(0*2^{4})+(0*2^{3})+(1*2^{2})+(0*2^{1})+(1*2^{0})$ -325 -41
100101_B
-1
0

Integer-Binary Conversion

Integer to binary shortcut

• Repeatedly divide by 2, consider remainder



Read from bottom to top: 100101_B

The Hexadecimal Number System

Name

- "hexa" (Greek) \Rightarrow six
- "decem" (Latin) \Rightarrow ten
- Characteristics
 - Sixteen symbols
 - 0 1 2 3 4 5 6 7 8 9 A B C D E F
 - Positional
 - A13D_H \neq 3DA1_H

Computer programmers often use hexadecimal

• In C: **0x** prefix (**0xA13D**, etc.)

Decimal-Hexadecimal Equivalence

Decimal	Hex	Decimal He	ex	Decimal	Hex
0	0	16 1	10	32	20
1	1	17 1	11	33	21
2	2	18 1	12	34	22
3	3	19 1	13	35	23
4	4	20 1	14	36	24
5	5	21 1	15	37	25
6	6	22 1	16	38	26
7	7	23 1	17	39	27
8	8	24	18	40	28
9	9	25 1	19	41	29
10	A	26 1	1A	42	2A
11	В	27 1	1B	43	2B
12	С	28 1	1C	44	2C
13	D	29 1	1D	45	2D
14	Е	30 1	1E	46	2E
15	F	31 1	1F	47	2F

Integer-Hexadecimal Conversion

Hexadecimal to integer: expand using positional notation

$$25_{\rm H} = (2*16^{1}) + (5*16^{0})$$

= 32 + 5
= 37

Integer to hexadecimal: use the shortcut

37 / 16 = 2 R 5 2 / 16 = 0 R 2 Read from bottom to top: 25_H

Binary-Hexadecimal Conversion

Observation: $16^1 = 2^4$

• Every 1 hexadecimal digit corresponds to 4 binary digits

Binary to hexadecimal

10100	0001	011	L101 _B
Α	1	3	$\mathtt{D}_{\mathtt{H}}$

Hexadecimal to binary

A 1 3 D_H 1010000100111101_B Digit count in binary number not a multiple of $4 \Rightarrow$ pad with zeros on left

Discard leading zeros from binary number if appropriate

Is it clear why programmers often use hexadecimal?

iClicker Question

Q: Convert binary 101010 into decimal and hex

- A. 21 decimal, 1A hex
- B. 42 decimal, 2A hex
- C. 48 decimal, 32 hex
- D. 55 decimal, 4G hex

The Octal Number System

Name

• "octo" (Latin) \Rightarrow eight

Characteristics

- Eight symbols
 - 0 1 2 3 4 5 6 7
- Positional
 - 1743_° ≠ 7314_°

Computer programmers often use octal (so does Mickey!)

• In C: 0 prefix (01743, etc.)

Agenda

Number Systems

Finite representation of unsigned integers

- Finite representation of signed integers
- Finite representation of rational (floating-point) numbers

Integral Types in Java vs. C

	٦	Java	С
Unsigned types	char	// 16 bits	<pre>unsigned char /* 8 bits */ unsigned short unsigned (int) unsigned long</pre>
Signed types	short int	// 8 bits // 16 bits // 32 bits // 64 bits	<pre>signed char /* Note 2 */ (signed) short (signed) int (signed) long</pre>
Floating-point types		// 32 bits // 64 bits	float double long double

1. Not guaranteed by C, but on courselab, char = 8 bits, short = 16 bits, int = 32 bits, long = 64 bits, float = 32 bits, double = 64 bits

2. Not guaranteed by C, but on courselab, char is signed

To understand C, must consider representation of both unsigned and signed integers

Representing Unsigned Integers

Mathematics

- Range is 0 to ∞
- **Computer programming**
 - Range limited by computer's word size
 - Word size is n bits \Rightarrow range is 0 to $2^n 1$
 - Exceed range ⇒ overflow

Typical computers today

• n = 32 or 64, so range is 0 to $2^{32} - 1 \text{ or } 2^{64} - 1$ (huge!)

