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ABSTRACT
Middleboxes are crucial for improving network security and
performance, but only if the right traffic goes through the
right middleboxes at the right time. Existing traffic-steering
techniques rely on a central controller to install fine-grained
forwarding rules in the switches—at the expense of a large
number of rules, a central point of failure, challenges in
ensuring all packets of a session traverse the same middle-
boxes, and difficulties with middleboxes that modify the “five
tuple.” The situation is even more challenging if the se-
quence of middleboxes (the “service chain”) needs to change
during the life of a session, e.g., to remove a load-balancer
that is no longer needed, replace a middlebox undergoing
maintenance, or add a packet scrubber when traffic looks
suspicious. We argue that a session-level protocol is a fun-
damentally better approach to traffic steering, while natu-
rally supporting host mobility and multihoming in an inte-
grated fashion. Our Dysco protocol steers the packets of a
TCP session through a service chain, and can dynamically
reconfigure the chain for an ongoing session. Dysco re-
quires no changes to end-host and middlebox applications,
host TCP stacks, or IP routing. Dysco’s distributed reconfig-
uration protocol handles the removal of proxies that termi-
nate TCP connections, middleboxes that change the size of
a byte stream, and concurrent requests to reconfigure differ-
ent parts of a chain. Through formal verification using Spin
and experiments with our Linux-based prototype, we show
that Dysco is provably correct, highly scalable, and able to
reconfigure service chains across a range of middleboxes.

1. INTRODUCTION
In the early days of the Internet, end-hosts were sta-

tionary devices, each with a single network interface,
communicating directly with other such devices. Now
most end-hosts are mobile, many are multihomed, and
traffic traverses chains of middleboxes such as firewalls,
network address translators, and load balancers. In this
paper, we argue that the “new normal” of middleboxes
deserves as much re-examination of approaches as mo-

bility and multihoming.
Most existing research proposals use a logically cen-

tralized controller to install fine-grained forwarding rules
in the switches, to steer traffic through the right se-
quence of middleboxes [1–8]. Even for the simplest ser-
vice chains, these solutions have several limitations:

• They require special equipment (e.g., SDN switches)
that can perform match-action processing based on
multiple packet header fields.
• They rely on real-time response from the central con-

troller to handle frequent events, including link fail-
ures, and the addition of new middlebox instances.
• They need switch-level state that grows with the di-

versity of policies, the difficulty of classifying traffic,
the length of service chains, and the number of in-
stances per middlebox type.
• Updates to rules due to policy changes, topology changes,

or fluctuating loads must take care to ensure that all
packets of a session traverse the same middleboxes.
• Outsourcing middleboxes to the cloud [9] or other

third-party providers [10] becomes difficult, since the
controller cannot control the end-to-end path.

Further, there are common situations in which fine-
grained forwarding rules are insufficient. These include:
• Some middleboxes (e.g., NATs) modify the“five-tuple”

of packets in unpredictable ways, so that packets emerg-
ing from the middlebox cannot be associated reliably
with the packets that went in.
• Some middleboxes classify packets to choose which

middlebox should come next. These middleboxes must
be able to affect forwarding of their outgoing packets.
• A multihomed host spreads traffic over multiple ad-

ministrative domains (e.g., enterprise WiFi and com-
mercial cellular network), yet some middleboxes need
to see all the data in a TCP session (e.g., for parental
controls) [11]. Regardless of access network, all these
paths must converge at the same middlebox.
Fine-grained forwarding is even more limiting when

the sequence of middleboxes for an ongoing session needs



to change. We call changing middleboxes mid-session
dynamic reconfiguration, and it is useful in a wide range
of situations (see also [12]):
• After directing a request to a backend server, a load

balancer can remove itself from the path and, hence,
avoid being a single point of failure.
• An intrusion detection system, Web proxy cache, or

ad-inserting proxy can remove itself after its work for
a session is done.
• When coarse-grained traffic measurements (e.g., Net-

flow data) identify suspicious traffic, it can be directed
through a packet scrubber for further analysis.
• When the network is congested, video sessions can be

directed through compression middleboxes [13].
• An overloaded middlebox, or one that is undergoing

maintenance, can be replaced with another middlebox
of the same type (e.g., see [14,15]).
• When an end-host moves to a new location, a middle-

box can be added temporarily to buffer and redirect
traffic from the old location. In addition, the old mid-
dleboxes in the service chain can be replaced with new
ones closer to the new location.

Note that removing a middlebox goes beyond simply
pushing packet forwarding into the kernel, and removes
the machine from the path entirely. This reduces la-
tency and increases reliability, while conserving middle-
box resources for sessions that actually need them.

In response to these difficulties with fine-grained for-
warding, emerging industry solutions encapsulate pack-
ets so that their destination addresses alone cause them
to be forwarded through the service chain [16–18]. This
is a step in the right direction, but does not go far
enough. A session protocol can also manipulate desti-
nation addresses for basic service chaining, while using
signaling to avoid encapsulation and achieve dynamic
reconfiguration. Thus a session protocol can overcome
all the limitations listed above, and make service chain-
ing independent of routing. In the spirit of the end-to-
end argument, all of the key functions are performed by
hosts—whether end-hosts or middlebox hosts. Session
protocols already provide effective and efficient support
for mobility [19–25] and multihoming [26, 27], and we
complete the exploration of this “design pattern” by fo-
cusing on middleboxes. We introduce Dysco, a session
protocol for steering packets through middleboxes and
reconfiguring established service chains.

The paper makes the following contributions:
Compatibility with TCP: Dysco is designed to be

compatible with TCP so that it requires no alterations
to end-host applications, middlebox applications, host
TCP stacks, or IP routing. Because service chains need
not span the entire TCP session, Dysco can be deployed
incrementally and across untrusted domains, with con-
ventional security techniques. Although the Dysco ap-
proach should be compatible with most transport pro-

tocols, we decided that grappling with the complexities
of TCP was more important than demonstrating gen-
erality in this dimension.

