
A
A
A

A

A

A

PATTERNS IN NETWORK ARCHITECTURE:

 CLOUD COMPUTING

A
A
A

A

A

A

 CLOUD COMPUTING

OUTLINE

Discussion of Alloy homework (net4.als)

Discussion of “VL2: A scalable and flexible data center network”

Discussion of “Stratos: A network-aware orchestration layer for virtual
middleboxes in clouds”

The Nicira paper

Models of VL2 and SEATTLE

Model of a cloud design and comparisons to literature

1
2
3

4

5

6

A
A
A

A

A

A

IP SUBNETWORK FOR VLAN, ...1/24 IP SUBNETWORK FOR VLAN ...2/24
members of each subnet are directly connected by virtual links

IP

links of a VLAN must
form a self-contained spanning tree

VLAN X VLAN Y

LAN A LAN B

all members of VLAN X must be
connected to this LAN

all members of VLAN Y must be
connected to this LAN

although each LAN has
2 access routers, inter-LAN
bandwidth is severely limited

VLAN TECHNOLOGY (ACCORDING TO VL2 PAPER)

1.1
1.2

M2
M1

M3 M0 M5

M6

1.0 2.5
2.6

2.7

M7M8

A
A
A

A

A

A

VL2 ARCHITECTURE

A4

A9

A2

A7

connections to the public
Internet are not shown

VL2:
names are a random subset of the AA space

members are fully connected
by dynamic links

a member is a virtual machine,
meaning the data and
processing state—what
might be called the VM “image”

a VM can migrate from one
location to another,
without changing anything
in the VL2

A
A
A

A

A

A

session with src = 2.55, dest = 2.56

TOR has a hardware/
software link to each
of its VMs, and a
routing table of its
AAs

session with identifier H(t), dest 1.6

this member is a mysterious,
undefined “server”—it is
actually a VM share on a
virtualized host, which gets its
name dynamically by VM mobility

VL2 ARCHITECTURE

directory
lookup

intermediate
switch aggregation switches are

in here; presumably
routing is deterministic
and not interesting

2.562.55

2.55 1.6

TOR
2.56

VL2

A
A
A

A

A

A

session with src = 2.55, dest = 2.56

session with identifier H(t), dest 1.6

1

2

3

4

5

links and sessions 1, 2, 3, 4, 5 are in
one-to-one correspondence, so every
user session gets a different random
path to intermediate switches

the underlay network uses
itself, but there are no cycles
in link usage

VL2 ARCHITECTURE

1.1

1.1

1.1

1.1
TOR and

aggregation
switches

session with identifier
H(t), dest 1.1

2.562.55

2.55

2.55

1.6

TOR
2.56

VL2

A
A
A

A

A

A

Ethernet
hosts are
connected to
switches there is an

overlay in which
all switch pairs are
connected by direct,
persistent links

SEATTLE ARCHITECTURE

in an underlay, all these links
are implemented by a
network with normal routing;
it is better than a LAN because
links need not be confined to
a spanning tree a

A
A
A

A

A

A

SEATTLE ARCHITECTURE

H

H

H1

H2

S1

S2

as in a normal Ethernet
each switch has a
sparse routing table,
containing only
entries for destinations
it is currently
communicating
with

as in a normal Ethernet,
a switch gets a route to
a new destination when
it needs one

unlike a normal Ethernet,
a switch gets a route to
a new destination by
looking it up in a directory

(it cannot flood, and
this is more efficient)

why does this
unusual strategy
work for this
architecture?

A
A
A

A

A

A

for all switches, the route to
H2 is S2

SEATTLE ARCHITECTURE

H2

S2

unlike a normal Ethernet,
a switch gets a route to
a new destination by
looking it up in a directory

why does this
unusual strategy
work for this
architecture?

1

2

normally, a network has
many different routes to
a destination, used by
different sources

in this case each outlink from
a switch is identified with the
MAC address of the switch
at the other end

with this scheme, each switch has
the same route to a particular switch,
and also the same route to a host on it

A
A
A

A

A

A

 MIDDLEBOXES IN CLOUD COMPUTING

LOGICAL PROBLEMS OF SERVICE CHAINING

routing loops

large number of switch-level forwarding rules

session affinity

middleboxes that modify the 5-tuple used to
identify packets

middleboxes that classify packets

PROBLEMS OF DEPLOYMENT AND DYNAMIC
RESOURCE ALLOCATION

how is service chaining deployed in a cloud
data center?

what happens when load must be
redistributed?

what happens when a virtual machine
migrates?