Pretend computer

• n = 4, so range is 0 to $2^4 - 1$ (15)

Hereafter, assume word size = 4

• All points generalize to word size = 64, word size = n

Representing Unsigned Integers

On pretend computer

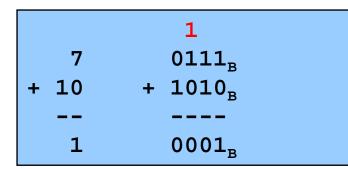
Unsigned	
<u>Integer</u>	<u>Rep</u>
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001
10	1010
11	1011
12	1100
13	1101
14	1110
15	1111

Adding Unsigned Integers

Addition

	1	
3	0011 _B	
+ 10	+ 1010 _B	
13	1101 _B	

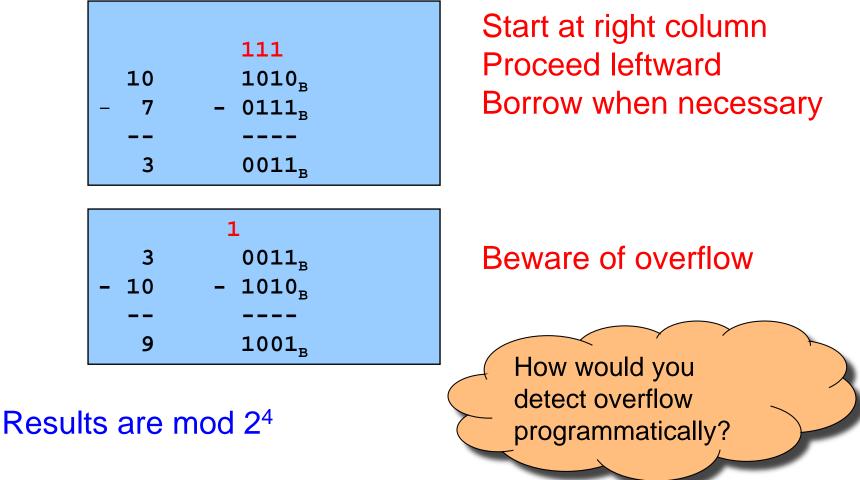
Start at right column Proceed leftward Carry 1 when necessary



Results are mod 2⁴

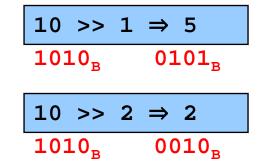
How would you detect overflow programmatically?

Subtraction



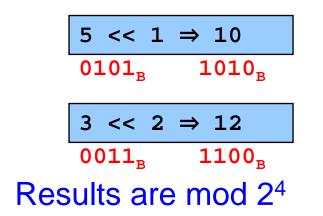
Shifting Unsigned Integers

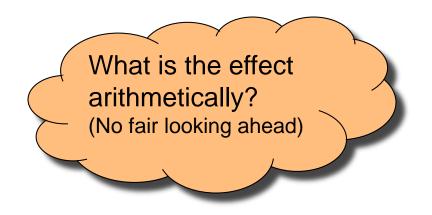
Bitwise right shift (>> in C): fill on left with zeros



What is the effect arithmetically? (No fair looking ahead)

Bitwise left shift (<< in C): fill on right with zeros





Other Operations on Unsigned Ints

Bitwise NOT (~ in C)

• Flip each bit

$$\begin{array}{c} \sim 10 \implies 5 \\ 1010_{\rm B} \quad 0101_{\rm B} \end{array}$$

Bitwise AND (& in C)

• Logical AND corresponding bits

10	1010 _B
& 7	& 0111 _B
 2	0010 _B

Useful for setting selected bits to 0

Other Operations on Unsigned Ints

Bitwise OR: (| in C)

• Logical OR corresponding bits

10 1	1010 _B 0001 _B
11	1011 _B

Useful for setting selected bits to 1

Bitwise exclusive OR (^ in C)

Logical exclusive OR corresponding bits

10	1010 _B
^ 10	^ 1010 _B
0	0000 _B

x ^ x sets all bits to 0

iClicker Question

Q: How do you set bit "n" (counting lsb=0) of **unsigned** variable "u" to zero?