Highly distributed control: Service chaining and
dynamic reconfiguration of the service chain can be per-
formed completely under the control of middlebox hosts.
Autonomous operation is valuable not only because it
avoids controller bottlenecks, but also because some-
times only the middlebox itself knows which middlebox
should be next in the chain for a session, or when its
job within a session has been completed. To ensure that
distributed control is exercised safely, Dysco manages
the contention when Dysco agents for different middle-
boxes attempt to reconfigure overlapping segments of
the same session at the same time.

Generalized dynamic reconfiguration: Dynamic
reconfiguration of a service chain works even if a middle-
box being deleted has modified the TCP session, most
notably by acting as a session-terminating proxy. The
middlebox might also have changed the size of a byte
stream (e.g., by transcoding or adding/removing con-
tent). Packet buffering is usually not necessary, but if
used to freeze server state for migration or to preserve
packet order, it can be performed exclusively by hosts.

Protocol verification: We have a formal model of
the Dysco protocol that is detailed enough to manipu-
late sequence numbers, yet abstract enough to be veri-
fied by means of model-checking. By presenting an au-
tomated proof of correctness, we show how to increase
the power of session protocols without sacrificing our
confidence in them.

Transparent support for middleboxes: Our pro-
totype includes a Linux kernel module that intercepts
packets in the network device, so it works with unmodi-
fied applications and a wide range of middleboxes. The
kernel module supports Linux namespaces, which makes
it suitable for virtualized environments (e.g., Docker [28])
and experimentation with Mininet [29]. Experiments
show that session setup is fast, steady-state throughput
is high, and disruption during reconfiguration is small.

Although there is work yet to do on Dysco, the re-
sults in this paper show that the approach can work in
practice. The most exciting future prospect is to inte-
grate Dysco with session-based approaches to mobility
and multihoming. While the mainstream solutions for
handling middleboxes, mobility, and multihoming rely
on routing and fine-grained forwarding rules, we believe
that an integrated session-based approach is worth ex-
ploring because implementing functions in the hosts of-
fers much better flexibility and scalability.

2. DYSCO ARCHITECTURE
In Dysco, agents running on the hosts establish, re-

configure, and tear down service chains, relying only
on high-level policies and basic IP routing. In this sec-
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Figure 2: Data flow inside hosts with Dysco agents.

tion, we introduce the Dysco architecture and give an
overview of the protocol; in §3, we expand on how Dysco
can reconfigure an existing service chain.

2.1 Concepts: Subsessions and service chain
The basic Dysco concept is that a service chain for

a TCP session is a chain of middleboxes and subses-
sions, each connecting an end-host and a middlebox
or two middleboxes. A service chain is set up when
the TCP session is set up. The service chain some-
times has the same endpoints as the TCP session, as
shown in Figure 1. Each subsession is identified by a
five-tuple, just as the TCP session is. The unmodified
end-host applications and middleboxes see packets with
the original header of the TCP session; as usual, con-
gestion control and retransmission are performed end-
to-end (see Figure 2). At the same time, Dysco agents
rewrite packet headers for transmission so that packets
traveling between hosts have the subsession five-tuple
in their headers. In this way, normal forwarding steers
packets through the service chain, and there is no en-
capsulation to increase packet size.

More generally, a service chain may span multiple
TCP sessions. For example, a service chain that in-
cludes a session-terminating proxy (e.g., a layer-7 load
balancer, Web cache, or ad-inserting proxy) would have
two TCP sessions. The Dysco agent can simply present
data to the middlebox application with the TCP ses-
sion identifier that applies at that point in the service
chain. At some point, the proxy’s work may be done,
e.g., when the load balancer establishes a session to a
backend server, or the Web cache realizes the requested
content is not cacheable. The Dysco agent can then
delete the host from the service chain, in response to a
trigger by the proxy (e.g., a “splice” call to relegate fur-
ther handling of the traffic to the kernel). After deleting
a session-terminating proxy, the resulting service chain
would correspond to a single TCP session.

Likewise, a TCP session may span one or more service
chains, particularly under partial deployment of Dysco
or when multiple administrative domains do not trust
each other. For example, an end-host that does not
run Dysco may connect to the Internet via an ISP edge
router that does. This edge router can initiate a Dysco

service chain to the remote end-host, or to the other
edge of the ISP, on the client’s behalf. In another ex-
ample, a TCP session may access a server in a cloud.
The part of the session covered by a service chain in
the cloud would begin at some gateway or other util-
ity guaranteed to be in the path of all of the session’s
packets as they enter the cloud. A Dysco agent in this
network element would begin the service chain. Thus a
TCP session can have one or more independent service
chains, enabling partial deployment.

2.2 Components: Agents and policy server
The Dysco agents implement the Dysco protocol (to

create, reconfigure, and tear down service chains) and
rewrite packet headers (to present the right identifiers
to applications, middleboxes, and other agents). A pol-
icy server determines which traffic should traverse which
kinds of middleboxes, and can optionally trigger recon-
figuration of groups of service chains. Compared to
an SDN controller, the policy server need not control
traffic-steering decisions for individual sessions or in-
stall any switch-level rules.

Identifying the service chain: The first Dysco
agent in a service chain gets the policy for the chain (see
§2.3). Yet, the policy server need not be involved with
individual sessions. For example, initial policies can be
pre-loaded or cached, so that an agent does not have
to query a policy server for every new session. Policies
can specify middlebox types rather than instances, and
agents can choose the instances, e.g., in a round-robin
fashion or based on load. In addition, each agent can
add middleboxes to the untraversed portion of the list.
This makes it possible for any agent along the chain to
inject policies. This also makes it possible for a middle-
box, such as an application classifier, to itself select the
next middlebox in the chain. The middlebox communi-
cates its choice to the local Dysco agent, and the agent
adds the next middlebox to the head of the policy list.

