PATTERNS IN NETWORK ARCHITECTURE:

NEW PROPOSALS FOR SECURITY

MANY PROPOSALS HAVE A SEPARATION OF IDENTIFIERS AND LOCATORS				
	for mobility	which must be routable		
PROPOSAL	IDENTIFIERS	LOCATORS		
ILNP+IPv6	lower 64 bits of address	all 128 bits of address		
AIP	Endpoint Identifier (EID)	[AD, EID], where AD is an Administrative Domain		
MobilityFirst	Globally Unique Identifier (GUID)	[NA, GUID], where NA is a Network Address		
NUTSS	(user, domain, service) triple	IP addresses		

MANY PROPOSALS with A SEPARATION OF IDENTIFIERS AND LOCATORS also have LOCATOR = NETWORK + IDENTIFIER

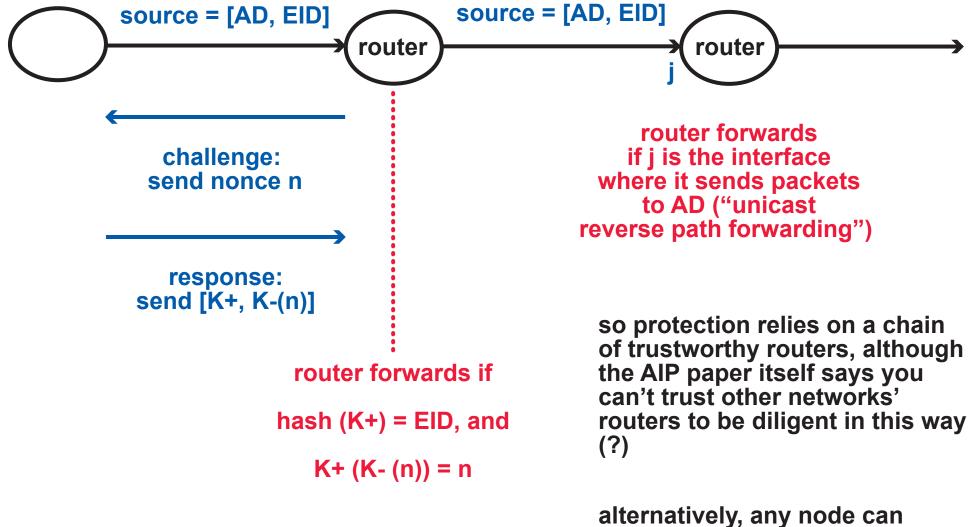
PROPOSAL	IDENTIFIERS	LOCATORS
ILNP+IPv6	lower 64 bits of address	all 128 bits of address
AIP	Endpoint Identifier (EID)	[AD, EID], where AD is an Administrative Domain
MobilityFirst	Globally Unique Identifier (GUID)	[NA, GUID], where NA is a Network Address

this is convenient, but comes with some cost:

addressing inside a network must be "flat", because addresses are not chosen by the network

there is a risk of collisions, unlimited identifier minting

SELF-CERTIFYING IDENTIFIERS


MANY PROPOSALS with A SEPARATION OF IDENTIFIERS AND LOCATORS				
also have LOCATOR = NETWORK + IDENTIFIER		these designs have already paid the cost of flat identifiers		
and SELF-CERTIFYING IDENTIFIERS				
PROPOSAL	IDENTIFIERS	LOCATORS		
AIP	Endpoint Identifier (EID)	[AD, EID], where AD is an Administrative Domain		
MobilityFirst	Globally Unique Identifier (GUID)	[NA, GUID], where NA is a Network Address		
identifiers are hashes of public keys	with a challenge/response, anyone can check that a no is using its own identifier	de are also self-certifying, for secure		
public key needs to be 2K bits	there is no need to rely on a	routing		
AIP EID is 160 bits	trusted global authority			

FINDING AND MOBILITY

PROPOSAL	MAP FROM HUMAN-READA NAME TO IDENTIFIER	BLE MAP FROM IDENTIFIER TO LOCATOR
ILNP+IPv6	DNS	DNS
AIP	DNS when a host is mob locator in DNS; be is self-certifying, DN	cause identifier
MobilityFirst		GNS should GNS also benefit om self-certifying location update
NUTSS	identifiers are human-readable	for name-routed signaling DNS finds P-box of domain, which routes to endpoint; if name- routed signaling is successful, it supplies locator