A. u &= (0 << n);

- B. u |= (1 << n);
- C. u &= ~(1 << n);

D. u |= ~(1 << n);

E. u = ~u ^ (1 << n);

Aside: Using Bitwise Ops for Arith

Can use <<, >>, and & to do some arithmetic efficiently

- $x * 2^{y} == x << y$
 - $3*4 = 3*2^2 = 3 << 2 \Rightarrow 12$
- $x / 2^{y} == x >> y$
 - $13/4 = 13/2^2 = 13 >> 2 \Rightarrow 3$

 $x % 2^{y} == x \& (2^{y}-1)$

•
$$13\%4 = 13\%2^2 = 13\&(2^2-1)$$

13 & 3	1101 _B & 0011 _B
1	0001 _B

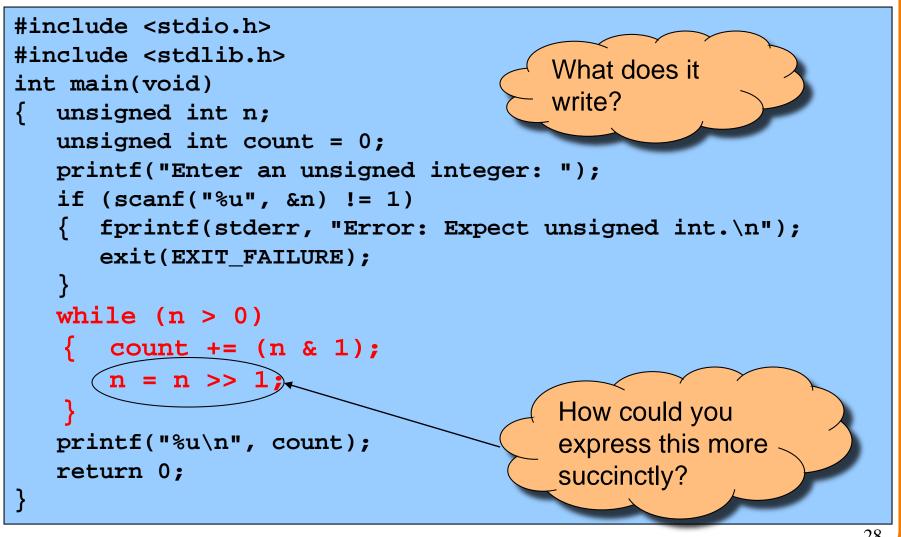
Fast way to **multiply** by a power of 2

Fast way to **divide** <u>**unsigned**</u> by power of 2

Fast way to **mod** by a power of 2

Many compilers will do these transformations automatically!

Aside: Example C Program



Agenda

Number Systems

Finite representation of unsigned integers

Finite representation of signed integers

Finite representation of rational (floating-point) numbers

Sign-Magnitude

Integer -7 -6 -5 -4 -3 -2 -1 -0 0 1 2 3 4 5 6	1101 1100 1011 1010	Definition High-order bit indicates sign $0 \Rightarrow \text{positive}$ $1 \Rightarrow \text{negative}$ Remaining bits indicate magnitude $1101_B = -101_B = -5$ $0101_B = 101_B = 5$
6 7	0110 0111	

Sign-Magnitude (cont.)