Initiating reconfiguration of a service chain: In
some use cases, Dysco agents initiate reconfiguration of
the service chain, without the involvement of the policy
server (e.g., when a load balancer or Web proxy triggers
the change). In other cases, the policy server is involved,
but only in a coarse-grained way. For example, taking
a middlebox instance down for maintenance would in-
volve the policy server sending a single command to tell
the associated Dysco agent to replace itself in all of its
ongoing sessions. Similarly, when a measurement sys-
tem suggests that certain traffic is suspicious, the pol-
icy server can send a command to Dysco agents to add
a scrubber to the service chain for all sessions match-
ing a particular classifier. The agents handle the full
details of reconfiguring the session, including resolving
any contention if multiple portions of a service chain try
to change at the same time.

3



p1 p8

p2 p3 p4 p5 p6 p7

TCP session (A, D, p1, p8)

Dysco subsession
(A, B, p2, p3)

Dysco subsession
(B, C, p4, p5)

Dysco subsession
(C, D, p6, p7)

Dysco
agent
host A

Dysco
agent
host B

Dysco
agent
host C

Dysco
agent
host D

TCP
endpoint

A
middle-

box
middle-

box
TCP

endpoint
D

Figure 1: A TCP session with its Dysco subsessions.

2.3 Phases of the protocol
Establishing a service chain: An initial service

chain is established during TCP session setup. Using
the example of Figure 1, the Dysco agent at host A in-
tercepts the outbound SYN packet. If the SYN packet
matches a policy predicate, the agent will get an ad-
dress list for the service chain such as [B, C]. The agent
allocates local TCP ports for the subsession with the
next middlebox. The agent rewrites the packet header
with its own address as the source IP address, the ad-
dress of the next specified middlebox as the destination
IP address, and the new allocated TCP ports as source
and destination TCP ports. The agent also adds to the
payload of the SYN packet the original five-tuple of the
session header and the address list [B, C, D]. It creates
a dictionary entry to map the original session to the new
subsession, and another entry to map the subsession to
the session on the reverse path. It then transmits the
modified SYN packet.

When the Dysco agent at host B receives the SYN
packet from the network, it checks to see if the pay-
load carries an address list. If it does, the agent re-
moves the address list from the payload (storing it),
and rewrites the packet header with the session informa-
tion also stored in the payload. The agent also creates
dictionary entries to map the subsession to the session
and vice-versa, and delivers the packet to the middle-
box application. When the SYN packet emerges from
the middlebox, the agent retrieves the address list [B,
C, D] and removes its own address to get [C, D]. It
then follows the procedure above to create a new sub-
session from B to C, rewrite the packet, and transmit
the modified SYN packet. This continues along the ser-
vice chain until the SYN packet reaches D, where it is
delivered to the TCP endpoint.

Middleboxes that modify the five-tuple: If such
a middlebox, e.g., a NAT, has a Dysco agent, the header
modification makes it difficult to associate a SYN packet
going into the middlebox with a SYN packet coming
out of it. To solve this problem, the Dysco agent ap-
plies a local tag to each incoming SYN packet, which it
can recognize in the outgoing packet. The agent then
associates the incoming and outgoing five-tuples, and
removes the tag. (Note that Dysco tags are different
from tags in FlowTags [5] and Stratos [6], because they

old path

new path

left anchor right anchor

Dysco

Dysco

Dysco Dysco

Dysco DyscoDysco

Figure 3: Agents reconfigure a segment of a session, replacing
an old path with one middlebox by a new path with two.

are applied only to SYN packets, are never sent to the
network, and are meaningful only to the agent that in-
serts and removes them.) A middlebox that modifies
the five-tuple can also become part of a service chain
because ordinary routing of subsession packets directs
traffic through it. This will not affect establishment
of the Dysco service chain, even though the subsession
five-tuple will be different on each side of the middlebox.

Agents reconfiguring a segment of a session:
Reconfiguration of a service chain can be triggered by
the policy server or the middleboxes themselves, but it
is always initiated by a Dysco agent and carried out
exclusively by the agents in the chain. Reconfiguration
operates on a segment, consisting of some contiguous
subsessions and the associated hosts. As shown in Fig-
ure 3, the agents at the two unvarying ends of a seg-
ment are the left anchor and right anchor. An anchor
can be the agent for a middlebox or end-host. If the
old path consists of a single subsession (with no mid-
dleboxes), and the new path has at least one middlebox,
then middleboxes have been inserted. Reverse old and
new above, and middleboxes have been deleted. If both
old and new paths have middleboxes, then the old ones
have been replaced by the new. The anchors cooperate
through control signaling to replace the old path of the
segment with a new path. Reconfiguration is always ini-
tiated by the left anchor, which must know the address
of the right anchor and the list of middlebox addresses
to be inserted in the new path (if any). There is no
need for packet buffering, because new data can always
be sent on one of the two paths.

Flexible session teardown in each direction:
The Dysco protocol preserves TCP’s ability to send
data in the two directions independently. For instance,
one end of a TCP session can send a request, and then
send a FIN to indicate that it will send nothing more.
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It can then receive the response through a long period
of one-way transmission. When the TCP session is torn
down normally, the chain is torn down along with it.
A TCP session can also time out rather than terminate
explicitly, particularly when a middlebox discards its
packets, or an end-host fails. In this case the agents
will time out the subsessions. If necessary, agents can
use heartbeat signals to keep good subsessions alive.

