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1 Introduction

What is rate-distortion theory? Essentially, it is the idea that drives lossy compression. A
finite representation of a continuous random variable can never be perfect. It is thus necessary
to define the “goodness” of representations of an information source. The basic problem can
be stated as follows: Given a source distribution and a distortion measure (distance between
random variable and its representation), what is the minimum expected distortion achievable
at any given rate, the number of bits of information per symbol sent.

We can think of rate-distortion theory in terms of quantizing a random variable. For
instance, given two points, we can optimally represent a Gaussian by assigning each point
to the conditional mean of each half-plane. With more (R) points the problem becomes
non-trivial, and Lloyd’s algorithm must be applied.

An interesting result of rate distortion theory shows that if you try to represent n i.i.d.
random variables with nR bits, it turns out that representing all the variables together is
more efficient than treating each representation problem independently: We represent such
a sequence with a single index taking on 2nR values. This surprising result is due to the
intrinsic geometry of the situation. It turns out to be easier to “pack information” when
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using symbols to express information from multiple independent variables together rather
than separately.

Note: A good deal of the remaining discussion is taken from Elements of Information
Theory, by Cover and Thomas (2006).

2 Rate-Distortion Basics

2.1 Definitions

Suppose we have a source producing a sequence X1, · · · , Xn i.i.d. according to p(X). We have
an encoder which describes the source sequence Xn with an index fn(Xn) ⊂ {1, · · · , 2nR}.
Then the decoder maps back to Xn space with an estimate X̂n.

Definition 2.1. Distortion.
A distortion function is a mapping

d : X × X̂ → R+

It is the cost of representing symbol x by x̂. We often restrict consideration to distortion
measures which are bounded. The Hamming distortion is 0 − 1 indicator error, and the
squared-error is d(x, x̂) = (x − x̂)2. Distortion between a sequence of symbols is just the
average distortion per symbol.

Definition 2.2. (2nR, n)-rate distortion code.
We have an encoding function

fn : X n → {1, · · · , 2nR}

and a decoding function
gn : {1, · · · , 2nR} → X̂n

with distortion
D = Ep(x)[d(Xn, gn(fn(Xn))]

We can think of g as partitioning the output space into a “codebook” — this is the dis-
cretization of the output. By looking at what maps to each value of the codebook (i.e.
f−1(1), f−2(2), · · · , f−1(2nR), we can find the “assignment regions”: what things do we ap-
proximate with each code word?

A rate distortion pair (R,D) is achievable if there exists a sequence of (2nR, n)-rate
distortion codes (fn, gn) such that as n→∞, the expected distortion is ≤ D.

If we plot R as a function of D, this describes both a region called the rate-distortion
region (everything above the R-D function) as well as the function itself. The distortion-rate
function describes D as a function of R. It turns out these approaches are the same, and
also that this function is convex.

Definition 2.3. Information Rate-Distortion.

R(I)(D) = min
p(x̂|x):

∑
(x̂,x) p(x̂,x)d(x̂,x)≤D

I(X; X̂)
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recalling that the mutual information is defined as

I(X; X̂) =
∑
x,x̂

p(x, x̂) log
p(x, x̂)

p(x)p(x̂)
= D (p(x, x̂)‖p(x)p(x̂))

where D(·‖·) is the KL-divergence. We can express the rate-distortion notion a different way
with this formulation. It is not obvious how this notion relates to the first description of
rate-distortion, but it turns out it is equivalent. The idea is that while staying above some
threshold of error, we want the input and output sequences to be far apart as possible, i.e.
stretch the limits of lossiness to get as efficient a rate as possible.

Henceforth, we will assume that R(I)(D) = R(D). We will prove it a bit later today.

2.2 Gaussian Source

Theorem 2.4. The rate-distortion function for N (0, σ2) source with squared-error distortion
is given by

R(D) =

{
1
2

log σ2

D
if 0 ≤ D ≤ σ2

0 if D > σ2

Proof. We have
R(D) = min

f(x̂|x):E[(X̂−X)2]≤D
I(X; X̂)

We proceed by lower-bounding and then demonstrating achievablility. Recall that h(X) =
−
∫
X
f(x) log f(x)dx.

