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1. Introduction

Let C ⊂ {0, 1}X be a class of functions from X → {0, 1}. We say that a pair (Y, y)
is a C-labelled sample if Y ⊂ X is a multiset and y = c|Y for some c ∈ C. The size of
the labelled set is the size of Y . For an integer k, let

LC(k) = {(Y, y) : (Y, y) C-labelled and |Y | ≤ k} .

In this notation, LC(∞) is the set of all �nite C-labelled samples.

De�nition 1. A sample compression is a pair of maps κ, ρ. The compression map

κ : LC(∞)→ LC(k)×Q

takes (Y, y) to ((Z, z), q) where Z ⊂ Y , |Z| ≤ k, and y|Z = z. The reconstruction map

ρ : LC(k)×Q→ {0, 1}X

is such that for all (Y, y) ∈ LC(∞)

ρ(κ(Y, y))|Y = y.

The size of the compression scheme is k + log |Q|.

Example 1. Let C ⊂ {0, 1}R be the set of indicator functions for closed intervals. Then
for any C-labelled sample (Y, y) let κ(Y, y) be given by Z = min {x ∈ Y : y(x) = 1} ∪
max {x ∈ Y : y(x) = 1} . Given such a set Z, de�ne

f : Y → {0, 1}

by

f(x) =

{
1 if min {z : z ∈ Z} ≤ x ≤ max {z : z ∈ Z}
0 otherwise

.

Then f |Y = y, and so this yields a compression scheme of size 2.

Example 2. Let C ⊂ {0, 1}X be a class of functions lives in a vector space of rank r in
RX . That is, there exists r elements of C that span the entire class, and no such r − 1
elements. Then there is a size r compression scheme with no side information. Given
any C-labelled sample Y , C|Y has rank at most r, and so let ZY be a set of columns of
size r that span C|Y . Then we can uniquely determine c : Y → {0, 1} given c|ZY

. This
is because if c1, c2 have the same restriction to ZY , then since ZY spans the column
space, the columns associated to c1 and c2 on Y must be identical.

Let's recall the de�nition of VC-dimension and the fundamental theorem of statistical
machine learning.
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De�nition 2. We say that Y ⊂ X is shattered by C if for every f ∈ {0, 1}Y there
exists h ∈ C such that h|Y = f , or in other words, if C|Y = {0, 1}Y . The VC-dimension
(or Vapnik-Chervonenkis dimension) is the maximum size of a shattered subset of X.

Theorem 1. (Fundamental theorem of machine learning) If C ⊂ {0, 1}X has VC-
dimension d, then C is properly PAC-learnable with sample complexity

m = O

(
d

ε
log

(
2

ε

)
+

1

ε
log

(
2

δ

))
.

That is, there exists a learning map

H : LC(m)→ {0, 1}X

such that for every c ∈ C and for every probability distribution µ over X

PY∼µm [µ ({x ∈ X : hY (x) 6= c(x)}) ≤ ε] ≥ 1− δ
where hY = H (Y, y).

If there exists a sample compression scheme for C of size k, then C is PAC-learnable
and has VC-dimension at most 8k.

Theorem 2. (Littlestone-Warmuth 1986) Let C ⊂ {0, 1}X , and let κ, ρ be a sample
compression scheme for C of size k. Let

m ≥ 8

ε

(
k log

(
2

ε

)
+ log

(
1

δ

))
.

Then the learning map
H : LC (m)→ {0, 1}X

de�ned by H(Y, y) = ρ(κ(Y, y)) PAC-learns C with m samples. That is, for every c ∈ C
and for every probability distribution µ over X

PY∼µm [µ ({x ∈ X : hY (x) 6= c(x)}) ≤ ε] ≥ 1− δ
where hY = H (Y, y).

Proof. We will prove that the VC-dimension is at most 8k. Suppose that the VC-
dimension of C is d > 8k. Then there exists Y ⊂ X of size |Y | = 8k such that C|Y
yields all possible functions from Y to {0, 1}. We will use a counting argument to show
that for any compression scheme of size k, there are distinct c1, c2 ∈ C that cannot be
distinguished, and hence that cannot be uncompressed. Given a compression mapping
into LC(l)×Q, there are at most

|Q|
l∑

i=0

(
8k

i

)
2i

possible triples ((Z, c|Z), q) where Z ⊂ Y has size at most l, c is some function in C
restricted to Z, and q ∈ Q is some element of Q. Since we have a sample compression
scheme of size k, we must have that |Q| ≤ 2k−l, and so κ compresses the set of all
functions on Y , which has size 28k, to a set of size at most

2k−l
l∑

i=0

(
8k

i

)
2i < 2k+1

(
8k

k

)
,

where the inequality follows since
(

8k
i

)
is monotonic in i, and 1+2+22 + · · ·+2i < 2i+1.

This quantity is strictly less than 28k for all k ≥ 1, and so the proof is complete. �
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In their paper, Littlestone and Warmuth asked:

Problem 1. (Littlestone-Warmuth 1986) Are there concept classes of �nite dimension
for which there is no scheme with bounded kernel size and bounded additional informa-
tion?

This was elegantly answered by Shay and Moran in 2015, and we will present their
proof in the next section.

Theorem 3. (Moran-Yehudayo� 2015) Let C ⊂ {0, 1}X be a class of VC-dimension d.
Then there exists a sample compression scheme for C of size at most 2O(d).

Littlestone and Warmuth conjecture that this bound could be improved further to
O(d) on the size of the compression scheme.

Conjecture 1. (Littlestone-Warmuth 1986) Let C ⊂ {0, 1}X be a class with VC-
dimension d. Then there is a sample compression scheme for C of size at most O(d).