Security: Like other session protocols [19–24], Dysco
is vulnerable to adversaries that inject or modify con-
trol messages. Dysco can adopt the same solutions to
protect against both off-path attacks (e.g., an initial
exchange of nonces, with nonces included in all control
messages) and on-path attacks (e.g., encrypting control
messages within a chain and with the policy server).
The agents of a service chain are cooperating entities
that must trust each other. Excluding untrusted hosts
from a service chain is straightforward, since a service
chain can span just a portion of a TCP session. Cooper-
ating domains can exchange information about trusted
middlebox hosts (by IP address and optional public key)
so a middlebox in one domain can establish a subsession
with a trusted middlebox in another.

3. DYNAMIC RECONFIGURATION

3.1 Protocol overview
To reconfigure a service chain Dysco agents use con-

trol packets, each carrying in its body the associated
session identifier. Reconfiguration is always initiated
by the Dysco agent acting as the left anchor, as in Fig-
ure 3. Although reconfiguration can be triggered by
a controller or other middlebox, the triggering compo-
nent must always communicate with the left anchor to
request it to execute the protocol.

Just as the Dysco agent for A in Figure 1 needs the
address list [B, C, D] to set up the original service chain,
the left anchor of a reconfiguration needs an address list
[M1, M2, . . . , rightAnchor] with the middleboxes
and right anchor of the new path that will replace the
old path. Typically the list comes from the triggering
agent. If a middlebox wants to delete itself, it sends
a triggering message to the agent on its left with the
address list [myRightNeighbor], so the left anchor has
an address list containing only a right anchor.

Figure 4 shows the control packets exchanged by the
anchors during the first phase of a simple, successful re-
configuration. The red packets travel on the old path, so
they are forwarded through the Dysco agents of current
middleboxes (the delta fields will be explained in §3.3).
The blue three-way SYN handshake sets up the new
path within the service chain. As in §2, the SYN car-
ries an address list so that the Dysco agents can include
all the addressed middleboxes before the right anchor.
During this phase normal data transmission continues

LEFT
ANCHOR

RIGHT
ANCHOR

requestLock (leftAnchor, rightAnchor, rightDelta)

ackLock (leftAnchor, rightAnchor, leftDelta)

SYN (addressList)

SYN-ACK
ACK

Figure 4: Control packets exchanged for reconfiguration. Red
packets travel on the old path, blue on the new path.
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Figure 5: Contention to reconfigure overlapping segments.

on the old path.
In the second phase of reconfiguration, both paths

exist. The anchors send new data only on the new
path, but continue to send acknowledgments and re-
transmissions on the old path for data that was sent
on the old path. This prevents trouble with middle-
boxes that might reject packets with acknowledgments
for data they did not send. This phase continues until
all the data sent on the old path has been acknowledged,
after which the anchors tear down the old path and dis-
card the state kept for it. In subsequent sections we
provide protocol details, organized by significant issues
and challenges.

3.2 Contention over segments
Dysco is designed to work even if middleboxes have a

great deal of autonomy, so that new solutions to network-
management problems can be explored. In the most
general case, two different Dysco agents might be trig-
gered to reconfigure overlapping segments at the same
time. Figure 5 shows how the protocol prevents this.

For each subsession, the agent on its left maintains a
state that is one of unlocked, lockPending, or locked. If
it is lockPending or locked, then variable requestor holds
the left anchor of the request for which it is pending
or locked. If an agent receives requestLock(leftAnchor,
rightAnchor) from the left, the agent is not rightAn-
chor, and its subsession to the right is unlocked, then it
forwards the packet to the right, while setting the sub-
session state to lockPending and requestor to leftAnchor.
If there is no contention, the same agent will receive a
matching ackLock from the right. It will forward the
ackLock and set the subsession state to locked. In the
figure, a request to lock the segment from X to Z has
propagated from X to Z (packets 1 and 2).

Meanwhile agent W might be triggered to lock the
segment from W to Y . Its request (packet 3) will be
blocked at X because the subsession to its right is lock-
Pending. Eventually X will receive either ackLock or
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nackLock in response to its own request. If ackLock, it
replies with nackLock to the request from W . As a nack-
Lock propagates leftward, lockPending states are reset
to unlocked. On the other hand, if X receives nackLock
in response to its own request, then the subsession to its
right becomes unlocked, and it can forward the saved
request from W .

3.3 Sequence-number deltas
Some middleboxes increase or decrease the size of a

byte stream (by transcoding, inserting or deleting con-
tent, etc.). They keep track of the difference (delta)
between incoming and outgoing sequence numbers (a
signed integer) in the relevant direction, so that they
can adjust the sequence numbers of acknowledgments
accordingly. A session-terminating proxy also has a
delta because it begins sending in the reverse direction
with a different sequence number than the end-host. If
a middlebox with a delta is deleted, the discrepancy in
sequence numbers must be fixed somewhere else.

We make the assumption that once a middlebox is
ready for deletion from a session, its deltas do not change.1

The middlebox’s Dysco agent must know the deltas, ei-
ther through an API or by reconstructing them. As the
requestLock packet traverses the old path, it accumu-
lates the sum of the middlebox deltas for that direction
in the field rightDelta. As the ackLock packet traverses
the old path, it accumulates the sum of the middlebox
deltas for that direction in the field leftDelta.

Each anchor must remember the delta it has received
in the requestLock handshake. For the remainder of the
session after reconfiguration, for data coming in on the
new path or going out on the new path, the anchor
must apply its delta to packets. The table shows how.
To simplify the presentation, we assume that sequence
numbers do not wrap around to zero.

packet how apply to which
direction delta field

in add sequence number
out subtract acknowledgment number

3.4 Packet handling on two paths
In the second phase of reconfiguration, both old and

new paths exist. To handle packets correctly, the an-
chors must decide which path to use when sending data
or acknowledgments, and must know when the old path
is no longer needed. To make these decisions, an anchor
maintains the following variables (the “plus one” follows
TCP conventions for sequence numbers):
• oldSent: highest sequence number of bytes sent on

old path, plus one (this is known at the beginning of
the phase, as no new data is sent on the old path)

1Without this assumption, there must be a wait while the
last data passes through the old path, during which new
data cannot be sent on either path.