 A CLOUD DESIGN

SOME SOURCES

CloudNaaS
[Benson, Akella, Shaikh 11]

VL2 [Greenberg et al. 09]

WL2 [Chen, Liu, Liu, Loo, Ding 14]

OpenStack

DESIGN GOALS

accommodate clouds of the largest
size

10 data centers
100 K hosts per data center,

100 M virtual machines

put in all the capabilities desirable
in large-scale, multi-tenant clouds

multiple data centers,
VM migration

tenant-specific links

tenant-specific address spaces,
policy links

identifier/locator split,
IP routing in cloud layer

NEW SOURCES AND COMPARISONS

SIMPLE

Stratos

Tenant Service Networks

Cloud Network

Ethernet LANs

NETWORKS CONTRIBUTING TO THE CLOUD

Internet Private Networks

LAYERS IN A
LARGE-SCALE CLOUD

bridged with the
public Internet

provides services
such as . . .
. . . middleboxes
. . . QoS contracts

each tenant has a
separate, independent

address space

spans multiple data centers,
provides live migration of virtual machines,
shares resources among tenants

TENANT PRIVATE
INTERNET NETWORK

tenant
VM G

tenant
VM S

service
VM

service
VM

tenant
VM G

tenant
VM S

TENANT
SERVICE
NETWORK

gateway
tenant
server

cloud-supplied
service functions

(middleboxes)

TENANT PRIVATE
INTERNET NETWORK

tenant
VM G

tenant
VM S

service
VM

service
VM

tenant
VM G

tenant
VM S

TENANT
SERVICE
NETWORK

for each tenant, VL2
lumps the two networks
together

VL2 paper does not
say how tenant is
provided with expected
IP addresses

this design allows
tenant complete
freedom to assign
IP addresses

names of attached
members are the
same in both networks

Stratos lumps both networks,
for all tenants, together

Stratos paper does not
say how IP addresses
are shared by tenants

TENANT PRIVATE
INTERNET NETWORK

each link is associated
with a service chain
(sequence of middlebox
types) and a load of
sessions

each new session is
assigned to a link according
to policy and load

forwarding here
implements the assignment

virtual
link

at each member, there is
a forwarding entry for
every session going through it

k

k’

s

s to k’

tenant
VM G

tenant
VM S

service
VM

service
VM

tenant
VM G

tenant
VM S

TENANT
SERVICE
NETWORK

user sessions

each link above implemented by a session (header = ident)

TENANT PRIVATE
INTERNET NETWORK

k

k’

s

s to k’with care, the session
identifier passes through
middleboxes that change headers

tenant
VM G

tenant
VM S

service
VM

service
VM

tenant
VM G

tenant
VM S

TENANT
SERVICE
NETWORK

user sessions

assignment of individual
user sessions to the
“flow” that is session s
provides redistribution
of load with session
affinity

the tag in Stratos is this session identifier

VL2 paper does not have
service chaining

middleboxes cannot
do packet classification

only Dysco allows this

k’

s

s to k’

k’

s

s to k’
virtual links only go
between switches, so
there can be routing
loops as in SIMPLE
(which Stratos ignores)

virtual
link

switchswitch

tenant
VM G

tenant
VM S

service
VM

service
VM

TENANT
SERVICE
NETWORK

tenant
VM G

tenant
VM S

service
VM

service
VM

in the cloud design, virtual links go
between middleboxes, so there are no routing loops

the softswitch on a virtualized host
can implement its routing

Stratos
paper
does not
say what
the
switches
are (soft-
switches?
TOR
switches?)

TENANT
SERVICE
NETWORK

implementation location

share
share share share

soft-
switch

soft-
switch

gate-
way

gate-
way

SHARED
CLOUD
NETWORK

tenant
VM

tenant
VM

service
VM

service
VM

trunk between
data centers

implemented by
hypervisor of
shared machine

link inside a data center
(TORs and other switches

can be here, too)

this is like VL2,
except . . .