I(X; X̂) = h(X)− h(X|X̂)

=
1

2
log(2πe)σ2 − h(X − X̂|X̂)

≥ 1

2
log(2πe)σ2 − h(X − X̂)

≥ 1

2
log(2πe)σ2 − h(N (0,E[(X − X̂)2]))

=
1

2
log(2πe)σ2 − 1

2
log(2πe)E[(X − X̂)2]

≥ 1

2
log(2πe)σ2 − 1

2
log(2πe)D

=
1

2
log

σ2

D

(1)

where we have used the fact that the maximum entropy distribution for fixed second moment
is a Gaussian. It turns out we can achieve this lower bound with the following setup. If
D > σ2, we choose X̂ = 0 and achieve R(D) = 0. Otherwise, we have X = X̂ + Z where
X̂ ∼ N (0, σ2 −D) and Z ∼ N (0, D), with X̂ and Z independent. The mutual information
of this channel matches the lower bound. The rate distortion function decreases steeply until
D = 1, where it becomes 0.
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2.2.1 Sphere-Packing Intuition

Another way to intuitively see this result is in terms of sphere-packing.
Consider a Gaussian source with variance σ2. Then a (2nR, n) rate distortion code with

distortion D is a set of M = 2nR sequences in Rn. Source sequences of length n lie within
a ball of radius

√
nσ2, since the total variance is nσ2. Then, by the definition of distortion,

each sequence is within
√
D of some codewords. We want to know how many codewords we

can use without intersection in the decoding sphere – i.e., a sphere packing problem! We
look at the volume ratio:

M =
An

(√
nσ2
)n

An

(√
nD
)n =

(
σ2

D

)n/2
and we again recover the rate

1

n
logM =

1

2
log

σ2

D

2.3 Proving Information Rate Distortion = Rate Distortion

2.3.1 Convexity of R(D)

In this section we show that R(D) is a nonincreasing convex function of D.

Proof. First note that R(D) is a minimum of mutual information over increasingly large sets
as D increases. The minimum over A is less than or equal to the minimum over B if B ⊆ A
since there are more options. Thus R(D) is nonincreasing.

Now consider (R1, D1) and (R2, D2) which lie on the R-D curve. Let p1(x, x̂) and p2(x, x̂)
be the joint distributions which achieve each of these pairs and consider pλ = λp1 +(1−λ)p2.
Since distortion is a linear function in terms of the distribution, we have D(pλ) = λD(p1) +
(1− λ)D(p2). Mutual information is a convex function of the conditional distribution, thus

Ipλ(X; X̂) ≤ λIp1(X; X̂) + (1− λ)Ip2(X; X̂)

Thus by definition of R-D:

R(Dλ) ≤ Ipλ(X; X̂)

≤ λIp1(X; X̂) + (1− λ)Ip2(X; X̂)

= λR(D1) + (1− λ)R(D2)

(2)

as desired.

2.3.2 Converse Statement

We will now prove that we cannot achieve distortion ≤ D if we describe X at rate less than
R(D). This is the converse of the statement that

Theorem 2.5. The rate distortion function for an i.i.d. source X with distribution p(x)
and bounded distortion d(x, x̂) is equal to the associated information rate distortion function.
That is,

R(D) = R(I)(D) = min
p(x̂|x):

∑
(x,x̂) p(x)p(x̂|x)d(x,x̂)≤D

I(X; X̂)
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is the minimum achievable rate at distortion D.