• oldRcvd: highest sequence number of bytes received
on old path, plus one
• oldSentAcked: highest sequence number sent and ac-

knowledged on old path, plus one
• oldRcvdAcked: highest sequence number received and

acknowledged on old path, plus one
• firstNewRcvd: lowest sequence number received on

the new path, if any
A byte sent by an anchor is allocated to a path according
to the following rules. If a packet contains data for
both paths (both new and retransmitted bytes), then
the data must be divided into two new packets.

predicate on byteSeq where to send byte

byteSeq < oldSent old path
byteSeq ≥ oldSent new path

Acknowledgment numbers are a little different because
their meaning is cumulative. For these the rules are:

predicate on packetAck where to send ack

packetAck ≤ oldRcvd ∧
packetAck > oldRcvdAcked old path
packetAck > oldRcvd ∧
oldRcvd = oldRcvdAcked new path
packetAck > oldRcvd ∧ new path, also
oldRcvd > oldRcvdAcked ack oldRcvd on old path

If the two sets of rules imply that the data of a packet
goes to one path and its acknowledgment goes to an-
other, then the packet must be divided into two. These
rules need not consider deltas, as deltas are already ap-
plied to incoming packets, and not yet applied to out-
going packets.

For an anchor to decide that it no longer needs the old
path, of course it must have received acknowledgments
for everything it sent on the old path, or oldSentAcked
= oldSent. Knowing that it has received everything on
the old path is harder, unless it has received a FIN on
the old path, because it does not have direct knowledge
of the cutoff sequence number at the other anchor. The
first byte received on the new path is not a reliable
indication, because earlier data sent to it on the new
path may have been lost. The correct predicate is:

oldRcvdAcked = oldRcvd ∧ oldRcvd = firstNewRcvd
The first equality says that everything received has been
acknowledged. The second says that the cutoff sequence
number must be oldRcvd. When the old path is no
longer needed, reconfiguration is complete. The anchors
send termination messages on the old path, then clean
up the extra state variables.

If a stateful middlebox in the session is being re-
placed, then additional synchronization is needed. First,
all use of the old path must be completed. Second, the
stateful middlebox on the old path must export its state
for that session to the new stateful middlebox, using ex-
isting mechanisms [15]. Then and only then can data be
sent on the new path. During the interval when the old
path is being emptied and state is being migrated, the
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anchors must buffer incoming data. The anchors can
also buffer data and clear the old path before using the
new path if other middleboxes (outside the reconfigured
segment) cannot tolerate re-ordered packets.

3.5 Failures
If control packets are lost, then the protocol detects

this and retransmits them. The most significant failure
during reconfiguration is failure to set up the new path,
which can happen because of host failure or network
partition. The remedy is to abort the reconfiguration,
so the session continues to use the old path. After this
the subsessions of the old path between the anchors are
still locked, so that they cannot be reconfigured in the
future. So the left anchor sends a cancelLock control
packet to the right anchor, the right anchor replies with
an ackCancel, and all the agents that receive these sig-
nals unlock their subsessions.

3.6 Properties and verification
While the Dysco protocol presented here is quite sim-

ple, the design process required grappling with a large
number of functions, cases, and potential race condi-
tions (e.g., arrival of a FIN in either direction at any
time during reconfiguration). The iterative design of
our protocol was possible because we modeled the pro-
tocol in the Promela language, and exhaustively checked
its behavior with the Spin model-checker [30]. At each
stage of the design process, we received immediate feed-
back on bugs and unresolved issues.

In Promela each Dysco agent is implemented with
nondeterministic concurrent processes communicating
through message queues. The model can be config-
ured with up to two middleboxes in an initial session.
It is also configured with one or more reconfigurations
that can be attempted. Some of the nondeterminism in
the model reflects choices that can be made by applica-
tion code, but most nondeterminism is due to the fact
that concurrent events can be interleaved in all possi-
ble ways. In other words, the execution traces of the
model cover all possible network delays and scheduling
decisions. In a typical run for a typical configuration,
Spin constructs a global state machine of all possible be-
haviors with 100 million state transitions. The model,
along with extensive documentation of design, modeling
abstractions, and Spin runs, can be found at [31].

Any run of Spin will find errors such as deadlocks
and undefined cases. In addition, it is possible to check
stronger properties by putting assertions at appropriate
points in the model. If execution reaches an assertion
point and the assertion evaluates to false, that will also
be flagged as an error. Using this technique, we were
also able to verify that each configuration has the fol-
lowing desirable properties:
• When multiple left anchors contend to lock overlap-

Figure 6: Implementation, where solid black lines represent the
data path, blue dashed lines the control path, and red dashed-
dotted lines the management path used to distribute policies.

ping segments, exactly one of them succeeds.
• No data is lost due to reconfiguration.
• Unless the new path cannot be set up, an attempted

reconfiguration always succeeds.
• The sequence and acknowledgment numbers received

by endpoints are correct.
• All sessions terminate cleanly.

No doubt there will be future versions of the Dysco
protocol with enhancements and optimizations, which
we will continue to track with our model and verify. Ul-
timately we need only one implementation of the proto-
col, and it will reach robustness much faster than usual
because of extensive modeling and verification.

4. DYSCO PROTOTYPE
Our Dysco prototype consists of a kernel-level agent

that communicates with an external policy server through
a user-space daemon, as shown in Figure 6.