Integer	Rep
-7	1111
-6	1110
-5	1101
-4	1100
-3	1011
-2	1010
-1	1001
-0	1000
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111

Computing negative neg(x) = flip high order bit of x $neg(0101_B) = 1101_B$ $neg(1101_B) = 0101_B$

Pros and cons

+ easy for people to understand

+ symmetric

- two representations of zero
- need different algorithms to add signed and unsigned numbers

Ones' Complement

Integer -7 -6 -5 -4 -3 -2 -1 -0 0 1 2 3 4 5 6 7	Rep10001001101010111100110111011110111100000001001000110100010101100111	Definition High-order bit has weight -7 $1010_B = (1*-7)+(0*4)+(1*2)+(0*1)$ = -5 $0010_B = (0*-7)+(0*4)+(1*2)+(0*1)$ = 2
---	---	---

Ones' Complement (cont.)

<u>Rep</u>
1000
1001
1010
1011
1100
1101
1110
1111
0000
0001
0010
0011
0100
0101
0110
0111

Computing negative neg(x) = -x $neg(0101_B) = 1010_B$ $neg(1010_B) = 0101_B$

Similar pros and cons to sign-magnitude

Two's Complement

<u>Integer</u> -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7	Rep10001001101010111100110111011110111100000001001000110100010101100111	Definition High-order bit has weight -8 $1010_{B} = (1*-8)+(0*4)+(1*2)+(0*1)$ = -6 $0010_{B} = (0*-8)+(0*4)+(1*2)+(0*1)$ = 2
--	---	---

Two's Complement (cont.)

Integer	Rep
-8	1000
-7	1001
-6	1010
-5	1011
-4	1100
-3	1101
-2	1110
-1	1111
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
б	0110
7	0111

Computing negative neg(x) = -x + 1 neg(x) = onescomp(x) + 1 $neg(0101_B) = 1010_B + 1 = 1011_B$ $neg(1011_B) = 0100_B + 1 = 0101_B$

Pros and cons

- not symmetric
- + one representation of zero
- + same algorithm adds unsigned numbers or signed numbers

Two's Complement (cont.)

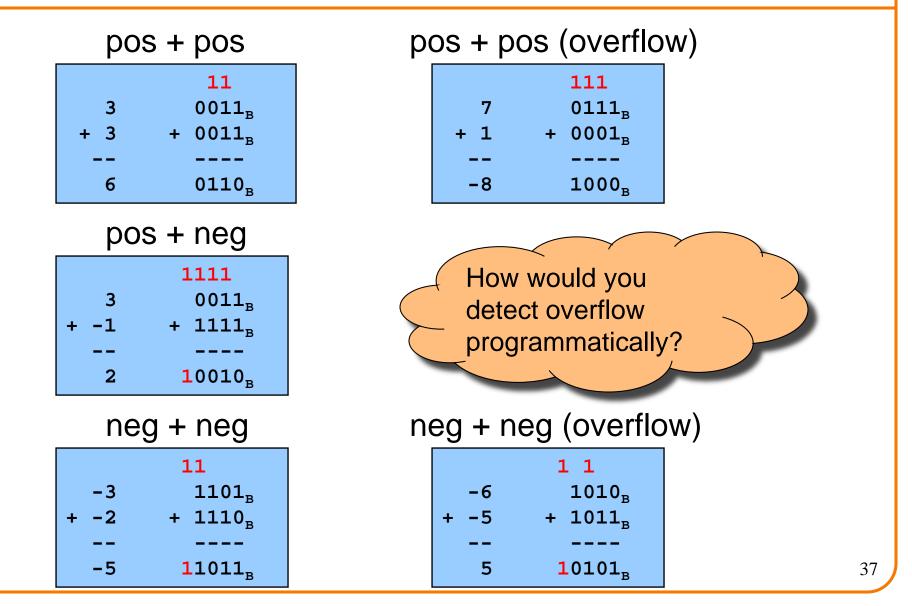
Almost all computers today use two's complement to represent signed integers

• Arithmetic is easy!

