PATTERNS IN NETWORK ARCHITECTURE:

ROUTING, FORWARDING, AND

REACHABILITY

PATTERNS IN NETWORK ARCHITECTURE:

ROUTING, FORWARDING, AND REACHABILITY

OUTLINE

Survey of Concerns and Patterns

Reachability Properties

Discussion of "Checking beliefs in dynamic networks"

Presentation of an Alloy model

Comparison between Alloy and NoD

Reachability Properties and Layered Composition

Discussion of "Resilient overlay networks"

Resource allocation in layered composition

WHAT DO WE CARE ABOUT?

PERFORMANCE

latency, bandwidth, jitter

RELIABILITY

packet loss

RESOURCE UTILIZATION

minimum link utilization (for efficiency)

maximum link utilization (for reliability)

FAILURES

link failure

node failure

SAFETY AND PROGRESS REQUIREMENTS

many!

RESOURCE ALLOCATION

load balancing on paths

queueing and rate limiting

COSTS OF ROUTING

network monitoring

signaling, computation, and security for routing algorithms

forwarding-table updates

COSTS OF FORWARDING

number of routers

size of forwarding table at each router

forwarding delay at each router

header bits in packets

SCALABILITY!

WHAT ARE SOME ROUTING/FORWARDING PATTERNS?

ROUTING AND FORWARDING PATTERNS 1: DECENTRALIZED

"PUSH" ROUTING

routes are disseminated by advertising ("push")

forwarding tables are "dense", in the sense that they should have an entry for every name

names are hierarchical and aggregated

name assignment is decentralized by means of the hierarchy

"PULL" ROUTING

- routes are learned passively or requested when needed
- forwarding tables are "sparse"

- names are "flat" and unstructured
- there is no hierarchy, but name assignment can be decentralized by other means (e.g., manufacture)

ROUTING AND FORWARDING PATTERNS 2

CENTRALIZED CONFIGURATION

- routing algorithm is centralized, it gives forwarding-table entries to routers
- with SDN, controller updates forwarding tables automatically
- with MPLS, there may be manual configuration of routers

MOBILE AD-HOC NETWORKS

- no distinction between hosts and routers
- no point-to-point links
- forwarding is broadcasting to all in radio range
- nodes may keep some forwarding state, based on which nodes have been reachable (close) in the recent past

DISCUSSION OF "CHECKING BELIEFS IN DYNAMIC NETWORKS" AND

net2.als

MULTIPATH ROUTING

h1: source = A, destination = G, hash = x1

h2: source = A, destination = G, hash = x2

receives = { (h1 -> A -> G), (h2 -> A -> G) }

DISCUSSION OF "RESILIENT OVERLAY NETWORKS"

recall from Lecture 1: one of the purposes of a model is to provide well-defined terminology

Did you find this paper difficult to read?

NETWORK PERFORMANCE

PATHS

- from a source to a destination; this is what we really care about
- path performance is derived from link performance:

the sum of latencies, the minimum of bandwidths, the product of packet losses, the logical-or of failures

RESOURCE ALLOCATION

- routing allocates sessions to paths, does load-balancing
- forwarding enforces routing decisions, also secondarily controls resource allocation with queueing and rate limiting

link performance is partially dependent on its load/utilization, so optimization can be complex

this is what routing algorithms are good at! typically, one routing pattern per network

A NETWORK MODEL: THE "USES" HIERARCHY OR VERTICAL COMPOSITION

when an overlay uses an underlay, a link in the overlay is implemented by a session in the underlay

VERTICAL COMPOSITION FOR IMPROVED PERFORMANCE

WARNING: DOES NO GOOD IF THE MULTIPLE IMPLEMENTATION PATHS USE THE SAME RESOURCES!

RON uses explicit multipath routing link 1 link 2 link 1 link 2 because the Internet paths implementing links have different endpoints, we expect them to use different

resources

could have overlay links with the same endpoints

links are implemented on different networks with different resources

VERTICAL COMPOSITION FOR IMPROVED PERFORMANCE

why is it necessary to have two links in the overlay?

links are implemented on different networks with different resources