4.1 Dysco components and interfaces
Agent: The Dysco agent supports unmodified end-

host applications, middleboxes, and host network stacks
by intercepting packets going to/from the network. In
our prototype, the Dysco agent is a Linux kernel mod-
ule that intercepts packets in the device driver. Even
though the Linux kernel is not the fastest option for
high-performance middleboxes, we decided to do an in-
kernel implementation to transparently support TCP-
terminating applications (e.g., proxies, HTTP servers,
and clients), middleboxes that use libpcap to get/send
packets from/to the network (e.g., Bro [32], Snort [33]2,
and PRADS [34]), and middleboxes that run in the
Linux kernel (e.g., Traffic Controller (tc) [35] and Ipt-
ables/Netfilter Firewall [36]). Our prototype also sup-
ports network namespaces for virtualized environments,
such as Docker and Mininet. The kernel module con-

2The latest versions of Snort use a Data Acquisition Layer
(DAQ) that allows the use of different packet acquisition
methods, such as libpcap and DPDK.
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sists of over 6000 lines of C code, and adds only 16 lines
of C code in the device drivers to call the functions that
intercept the packets and initialize and remove the mod-
ule. Our prototype currently supports the Intel ixgbe
driver (for 10 gigabit NICs), the e1000 driver (for 1 gi-
gabit NICs), veth (for virtual interfaces), and the Linux
bridge.

Middleboxes: Dysco supports unmodified middle-
box applications, and we have successfully run with
NGINX [40], HAProxy [38], Iptables/Netfilter [36], and
Linux tc [35]. Most middleboxes send and receive data
via libpcap, user socket, or Linux sk_buff. The ap-
plication can be (i) passive (e.g., PRADS [34], Bro [32],
Snort [33], Suricata [37], Linux tc [35], Iptables/Netfilter
Firewall [36]) or (ii) active if it changes the TCP session
identifier or sequence numbers (e.g., Iptables/Netfilter
NAT [36], HAProxy [38], Squid [39]). Passive mid-
dleboxes that use libpcap or sk_buff run transpar-
ently and unmodified with Dysco. To support the re-
moval of TCP-terminating proxies, the Dysco agent in-
tercepts the Linux “splice” system call and then in-
vokes the reconfiguration protocol. We also support a
dysco_splice system call that a (modified) middlebox
can use to trigger its own removal. We discuss these
in more detail below. Dysco also supports middleboxes
that can import and export internal state as part of
migrating a session from one middlebox instance to an-
other, inspired by OpenNF [14].

Daemon: The Dysco agent performs session setup
and teardown, as well as data transfers, directly in the
kernel. We implemented the reconfiguration protocol
in a separate user-space daemon for ease of implemen-
tation and debugging. Reconfiguration messages are
infrequent, compared to data packets, so the small per-
formance penalty for handling reconfiguration in user
space is acceptable. The daemon communicates with
the Dysco agent in the kernel via netlink (a native
Linux IPC function), with other Dysco agents via UDP,
and with the policy server via TCP. Our prototype in-
cludes a library for a simple management protocol for
the daemon and the policy server. The daemon com-
piles and forwards to the kernel the policies received
from the policy server, triggers reconfiguration, and per-
forms state migration when replacing one middlebox
with another (by importing and exporting state, and
serializing and sending the state to another middlebox).

Policy server: The policy server provides a sim-
ple command-line interface for specifying the service-
chaining policies and trigger reconfiguration of live ses-
sions. A policy includes a predicate on packets, ex-
pressed as BPF filters, and a sequence of middleboxes.
The policy server distributes these commands to the
relevant Dysco daemons. Commands can be batched
and distributed to different hosts using shell scripts.
The policy server and the Dysco daemon consist of over

5000 lines of Go of which 3000 lines are a shared library
for message serialization and reliable UDP transmission.
The source code of Dysco as well as the shell scripts used
for the evaluation are available at [31].

4.2 Protocol details
Tagging SYN packets: The local tags added to

SYN packets, as described in §2.3, are implemented
with TCP option 253 (reserved for experimentation).
The option carries a unique 32-bit number to identify
the session. SYN packets are tagged only when they are
inside a middlebox host.

Packet rewriting for data transmission: During
data transmission, the agent simply rewrites the five-
tuple of each incoming or outgoing TCP packet, and
applies any necessary sequence number delta and win-
dow scaling. Since the agent rewrites the packet header,
it has to recompute the IP and TCP checksums. All
checksum computations are incremental to avoid recom-
puting the checksum of the whole packet.

Minimizing contention during lookups: The agent
stores the mapping between incoming and outgoing five-
tuples in a hash table that uses RCU (Read-Copy-Update)
locks for minimizing contention during lookups. Since
entries are added to the hash table for each new TCP
session, a näıve locking strategy based on mutexes or
spin locks would degrade the performance significantly.
To support Linux namespaces, the agent maintains one
translation table per namespace.

UDP messages for reconfiguration: Our daemon
implements the reconfiguration protocol using UDP mes-
sages. We chose to use UDP in user space to facilitate
development and debugging. Also, reconfigurations do
not occur frequently, so the performance requirements
are not as stringent as for the data plane. The UDP
control messages, described in §3, carry the five-tuples
of the TCP sessions going through the reconfiguration,
so the Dysco daemon and agent can associate the con-
trol message with the session state inside the kernel.

Beyond the protocol outlined in §3, we now address
several interoperability issues that arise for middleboxes
that terminate TCP sessions, including layer-7 load bal-
ancers and proxies.