PROTECTION AGAINST SOURCE SPOOFING

ONLY AIP EXPLAINS IT, ALTHOUGH MobilityFirst HAS THE RIGHT KIND OF NAMES

repeat the challenge/response

PROTECTION AGAINST DENIAL OF SERVICE

MUST FILTER OUT BAD TRAFFIC

MUST RECOGNIZE BAD TRAFFIC WITH LITTLE EFFORT

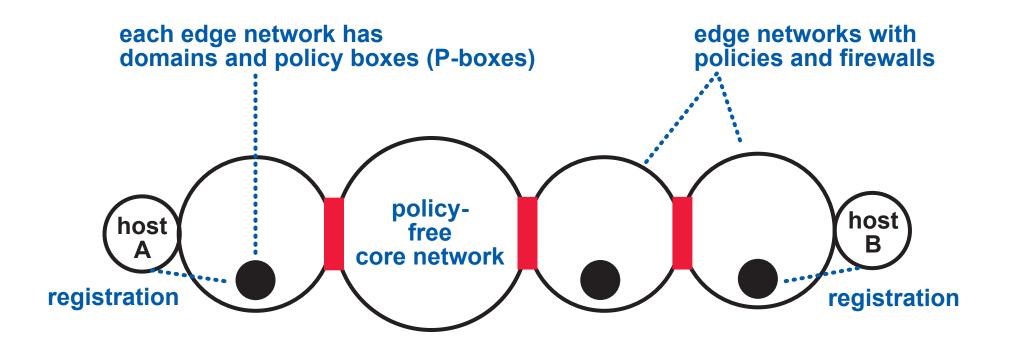
> ••••• because otherwise the attacker has already won

note, however, that there can be stages of defense, e.g., IDS diagnoses suspicious sources, which are then blocked

THIS REQUIRES A . . .

however, a firewall cannot be configured with flat identifiers!

simply because there is no aggregation, so the scheme is not scalable

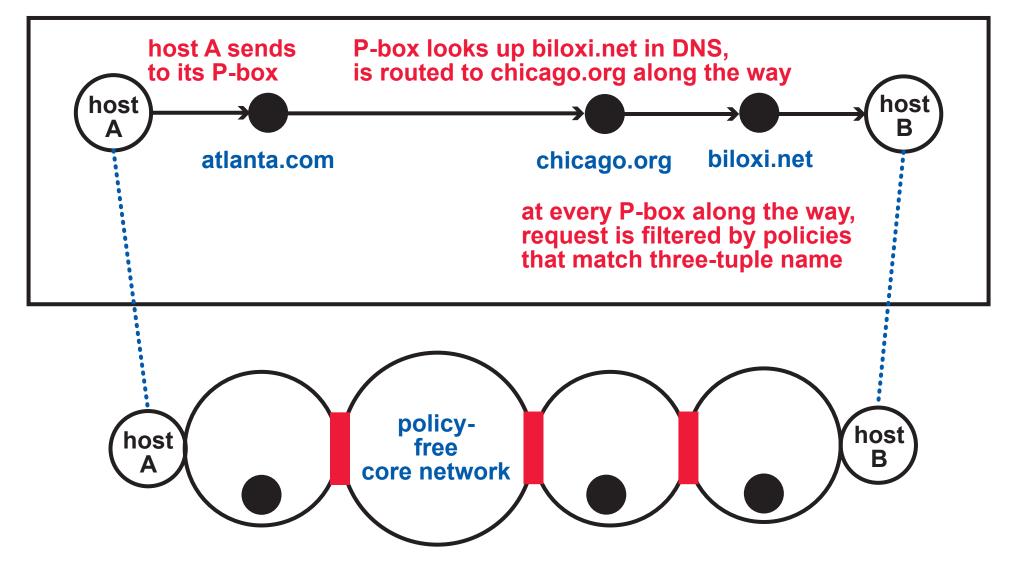

this is an opinion from the NUTSS paper, but I don't see anything wrong with it

AIP and MobilityFirst papers do not mention firewalls AIP paper says that a victim can send a shutoff message to an attacker, ...