Proof. We must show for any X drawn according to p(x) with d(x, x̂) and any (2nR, n) rate
distortion code with distortion ≤ D that R ≥ R(D). Consider any (2nR, n) code defined by
fn, gn. Then X̂n = X̂n(Xn) = gn(fn(Xn)) be the reproduced sequence according to Xn, and
assume that the expected distortion is ≥ D. Then we have

nR ≥ H(fn(Xn)) by the range of fn ≤ 2nR

≥ H(fn(Xn))−H(fn(Xn)|Xn) = I(Xn; fn(Xn))

≥ I(Xn; X̂n) by data-processing inequality

= H(Xn)−H(Xn|X̂n)

=
n∑
i=1

H(Xi)−H(Xn|X̂n) by indep.

=
n∑
i=1

H(Xi)−H(Xn|X̂n, Xi−1, · · · , X1) by chain rule of entropy

≥
n∑
i=1

H(Xi)−
n∑
i=1

H(Xi|X̂i) since conditioning reduces entropy

=
n∑
i=1

I(Xi; X̂i)

≥
n∑
i=1

R(E[d(Xi, X̂i)]) by definition of rate-distortion

= n

(
1

n

n∑
i=1

R(E[d(Xi, X̂i)])

)

≥ n ·R

(
1

n

n∑
i=1

E[d(Xi, X̂i)]

)
by convexity of R and Jensen

= nR(D)

(3)

thus we get R ≥ R(D), as desired.

It also turns out that this rate is achievable, but we will not prove that here.

3 Optimizing the Rate-Distortion Function

We want to optimize

R(D) = min
q(x̂|x):

∑
(x,x̂) p(x)q(x̂|x)d(x,x̂)≤D

I(X; X̂)

over conditional distributions q(x̂|x). By applying the method of Lagrange multipliers, we
write down the functional

J(q) =
∑
x

∑
x̂

p(x)q(x̂|x) log
q(x̂|x)

q(x̂)
+ λ

∑
x

∑
x̂

p(x)q(x̂|x)d(x, x̂) +
∑
x

ν(x)
∑
x̂

q(x̂|x)
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where the first constraint is the distortion constraint and the second constraint enforces that
for each x, q(x̂|x) is a probability distribution. Taking the derivative and setting equal to
zero, we get

p(x)

[
log

q(x̂|x)

q(x̂)
+ λd(x, x̂) +

ν(x)

p(x)

]
= 0

Let log µ(x) = ν(x)/p(x). Then

q(x̂|x) =
q(x̂)e−λd(x,x̂)

µ(x)
=

q(x̂)e−λd(x,x̂)∑
x̃ q(x̃)e−λd(x,x̃)

Since q(·|·) is a probability distribution, the normalization µ(x) =
∑

x̂ q(x̂)e−λd(x,x̂). Since
q(x̂) =

∑
x p(x)q(x̂|x), and q(x̂) > 0, we can obtain conditions for the minimum:

∑
x

p(x)e−λd(x,x̂)∑
x̃ q(x̃)e−λd(x,x̃)

= 1 if q(x̂) > 0

and ≤ 1 if q(x̂) = 0.

3.1 Blahut-Arimoto Algorithm

We want to rewrite the optimization problem as a minimization of the distance between two
convex sets which correspond to probability distributions. It turns out that an alternating
minimization procedure will in fact converge to the minimum relative entropy between two
sets of distributions.

This alternating minimization, when applied to rate-distortion theory, goes by the name
of the Blahut-Arimoto algorithm. We can rewrite

R(D) = min
r(x̂)

min
q(x̂|x):

∑
(x,x̂) p(x)q(x̂|x)d(x,x̂)≤D

∑
x

∑
x̂

p(x)q(x̂|x) log
q(x̂|x)

r(x̂)

Then we calculate r(x̂) which minimizes mutual information, which is given by

r∗(x̂) =
∑
x

p(x)q(x̂|x)

In the next iteration, we minimize over q(·|·):

q∗(x̂|x) =
r(x̂)e−λd(x,x̂)∑
x̃ r(x̃)e−λd(x,x̃)

and then minimize over r again, etc. It turns out that the limit of the process is R(D).