2. Proof of Shay-Moran

Throughout we let ε = 1
3
and δ = 1

3
, as this choice of parameters will be su�cient

for our purposes. If C has VC-dimension d, then it follows from theorem 1 that there
exists s = O(d) and a function H such that for every c ∈ C and for every distribution
µ, there exists Z ⊂ supp(µ) such that

µ ({x ∈ X : hZ(x) 6= c(x)}) ≤ 1

3
,

where hZ = H(Z, c|Z) is the result of the learning algorithm. To create a sample
compression scheme, we need to use our learning algorithm

H : LC(s)→ {0, 1}X

where s = O(d). Given a C-labelled class (Y, y), consider the subset Z ⊂ Y , |Z| = s for
which hZ has the minimal error on Y . We could hope to compress Y → Z, and then
reconstruct y using our learning algorithm H. However, since hZ is not guaranteed to
be 100% accurate on Y , this will not work. Instead, we will look at multiple subsets
Z1, . . . , Zk ⊂ Y , |Zi| = s, and the resulting functions hZ1 , . . . , hZk

, and ask them to
vote on the value of y(x) for x ∈ Y . In this case Z = ∪ki=1Zi, and our side information
Q allows us to recover Zi from Z. Note in particular that there are many encoding
schemes that allow us to take

|Q| ≤ (1 + sk)1+sk,

where s = O(d), and so a bound on k is critical. To guarantee that the vote always
returns the correct answer, we will use Von Neumann's Min-Max Theorem.

Theorem 4. Let M ∈ Rm×n be a real matrix. Then

min
p∈∆m

max
q∈∆n

ptMq = max
q∈∆n

min
p∈∆m

ptMq,

where ∆` is the set on distributions on {1, . . . , `}.

Corollary 1. 4e3Suppose that for every p ∈ ∆m, I can choose q ∈ ∆n such that

ptMq ≥ c.

Then there exists a distribution q∗ ∈ ∆n such that

ptMq∗ ≥ c
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for any choice of p.

Let (Y, y) be any C-labelled sample. By considering only distributions µ which are
supported on Y , it follows that there exists Z ⊂ Y of size |Z| ≤ s such that

µ ({x ∈ Y : hZ(x) = y(x)}) > 2

3
,

where as before hZ = H(Z, y|Z). Hence for any µ, there exists Z such that

µ ({x ∈ Y : hZ(x) = y(x)}) > 2

3
,

and so it follows from the min-max theorem that there exists a distribution ν over
Z ⊂ Y , |Z| = s, such that for every x ∈ Y

ν ({Z ⊂ Y : hZ(x) = y(x)}) > 2

3
.

This distribution ν allows us to reconstruct y by looking at it on various subsets Z ⊂ Y .
To �nish our proof, we need an ε-net result that allows us to approximate ν as an average
of only a handful of sets Z.

Theorem 5. (Approximations for bounded VC-dimension) Let C ⊂ {0, 1}X be class
of VC-dimension d. Let µ be a distribution on X. Then for all ε > 0, there exists a
multiset W ⊂ X of size |W | ≤ O

(
d
ε2

)
such that for all c ∈ C∣∣∣∣µ ({x ∈ X : c(x) = 1})− 1

|W |
|{x ∈ W : c(x) = 1}|

∣∣∣∣ ≤ ε.

De�nition 3. Given C ⊂ {0, 1}X , the dual class C∗ is de�ned as

C∗ = {cx : x ∈ X}
where cx : C → {0, 1} is the evaluation map cx(c) = c(x).

Theorem 6. Let C ⊂ {0, 1}X be a class with dual VC-dimension d∗. Let ν be a
distribution on C and let ε > 0. Then there exists a multiset F ⊂ C of size

|F | ≤ O

(
d∗

ε2

)
such that for every x ∈ X∣∣∣∣ν ({c ∈ C : c(x) = 1})− 1

|F |
|{f ∈ F : f(x) = 1}|

∣∣∣∣ ≤ ε.

Applying this theorem with ε = 1
8
, it follows that there exists Z1, . . . , Zk ⊂ Y such

that for every x ∈ X
1

k
|{i ∈ {1, . . . , k} : hZi

(x) = y(x)}| ≥ ν ({Z ⊂ Y : hZ(x) = y(x)})− 1

8

≥ 2

3
− 1

8

>
1

2

where k = O (d∗). To �nish the proof, we use the following lemma:

Lemma 1. (Assouad 1983) Let C ⊂ {0, 1}X have V C-dimension d. Then the dual
class C∗ has VC-dimension d∗ at most < 2d+1.
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Proof. Suppose that d∗ ≥ 2d+1. We will show that the VC-dimension of C is ≥ d + 1.
Then there is a subset Y ⊂ C of functions of size 2d+1, and a subset Y ⊂ X of points
of size 22d+1

, such that the vectors  c1(x)
...

c|Y|(x)


range over all possible 22d+1

binary vectors as x ranges over the points in Y . Looking
at the 2d+1 × 22d+1

matrix M whose rows are indexed my elements of Y and columns
by elements of Y . Let M ′ denote the 2d+1 × (d+ 1) matrix whose rows are the binary
digits of the numbers 0, . . . , 2d+1 − 1 in order. For instance, when d = 2,

M ′ =



0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1


.

Since the columns of M contain all possible binary vectors of length 2d+1, M ′ must be
a submatrix of M , and hence there exists a set of points of size d+ 1 which is shattered
by C, and so the VC-dimension of C is ≥ d+ 1. �

Thus k ≤ 2d+1 and logQ ≤ 2O(d), and so the compression scheme has size at most

2O(d),

and we have proven the main theorem.