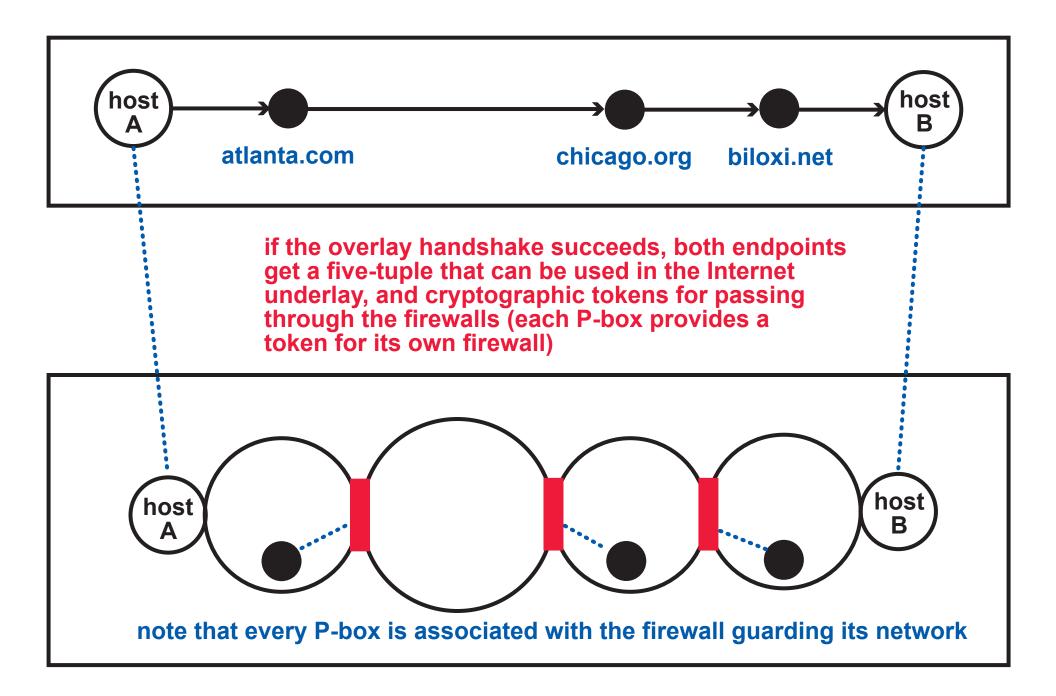
... on which a smart NIC will stop the attack, ...

... which does not sound very reassuring

PROTECTION AGAINST DENIAL OF SERVICE IN NUTSS 1



(A, atlanta.com, service) wishes to connect to (B, biloxi.net, service)


PROTECTION AGAINST DENIAL OF SERVICE IN NUTSS 2

(A, atlanta.com, service) wishes to connect to (B, biloxi.net, service)

this request is transmitted through an overlay network

PROTECTION AGAINST DENIAL OF SERVICE IN NUTSS 3

NUTSS SUMMARY

DOS PROTECTION

- in the overlay, requests can be aggregated and filtered, with wildcards in any position of the three-tuple
- in the open Internet, firewalls can be used as usual, with some packets getting a free pass

caution: how many valid tokens are there for a firewall to remember?

NUTSS is far more complicated than shown here, hopefully for good reason (and it could use a much better explanation, but the details are appreciated)

SIMILAR PROPOSALS

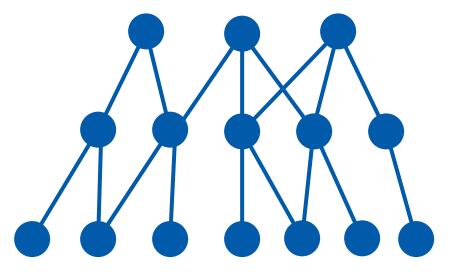
- NEBULA uses the same approach of setting up a connection with a separate signaling path, but gives no details (not even about naming!)
- the NUTSS overlay is similar to SIP (in fact, it is implemented using SIP)

big difference is that NUTSS signaling and data paths must be similar

SIP is explicitly designed to have "signaling-media separation" (see the SIP trapezoid)

so even if SIP proxies cooperated with firewalls, they could not help media packets traverse firewalls (and, in general, they cannot)

INTER-DOMAIN ROUTING


AIP, MobilityFirst, NUTSS (and probably many others) recommend routing in terms of Autonomous Domains, not IP prefixes

if the name of the AD is self-certifying, this is clearly good for routing security

inter-domain routing to ADs clearly makes sense when an AD is a topologically united subnetwork

does it also make sense for large, widespread AD?

there seems to be a notion that networks form a hierarchy, like switches in a data center

the AIP paper reports on experiments indicating that the diameter of the network will not increase, AD routing works

both AIP and MobilityFirst consider lists of AD in addresses, which reminds me of compound sessions!

NEW PROPOSALS FOR SECURITY

WHICH ONE WOULD YOU BUY?

IT MIGHT BE NICE TO USE COMPOSITION TO CREATE A VARIETY OF ALTERNATIVES