Is it after 1980? OK, then we're surely two's complement

Hereafter, assume two's complement

Adding Signed Integers



Subtracting Signed Integers

Perform subtraction with borrows

1
22
0011 _B
- 0100 _B
1111 _B

or

Compute two's comp and add

3	0011 _B
+ -4	+ 1100 _B
-1	1111 _B

-5	1011 _B
- 2	- 0010 _B
-7	1001 _B

	111
-5	1011
+ -2	+ 1110
-7	1 1001

Negating Signed Ints: Math

Question: Why does two's comp arithmetic work? Answer: [-b] mod 2⁴ = [twoscomp(b)] mod 2⁴

$$[-b] \mod 2^{4}$$

$$= [2^{4} - b] \mod 2^{4}$$

$$= [2^{4} - 1 - b + 1] \mod 2^{4}$$

$$= [(2^{4} - 1 - b) + 1] \mod 2^{4}$$

$$= [onescomp(b) + 1] \mod 2^{4}$$

$$= [twoscomp(b)] \mod 2^{4}$$

See Bryant & O' Hallaron book for much more info

And so:

 $[a - b] \mod 2^4 = [a + twoscomp(b)] \mod 2^4$

$$[a - b] \mod 2^{4}$$

$$= [a + 2^{4} - b] \mod 2^{4}$$

$$= [a + 2^{4} - 1 - b + 1] \mod 2^{4}$$

$$= [a + (2^{4} - 1 - b) + 1] \mod 2^{4}$$

$$= [a + \text{onescomp}(b) + 1] \mod 2^{4}$$

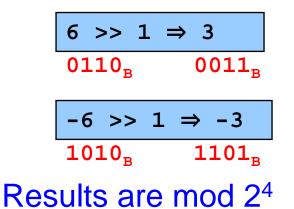
$$= [a + twoscomp(b)] \mod 2^{4}$$

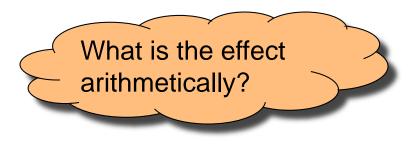
See Bryant & O' Hallaron book for much more info

Shifting Signed Integers

Bitwise left shift (<< in C): fill on right with zeros

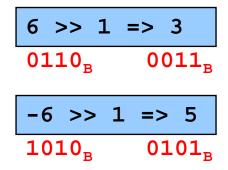
Bitwise arithmetic right shift: fill on left with sign bit

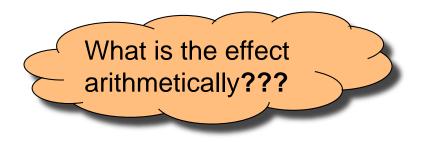




Shifting Signed Integers (cont.)

Bitwise logical right shift: fill on left with zeros





In C, right shift (>>) could be logical or arithmetic

- Not specified by C90 standard
- Compiler designer decides

Best to avoid shifting signed integers

Other Operations on Signed Ints

Bitwise NOT (~ in C)

• Same as with unsigned ints

Bitwise AND (& in C)

Same as with unsigned ints

Bitwise OR: (| in C)

Same as with unsigned ints

Bitwise exclusive OR (^ in C)

Same as with unsigned ints

Best to avoid with signed integers

Agenda

Number Systems

Finite representation of unsigned integers

Finite representation of signed integers

Finite representation of rational (floating-point) numbers

Rational Numbers

Mathematics

- A **rational** number is one that can be expressed as the **ratio** of two integers
- Unbounded range and precision

Computer science

- Finite range and precision
- Approximate using floating point number

Floating Point Numbers

Like scientific notation: e.g., c is 2.99792458×10^8 m/s

This has the form (multiplier) × (base)^(power)

In the computer,

- Multiplier is called mantissa
- Base is almost always 2
- Power is called exponent

IEEE Floating Point Representation

Common finite representation: IEEE floating point

- More precisely: ISO/IEEE 754 standard
- Using 32 bits (type float in C):
 - 1 bit: sign (0⇒positive, 1⇒negative)
 - 8 bits: exponent + 127