Triggering a reconfiguration using “splice”: To
deal with middleboxes that terminate TCP sessions and
want to remove themselves, Dysco offers two options
First, we have a library function that receives two sock-
ets and a delta representing how much data was added
to or removed from the first socket before delivering the
data to the second socket:
int dysco_splice(int fd_in, int fd_out, int delta)

This option requires the modification of a middlebox to
call the library function. Second, we support unmod-
ified middleboxes that use the Linux’s “splice” system
call. For this case, we provide a shared library that in-
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tercepts the C library functions used for network com-
munication (e.g., socket, accept, connect, splice, close,
and the read and write functions). The shared library
must be preloaded using LD PRELOAD. Each function
of the shared library first calls the original function from
the C library and then records the result of the opera-
tion. For example, a function that intercepts any of the
read calls records the amount of data read from a socket.
When the splice function is called, the shared library
uses the recorded information to compute the delta be-
tween two sockets and find the information about the
TCP sessions associated with the sockets (i.e., the five-
tuples of the two TCP sessions). Note that the Linux
splice call receives a socket and a pipe as parameters.
The first call to splice just sets data structures internal
to the kernel. The operation is performed only on the
second call to splice. We track both calls and trigger a
reconfiguration after the second call, when we have all
the information needed.

Differences in TCP options for two spliced TCP
sessions: When a Dysco agent initiates a “splice” of
two TCP sessions, the Dysco agents on the left and
right anchors need to translate not only the sequence
and acknowledgment numbers of each packet but also
the TCP options that differ between the two sessions or
have a different meaning. The relevant options are win-
dow scaling, selective acknowledgment, and timestamp.
Window scaling is easy to convert, as the anchors record
the scale factor negotiated during the session setup. The
Dysco agent first computes the actual receiver window
of a packet using the scale factor of its incoming sub-
session and then rescales the calculated value by the
scale factor of the outgoing subsession. The transla-
tion of the selective acknowledgment (SACK) blocks is
particularly important because the blocks of one ses-
sion have no meaning to the other session (if blocks are
not translated, the Linux kernel will discard all pack-
ets that contain blocks with invalid sequence numbers).
To convert the sequence numbers of SACK blocks, the
anchors add to (or subtract from) each sequence num-
ber the delta that they receive during session recon-
figuration. Timestamps are used for protection against
wrapped sequence numbers and RTT computation. The
Linux kernel keeps track of the highest timestamp re-
ceived and discards packets whose timestamps are too
far from it. To avoid packets being discarded by the
kernel, Dysco translates timestamps in the same way as
it does with sequence numbers.

5. PERFORMANCE EVALUATION
We now evaluate Dysco in the three main phases of

a session across different network settings. First, we
measure the latencies for session initiation to quantify
the overhead introduced by subsession setup and includ-
ing middlebox address lists in the TCP SYN packets.

Second, we measure the throughput of a session during
normal data transfer to show that the Dysco agents can
forward packets at very high speed. Third, we show
that dynamic reconfiguration improves end-to-end per-
formance and introduces minimal transient disruptions.

Our testbed consists of a NEC DX2000 blade server
with 11 hosts, each with one Intel eight-core Xeon D
2.1 GHz processor, 64 GB of memory, and two 10Gbps
NICs. The two NICs of each host are connected to two
independent layer-two switches, forming two indepen-
dent LANs. The eleven 11 hosts run Ubuntu Linux
with kernel 4.4.0.

5.1 Session initiation
Figure 7 shows session setup latency under two sce-

narios: Dysco and middleboxes inserted by IP routing
(Baseline). We do not run a middlebox application (i.e.,
the middleboxes simply forward packets in both direc-
tions), so we only measure the overhead of the Dysco
protocol. The scenario with one middlebox has three
hosts, and the one with four middleboxes has six hosts
connected in a line. The measurements represent the
time for a TCP socket connect() at the client, which
is the round-trip for establishing the TCP session to
the server. Figure 7(a) shows the latencies when the
checksum computation is offloaded to the NIC and Fig-
ure 7(b) when the computation is not offloaded. The
worst case for Dysco is with four middleboxes, and when
the checksum computation is not offloaded to the NIC.
The time difference between the two averages, in this
case, is only 94µ. The measured latencies are insignif-
icant compared to the overhead for middlebox applica-
tions to transfer packets to user space to perform net-
work functions and represent less than 0.5% in a TCP
session with RTT of 20 ms in the worst case. From now
on, we report results only for the cases where checksum
and TCP segmentation are not offloaded to the NIC, as
these represent the worst cases for Dysco.

(a) Checksum offloading (b) No checksum offloading

Figure 7: Latency for session initiation.

5.2 Data-plane throughput
Figure 8 shows the goodput, measured at the re-

ceivers, of multiple TCP sessions between four clients
and four servers connected via a middlebox that sim-
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ply forwards traffic between the clients and the servers.
Again, we do not run an application on the middlebox to
quantify just the Dysco overhead. The figure shows no
noticeable difference between the performance of Dysco
and the baseline case; the differences between the two
cases are always within one standard deviation and are
less than 1.5 percentage points in the worst case. We
show the results up to 1000 sessions because from this
point on the link becomes the bottleneck.

Figure 8: Goodput of Dysco compared with the baseline.

We also measured the number of requests that NG-
INX [40], a popular HTTP server, can sustain under
Dysco and compared the results with the baseline. The
measurement was performed with wrk [41], an HTTP
benchmarking tool, with 16 threads and four hundred
persistent connections, as recommended in [41]. NG-
INX is able to serve more than 300,000 connections
per second when only one middlebox is between the
client and the server, and a little under 300,000 connec-
tions per second when four middleboxes are between the
client and the server. The results are consistent with
the throughput measurements, and the largest differ-
ence between Dysco and the baseline is less than 1.8
percentage points.

Figure 9: Number of HTTP requests per second NGINX can
serve under Dysco and the baseline.

5.3 Dynamic reconfiguration
In this section, we investigate a few scenarios of dy-

namic reconfiguration. We use the logical topology of

Figure 10; one of the hosts works as the router, and
each IP subnet is on a different VLAN.

Figure 10: Testbed topology for the performance evaluation of
the reconfiguration experiments.