. . . location lookup is
by (tenant, name)

. . . VL2 has much more
detail about efficient
communication within
a data center

Stratos has an underlay implementing virtual links
between switches but it does not extend to middleboxes
and does not provide for migration of VMs

DISTINCT
INTERNET LAYERS

DISTINCT SERVICE LAYERS

VM MIGRATION: CLOUD LAYER HIERARCHY

slice
slice slice

slicesoft-
switch

soft-
switch

gate-
way

gate-
way

host hostswitch switch

VM VMVM

DISTINCT
ETHERNET LAYERS divided by geography

one
data
center

another
data

center

divided by ownership

SHARED CLOUD
LAYER

one tenant another tenant

Tenant U

1.5.8.77

this shows a link in the
service layer, and the
session in the cloud layer
that implements it

TENANT-SPECIFIC SERVICE LAYER

live link
unchanged

BEFORE

locations contains:
U -> A -> 1.5.8.77

and session spans
data centers

AFTER

directory contains:
U -> A -> 1.2.3.98

and share 1.2.3.99 has
an updated session
endpoint

VM MIGRATION: MOBILITY

share
share share

sharesoft-
switch

soft-
switch

gate-
way

gate-
way

VM VM

SHARED CLOUD LAYER
1.2.3.99

1.2.3.98
1.2.3.01.2.0.01.5.0.0

A D

Tenant U

live link
unchanged

we want to verify that a tenant’s VM
can never receive messages from
another tenant’s VM

enforcement is by means of tenant-
specific links in the cloud layer
(implemented on shared links in
the Ethernet layers)

U

U

U

T

VM MIGRATION: A THREAT TO TENANT ISOLATION

share

share

soft-
switch

gate-
way

VM VM

1.2.3.99
1.2.3.98

A D

before share 1.2.3.98 was allocated
to Tenant U, it belonged to
Tenant T, which is still
sending messages to it

when the share changes tenants,
its link must also change
ownership, atomically

if it is proved that forwarding is limited
to chains of links of the same tenant,
tenant isolation should be guaranteed
by this layer

MIDDLEBOX POLICIES: UPDATES ARE CONSISTENT

 BY CONSTRUCTION

VM

IP IPA

A D

D

B C VM

INTERNET LAYER

SERVICE LAYER

detect need for
more capacity

create new
policy link

create new
service session

allocate middleboxes,
create links and forwarding

for session application sessions are not allocated
to new policy link until this call returns

LAYERED
CONTROL PROGRAMS

VM

VIP VIPA

A D

D

B C VM

HEADER OPTIMIZATION

s0

s1

Internet messages on this
link have s0 header

messages on these links
have Internet messages

encapsulated with s1 header

and so on for levels below

HOWEVER, . . .

. . . and,
if sessions are set up by
control plane (rather than
by exchange of messages). . .

if there is no more than
one session between
two endpoints, header
can omit identifier

if there is no more than
one hop (link) in a
session path, header can
omit names

if you optimize, you know
what generality you are losing

if names or link/session
identifiers coincide in
two layered networks,
they can be omitted from
one of the headers

soundness of optimizations is
easy to reason about in Alloy

SUMMARY: REASONING WITH THE FORMAL MODEL

LOGICAL EFFECTIVENESS OR
REACHABILITY

for propagation of top-down
changes due to tenant
configuration, policies, or load

for propagation of bottom-up
changes due to mobility, resource
failure, or resource reconfiguration

verified separately for each layer

verified separately for each layer verified separately for each layer

SECURITY

only allowed and authenticated
messages are delivered

middlebox policies are enforced by
the service layer

one tenant’s VM cannot receive
messages from another tenant’s
VM in the cloud layer

BANDWIDTH TRACEABILITY
(SUPPORT FOR QoS CONTRACTS)

load from each tenant is formally
defined and traceable

HEADER OPTIMIZATION (WHEN
POSSIBLE TO OMIT FIELDS)

UPDATE CONSISTENCY

consistency by construction,
using informal hierarchical reasoning

verification and informal
reasoning, both hierarchical

legitimate destinations are
reachable from legitimate sources

the mobility mechanism always
succeeds in the cloud layer

even without central control, both
endpoints moving simultaneously

A
A
A

A

A

A

NETWORK VIRTUALIZATION IN

MULTI-TENANT DATACENTERS

by Teemu Koponen and 24 others, mostly from VMware

NSDI `14

This is believed to be the ultimate
cloud design, but no one understands
the paper. Good time to try again.