Using 64 bits (type double in C):

- 1 bit: sign (0⇒positive, 1⇒negative)
- 11 bits: exponent + 1023

Floating Point Example

Sign (1 bit):

• $1 \Rightarrow$ negative

32-bit representation

Exponent (8 bits):

- $10000011_{B} = 131$
- \cdot 131 127 = 4

Fraction (23 bits): also called "mantissa"

- 1 + $(1*2^{-1})+(0*2^{-2})+(1*2^{-3})+(1*2^{-4})+(0*2^{-5})+(1*2^{-6})+(1*2^{-7}) = 1.7109375$

Number:

• $-1.7109375 * 2^4 = -27.375$

When was floating-point invented?

Answer: long before computers!

mantissa

noun

decimal part of a logarithm, 1865, from Latin *mantisa* "a worthless addition, makeweight," perhaps a Gaulish word introduced into Latin via Etruscan (cf. Old Irish *meit*, Welsh *maint* "size").

x	x o	T	2	3		- 2	6	7	8	9.	$\Delta_{\rm SH}$	L	2	111
			-	3	-	2		· '			+			1
50	-6990	6998	7007	7016	7024	7033	7042	7050	7059	7067	9	I	2	1
51	.7076	7084	7093	7101	7110	7118	7126	7135	7143	7152	8	I	2	1
53	.7160		7177		7193	7202	7210		7226		8	I	2	1
53	.7243	7251	7259	7267	7275	7284	7292	7300	7308	7316	8	I	2	1
54	.7324	7332	7340	7348	7356	7364	7372	7380	7388	7396	8	I	2	
55	.7404	7412	7419	7427	7435	7443	7451	7459	7466	7474	8	I	2	2
56	•7482	7490	7497	7505	7513	7520	7528	7536	7543	7551	8	I	2	1
57	.7559	7566	7574	7582	7589	7597	7604	7612	7619	7627	8	I	2	
58	.7634			7657		7672		7686	7694	7701	8	I	2	1
59	.7709		7723			7745			7767		7	I	I	1

Floating Point Consequences

"Machine epsilon": smallest positive number you can add to 1.0 and get something other than 1.0

For float: $\varepsilon \approx 10^{-7}$

- No such number as 1.00000001
- Rule of thumb: "almost 7 digits of precision"

For double: $\varepsilon \approx 2 \times 10^{-16}$

• Rule of thumb: "not quite 16 digits of precision"

These are all relative numbers

Floating Point Consequences, cont

Decimal number system can represent only some rational numbers with finite digit count

Example: 1/3 cannot be represented

Binary number system can represent only some rational numbers with finite digit count

• Example: 1/5 *cannot* be represented

Beware of roundoff error

- Error resulting from inexact representation
- Can accumulate
- Be careful when comparing two floating-point numbers for equality

Decimal	<u>Rational</u>
<u>Approx</u>	<u>Value</u>
.3	3/10
.33	33/100
.333	333/1000
•••	

Binary	<u>Rational</u>
Approx	<u>Value</u>
0.0	0/2
0.01	1/4
0.010	2/8
0.0011	3/16
0.00110	6/32
0.001101	13/64
0.0011010	26/128
0.00110011	51/256
•••	

iClicker Question

Q: What does the following code print?

```
double sum = 0.0;
int i;
for (i = 0; i < 10; i++)
    sum += 0.1;
if (sum == 1.0)
    printf("All good!\n");
else
    printf("Yikes!\n");
```

A. All good!

B. Yikes!

C. Code crashes

D. Code enters an infinite loop

Summary

The binary, hexadecimal, and octal number systems Finite representation of unsigned integers Finite representation of signed integers Finite representation of rational (floating-point) numbers

Essential for proper understanding of

- C primitive data types
- Assembly language
- Machine language