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1. Introduction

Week 1, February 8th 2017.

1.1. Supervised Learning. Input data: Given a distribution D over X × Y , where
X is the domain and Y is the label set, our goal is to predict y correctly given x.
Statistical/PAC learning is given a hypothesis class

H : X → Y

the learning problem (D,X, Y,H) is learnable if and only if there exists an algorithm
and a function

m : (ε, δ)→ m(ε, δ) ∈ N+

such that for all distributions D, after seeing m(ε, δ) examples from D, {(x, y}} returns
a hypothesis h such that

E(x,y)∼D [h(x) 6= y] ≤ min
h∗∈H

ED∼(x,y) [h∗(x) 6= y] + ε

with probability 1− δ.
• Completely human independent
• Very General
• Allows for any learning algorithm, which gives room for efficient algorithms
• Very practical

For a more in depth discussion of this theory, see a course on theoretical machine
learning, such as COS511.

1.2. Unsupervised Learning. We begin with several examples of unsupervised learn-
ing.

Example 1. Karl Pearson was studying biometric data concerning a new species of
crab that he discovered. He measured their forehead breadth to body length ratios,
expecting to find a normal distribution. However, he found a very skewed distribution,
and deduced that this was actually the sum of two different normal distributions, and
in fact, he had discovered two species of crabs.

Example 2. Anomally detection consists of finding anomalies in the data. It’s not a
well defined problem, and so it is a natural place to use unsupervised learning.

Example 3. Newtonian mechanics and concise formulation of Keplers laws.

This leads us to our wish list:
• x ∼ D, x ∈ Rd.
• A compact representation
• A representation that makes it easier to handle later supervised learning.
• Generalization
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• Efficient algorithm based on relaxation

1.3. Learning representations.
• Perfect recoverability is necessary even for trivial families of future tasks
• Compression (even mild compression) is incomputable in general. There are a
host of hardness results here - if you want to do compression, even detecting if
there exists a compression algorithm that does better is equivalent to certain
hardness properties of one way functions.

Remark 1. Many of the hardness results are for Boolean functions, and if we are working
with real valued functions and allow errors, then we can obtain results.

Let’s look at recoverability first.
(1) If we measure performance by a Lipschitz function, then “lossy” compression

“makes sense.”
(2) We will measure compression with respect to a family of hypotheses.

Definition 1. see [1] An unsupervisded problem x ∼ D, x ∈ Rd is learnable with
respect to a hypothesis class

H = {(f, g) : fX → Y and g : Y → X}
where Y ⊂ Rn and ` is a loss function

` : X ×X → R

if there exists
m(ε, δ)→ N

such that for every ε, δ there exists an efficient algorithm such that after seeing m(ε, δ)

examples, it yields f̃ , g̃ such that

Ex∼D
[∣∣∣x− g̃ ◦ f̃(x)

∣∣∣+
∣∣∣f̃(x)

∣∣∣] ≤ min
(f,g)∈H

Ex∼D [|x− g ◦ f(x)|+ |f(x)|] + ε

with probability 1− δ.

Example 4. Suppose that x ∈ Rd, and y ⊂ Rk where k � d. Let `(x, z) = |x− z|22 be
the squared Euclidean distance. Define

H =

{
f(x) = Ax where A ∈ Rk×n, |A|22 ≤ . . .
g(y) = By, B ∈ Rn×k, |B|22 ≤ . . .

}
.

This gives rise to PCA, which is

min
A

rank(A) = k

∣∣x− AtAx∣∣2
2
.

Theorem. For k-PCA,

m(ε, δ) = O

(
k

ε2
log

1

δ

)
.

Remark 2. The norm bound for |A|22 and |B|22 in the definition of H was not specified.
This is an important sublety, and we will go into detail in future lectures. Indeed, the
error in the theorem above depends on the norm bound, and so the above theorem has
a specific norm bound in mind.
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Example 5. (k-means) Given f : x→ µi,

f{µi}i=1,...,k

and g(µi) = µi.

Example 6. (Dictionary Learning) Given x→ y such that

fA(x) =
{
y where y = argmin|z|0≤k|Az − x|

2
2

where |z|0 is the number of non-zero entries, then gA(y) = Ay where A ∈ Rn×d.

m(ε, δ) = O

(
min

(
nd

ε2
log

1

δ
,
dk logN

ε2

))
.

We note that the second term in the minimum above is a stronger bound than the first,
but that the first is independent of k.

1.4. ERM and Rademacher Complexity. (Empirical Risk Minimization) Take a
set S of examples {xi}mi=1 where xi ∈ Rd, |S| = m. Define

hERM(S) = ERM(S) = argminh∈H
1

m

m∑
i=1

` (h, xi) ,

and let

lossS(h) =
1

m

m∑
i=1

` (h, xi) .

Here ` (h, xi) = loss(h, xi) is any Lipschitz function, but in this course we will be
particularly interested in the reconstruction error

`(h, xi) = |x− g ◦ f(x)|,
or

`(h, xi) = |x− g ◦ f(x)|+ |f(x)|
depending on the application. Let

loss(h) = Ex∼D [loss(h, x)] .

Then we say that (X,D,H) is learnable if

lossS(hERM) ≤ min
h∗∈H

loss(h∗) + ε

with probability 1− δ for m large enough.

Definition 2. The Rademacher complexity of a hypothesis class H with respect to a
sample S is

RS(H) = E

[∑
h∈H

1

m

,∑
i=1

Xiloss(h, xi)

]
where {Xi}mi=1 are independent Bernoulli random variables taking the values −1 and 1
each with probability 1

2
. Define

Rm (H) = ES∼Dm [RS (H)] .

We want for every hypothesis,

lossS(h) ≈ loss(h).

The Rademacher complexity specifically captures when this condition happens.
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Theorem 1. With probability at least 1− δ, for m ≥ C for some constant C,

loss (hERM) ≤ loss (h∗) +Rm (H) +

√
log 1

δ

m
.

Proof. Define
Φ(S) = sup

h∈H
(loss(h)− lossS(h)) .

Observe that

|Φ(S)− ES∼Dm [Φ(S)]| ≤

√
log
(
1
δ

)
m

with probability 1− δ. This follows from Markov-type results in probability theory. To
be precise you have to use Martingale sequences. Next, we will show that

ESΦ(S) ≤ 2Rm (H) .

From this and the previous inequality, it follows that

|lossS(H)− loss(h)| ≤ Rm (H) +

√
log 1

δ

m

from which the result immediately follows. To prove this, notice that

ES [Φ(S)] = ES
[
sup
h

(loss(h)− lossS(h))

]
= ES

[
sup
h

(ES′∼Dm lossS′(h)− lossS(h))

]
≤ ES,S′∼Dm

[
sup
h

(lossS′(h)− lossS(h))

]
≤ ES,S′

[
sup
h∈H

(
1

m

∑
i=1

(loss(h, x′i)− loss(h, xi))

)]
.

Let {Xi}ni=1 be independent uniform random variables on {−1, 1}. Then the above
equals

ES,S′
[

sup
h∈H

(
1

m

∑
i=1

Xi (loss(h, x′i)− loss(h, xi))

)]
,

and this is at most

ES,S′
[

sup
h∈H

(
1

m

∑
i=1

Xiloss(h, x′i)

)]
+ ES,S′

[
sup
h∈H

(
1

m

∑
i=1

−Xiloss(h, xi)

)]
and this equals 2Rm (H). �

Next class we will see that the Rademacher complexity can be computed easily, and
is indeed an interesting function.
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