4 Connecting Rate-Distortion Theory and PCA

We first show the connection between rate-distortion and PCA. Suppose we have d inde-
pendent Gaussian random variables with square-distance distortion, where we have Xi ∼
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N (0, σ2
i ). Consider that for a random Gaussian vector X ∈ Rd with zero mean and co-

variance Σ that we can find a similarity transformation U to a diagonal Gaussian Z with
covariance Γ with UTΣU = Γ. Note that h(X) = h(Z).

The rate-distortion in this case is

I(Xd; X̂d) = h(Xd)− h(Xd|x̂d)

=
d∑
i=1

h(Xi)−
d∑
i=1

h(Xi|X i−1, X̂d)

≥
d∑
i=1

h(Xi)−
d∑
i=1

h(Xi|X̂i)

=
d∑
i=1

I(Xi; X̂i)

≥
d∑
i=1

1

2
log

σ2
i

Di

(4)

where
∑

iDi = D. After writing down the Lagrangian with constraint term λ
∑

iDi, we get
that minimizing with respect to the Di gives Di = min(λ, σ2

i ) where λ is chosen to ensure
that

∑
iDi = D.

First, we note that using PCA on the sequence of data points as a method of dimension-
ality reduction takes into account the information of the whole sequence, as we have noted
rate-distortion theory suggests we do. In rate distortion theory, despite the independence of
separate random variables, it is advantageous to represent a whole sequence at once.

The second connection comes from the methodology. In rate-distortion theory, the op-
timal rate given a distortion comes from thresholding the eigenvalues: We essentially zero
out the rate for components with small variance. This methodology is similar to the way
components are selected in PCA when we enforce low-dimensional constraints. The low-
dimensional contraints of PCA are equivalent to setting a variance threshold equal to the
sum of a subset of the variances in sorted order. We completely zero out all other directions
to get the optimal PCA subspace.

5 Application to Nonparametric Statistics

The paper “Quantized Minimax Estimation over Sobolev Ellipsoids” by Zhu and Lafferty
(https://arxiv.org/pdf/1503.07368.pdf) introduces a minimax framework for nonpara-
metric estimation under storage constraints. First we briefly describe the minimax frame-
work.

5.1 Minimax Framework

First, we describe the parametric setting. Suppose we are trying to estimate a parameter
θ ∈ Θ given some noisy data x ∈ X using P{X|θ}. We would like to find a good estimator
h : X → Θ which estimates θ, which minimizes some risk function R(h, θ) = EX|θ[L(h(X), θ)]
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for some loss function L. Then, the minimax estimator hM is the one which minimizes risk
for the worst possible θ.

Definition 5.1. Minimax Estimator.
We define the minimax estimator hM : X → Θ as the estimator which satisfies

sup
θ∈Θ

R(hM , θ) = inf
h

sup
θ̃∈Θ

R(h, θ̃)

Notably, if we take a prior on θ, the minimax estimator can be thought of as the best
estimator under the “most difficult” prior on θ.

Additionally, this definition need not assume a parametrization of the hypothesis class.
We simply replace all θ with f ∈ F , a function class. We will use this nonparametric
formulation of minimax risk throughout the rest of the section.

5.2 Space Resource Constraints as Rate-Distortion

It is interesting to consider adding additional constraints to this problem, for instance, on
the amount of space (number of bits) available for representing a given estimator f̂(x) given
data x. The paper focuses on the setting of nonparametric regression under smoothness
assumptions and characterizes how the excess risk depends on the storage constraint Bn,
where n is the number of data points in the data x. Let us now make this formal.

Suppose (X1, · · · , Xn) ∈ X n is a random vector drawn from distribution Pn. Consider

estimating functional θ ∈ Θ which is evaluated on the data. Let
{
θ̂n : X n → Θ

}
be the set

of possible estimators. Then the minimax L2 risk is given by

Rn = inf
θ̂n

sup
θ∈Θ

Eθ[‖θ − θ̂n‖2]

Now suppose there is a prior π(θ) supported on a subset of Θ. We have

sup
θ∈Θ

Eθ[‖θ − θ̂n‖2] ≥
∫

Θ

Eθ[‖θ − θ̂n‖2]dπ(θ)

≥
∫

Θ

Eθ[‖θ − Eπ(θ)[θ|X1:n]‖2]dπ(θ)

(5)

where it is well known that the posterior mean is the minimizer. Since the best estimator θ̂n
is the posterior mean, let us define this lower bound as

Rn(Θ;π) =

∫
Θ

Eθ[‖θ − Eπ(θ)[θ|X1:n]‖2]dπ(θ)

We have
Rn(Θ) = sup

π
Rn(Θ;π)

So in other words, our tightest lower bound comes from the “worst” prior distribution.
Now rate-distortion comes into the picture, as we desire to add a constraint Bn on the

storage of our estimate θ̂n. We allow for an encoder-decoder pair (φn, ψn) with φn : X n →
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{
1, 2, · · · , 2Bn

}
and ψn :

{
1, 2, · · · , 2Bn

}
→ Θ where

{
1, 2, · · · , 2Bn

}
are the indices of our

codebook.
This encoding achieves the required space constraints since for a given X1:n we only need

to store a Bn-bit-long index, and θ̂n = ψn◦φn. Then the minimax risk including quantization
is given by

Rn(Θ, Bn) = inf
θ̂n,C(θ̂n)≤Bn

sup
θ∈Θ

Eθ[‖θ − θ̂n‖2]

The added constraint on θ̂n means that we will not be able to optimize as well for a given
θ, and thus we will experience some extra loss. We have∫

Θ

Eθ[‖θ − θ̂n‖2]dπ(θ) ≥ E[‖θ − Eθ[θ|X1:n] + Eθ[θ|X1:n]− θ̂n‖2]

= E[‖θ − Eθ[θ|X1:n]‖2] + E[‖Eθ[θ|X1:n]− θ̂n‖2]

= Rn(Θ; π) + RD-risk(Θ, Bn)

(6)

where the expectations are over the joint distribution of θ ∼ π(θ) and the data distribution
X1:n|θ. The given result follows since the inner product between the two terms is zero because
θ and θ̂n are conditionally independent given X1:n and Eθ[θ − Eθ[θ|X1:n]|X1:n] = 0. Note that
the first term is the Bayes risk and the second term is the rate-distortion risk, the error
due to quantization.

Now we seek to control RD-risk(Θ, Bn). Since our constrained estimator θ̂n uses at most
Bn bits, we now have the following chain of inequalities:

Bn ≥ H(θ̂n) ≥ H(θ̂n)−H(θ̂n|θ∗n) = I(θ̂n; θ∗n) (7)

where we use θ∗n to denote the optimal estimate of θ if there were no storage constraint (which
is just the posterior mean). Therefore, to minimize the rate-distortion risk, we need to solve
the following optimization problem:

inf
P (θ̃n|θ∗n)

EP [‖θ∗n − θ̃n‖2]

such that I(θ̃n; θ∗n) ≤ Bn

This optimization problem is the distortion-rate formulation of the problem: We want
the smallest possible distortion given a bound on the rate. This formulation is equivalent
to the rate-distortion formulation since the R-D function is both convex and non-increasing
(inversion is both well-defined and does not change the optima).

Thus, we can view this as rate-distortion where we are trying to learn the best lossy
compression of the optimal parameter, rather than first compressing the data and only
afterwards minimizing risk. In fact, this detail is a unique feature of this paper: They
minimize risk first, and then compress the solution.

We can write the result of the optimization problem as Qn(Θ, Bn; π). Then we have that
the quantized risk is lower bounded by

Rn(Θ, Bn) ≥ Rn(Θ;π) +Qn(Θ, Bn; π)

and taking the worst prior gives

Rn(Θ, Bn) ≥ sup
π
{Rn(Θ;π) +Qn(Θ, Bn; π)}
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5.3 Data Generation Model and Assumptions

Now, we define the assumptions about the data generation process as well as the function
class the paper tries to learn.

Specifically, the paper works in the Gaussian white noise setting defined by

dX(t) = f(t)dt+ εdB(t) for t ∈ [0, 1]

where B is Brownian motion on [0, 1], ε is the standard deviation, and f ∈ W̃ (m, c), the
periodic Sobolev space of order m and radius c.

Definition 5.2. Sobolev Space, Periodic Sobolev Space, Sobolev Ellipsoid.
The Sobolev space W (m, c) of order m and radius c is defined by

W (m, c) =

{
f ∈ [0, 1]→ R : f (m−1) is absolutely continuous;

∫ 1

0

(
f (m−1)(x)

)2
dx ≤ c2

}
The periodic Sobolev space W̃ (m, c) of order m and radius c is a restriction of Sobolev space
defined by

W̃ (m, c) =
{
f ∈ W (m, c) : f (j)(0) = f (j)(1) for all j ∈ [m− 1]

}
That is, we require that all derivative orders from 0 to m−1 are equal at the start and end of
the interval. Intuitively, if m were infinite, this requirement enforces the function to return
to the same “position” and the end of the interval, allowing us to stack the [0, 1] intervals
together to build a periodic function. In practice, we truncate at the (m− 1)th derivative as
an approximation.

First, we assume that we can express f in terms of its trigonometric basis and that the
series converges:

f =
∞∑
j=1

(∫ 1

0

ϕj(t)f(t)dt

)
ϕj =

∞∑
j=1

θjϕj

where {ϕj}∞j=1 is an orthonormal basis for L2[0, 1] defined as

ϕ1(x) = 1

ϕ2k(x) =
√

2 cos(2πkx)

ϕ2k+1(x) =
√

2 sin(2πkx)

(8)

for k ∈ N.
It turns out that a function f belongs to W̃ (m, c) iff in the above trigonometric represen-

tation, we have that the Fourier coefficients θ satisfy
∞∑
j=1

j2mθ2
j ≤

c2

π2m

This restriction on θ defines the Sobolev ellipsoid Θ(m, c), the subset of functions in L2

with this condition.

Finally, the observed path X(t) is converted into an infinite Gaussian sequence Yj =∫ 1

0
ϕj(t)dX(t), with Yj ∼ N (θj, ε

2). Thus, for estimates
(
θ̂j

)∞
j=1

of (Yj)
∞
j=1, we can estimate

f̂ =
∑∞

j=1 θ̂jϕj. Additionally, we use the square loss

L(f̂ , f) = ‖f̂ − f‖2
2 = ‖θ̂ − θ‖2

2
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5.4 Main Result

To summarize, the paper tries to characterize the asymptotic behavior of the minimax risk
with storage constraints in perodic Sobolev space under Gaussian white noise:

Rε(m, c,Bε) = inf
f̂ε,C(f̂ε)≤Bε

sup
f∈W̃ (m,c)

E[‖f − f̂ε‖2
2]

The main result shows that for given standard deviation ε, the risk behaves as

Rε(m, c,Bε) ≈ Pm,cε
4m

2m+1 +
c2m2m

π2m
B−2m
ε

where we have decomposed the risk into the traditional minimax estimation error when
there are no constraints, and the rate-distortion error (or quantized error). The term Pm,c is
from the classic nonparametric statistics literature and is known as Pinsker’s constant. The
coefficient of the rate-distortion error is the main new result of this paper. The high-level
gist of their approach is as follows: In order to solve the rate-distortion problem between
the standard best estimator and the best estimator in the compressed setting, they make use
of the quantization of a Gaussian source with varying noise levels; except here the Sobolev
ellipsoid is an infinite Gaussian sequence and requires careful truncation. In particular, one of
the main points of novelty of this paper is that they can view the uncompressed data as fully
available to the user at the time of estimation, and constraints/quantization only happens
after having found the best estimate. Future work in particular requires computationally
efficient coding schemes to achieve the rates set out in this paper, since they show achievability
only with random coding schemes.
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