Middlebox deletion: We run TCP sessions from
four Clients to four Servers, passing through the Router
and Middlebox1, which is running a TCP proxy. After
40, 60, 80, and 100 seconds, we trigger reconfigurations
that remove Middlebox1 from a client-server pair and
directs the traffic of all TCP sessions between them di-
rectly from the client to the server passing only through
the Router. Each client-server pair has a bundle of 150
TCP sessions for a total of 600 simultaneous sessions.

The top of Figure 11 shows the throughput before and
after each reconfiguration. The time series represents
measures of application data (goodput) at one-second
intervals. After each reconfiguration, the goodput of
the sessions that no longer go through the proxy in-
creases significantly. We can see that after 100 seconds,
when all 600 sessions no longer go through the proxy,
the overall goodput has doubled from the time inter-
val before the reconfigurations started. The bottom of
Figure 11 shows the CPU utilization at the proxy. We
can see that the CPU utilization decreases at the in-
stants 40, 60, 80, and 100, going to zero after all the
reconfigurations end.

Figure 11: Goodput of TCP sessions (top) and CPU Utilization
at the proxy (bottom) before and after multiple reconfigurations.

We can see in Figure 11 that the reconfigurations are
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successful and the traffic reaches steady-state behavior
after 100 seconds. Figure 12 shows that reconfiguration
time is short: almost 80% of reconfigurations took less
than 2ms and 98.7% less than 4ms. The few larger
values happen when control messages are lost and need
to be retransmitted.

Figure 12: CDF of the reconfiguration time for proxy removal.
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(b) TCP SACK disabled

Figure 13: TCP performance during reconfiguration.

Session disruption: We investigate the transient
performance of a session after removing a proxy, where
the new path is faster than the old one (so packets may
arrive out of order to the destination). To better con-
trol network latency, we simulate the testbed topology
in Mininet, where we can introduce different link de-
lays and bandwidths. Figure 13(a) plots the congestion
window (left y-axis) and TCP goodput (right y-axis)
during a proxy removal. The proxy triggers the recon-
figuration 30 seconds after the beginning of the session.
As we can see, the session experiences no disruption.
Figure 13(b) shows why the Dysco agents must handle
TCP options—with TCP SACK disabled, packet losses
temporarily degrade session performance.

Middlebox replacement with state transfer: Mid-
dleboxes may need to transfer internal state as part of
middlebox replacement, and ensure that the new com-
ponent is ready before receiving its first packet [14,42].
While routing solutions rely on clever synchronization

of switches and a controller, Dysco uses simpler mecha-
nisms, as the anchors can coordinate to determine when
the new component is ready.

To experiment with state transfer, we extended the
Dysco daemon to get state information of the Linux
Netfilter firewall, serialize the data using JSON, and
send the serialized data to another Dysco daemon. We
did not modify Netfilter to interact with Dysco, so the
interaction between Dysco and Netfilter is completely
transparent to the firewall. The internal state of Net-
filter can be obtained by running the conntrack Linux
utility with a filter to select the relevant session(s).

The reconfiguration involves two Netfilter firewalls
running on Middlebox1 and Middlebox2, and TCP ses-
sions running from three clients to three servers in Fig-
ure 10. The client and the server are the left and right
anchors, respectively. Upon receiving a SYN-ACK mes-
sage (indicating that the new path is established), the
left anchor sends a state-transfer message to Middle-
box1 with the session that is migrating to the new path,
the address of Middlebox2, and the addresses of the left
and right anchors. The Dysco daemon running on Mid-
dlebox1 gets and sends the state information directly to
the Dysco agent running on Middlebox2 and waits for
a notification that the state is installed before notifying
the left and right anchors that the new path is ready.

Figure 14: Goodput during reconfiguration and state migration.

Figure 14 shows the goodput of three bundles of 100
sessions running while the state from Middlebox1 is
transferred to Middlebox2. For this experiment, the
link speeds on the two middleboxes were limited to
2Gbps to avoid creating a bottleneck on the router of
Figure 10. The time series represents the goodput mea-
sured at one-second intervals. The purple line is a bun-
dle of sessions that runs through Middlebox1 until the
70s mark and then changes to a new path that goes
through Middlebox2. After the purple-line session is
moved from Middlebox1 to Middlebox2, the goodput of
all sessions increases. The overall goodput of the ses-
sions that now go through Middlebox2 is almost twice
the goodput of the sessions that stayed on Middlebox1.
The session that migrates from Middlebox1 to Middle-
box2 does not suffer performance degradation (i.e., no
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lost or reordered packets) and is not blocked by the fire-
wall on Middlebox2. The average reconfiguration time
for the 100 migrations, including state transfer and mea-
sured from the moment a SYN message is sent until the
new path is used, was less than 100 ms. Comparing with
the times from Figure 12, we can see that in this case
the state transfer dominates the reconfiguration time.

6. RELATED WORK
BGP: Early solutions to dynamic service chaining

manipulate BGP to “hijack” traffic, either within a sin-
gle domain [43] or across the wide area [10]. However,
manipulating BGP is risky in the wide area, and oper-
ates at the coarse level of destination IP prefixes rather
than individual sessions. Plus, it is difficult to use BGP
to insert multiple middleboxes in a service chain.

DOA: Like Dysco, DOA [44] uses a session protocol
for middlebox traffic steering. Dysco and DOA differ
as follows: (i) DOA requires a new global name space,
while Dysco does not; (ii) DOA does not support dy-
namic reconfiguration of the service chain; (iii) DOA in-
serts middleboxes only on behalf of end-hosts (ignoring
middleboxes inserted by administrators), and (iv) DOA
uses encapsulation, so that both high- and low-level ad-
dresses are included in each packet. Extra addresses
increase packet size, which may cause MTU problems.

NUTSS: In the NUTSS architecture [45], session
setup begins with an end-to-end handshake between
end-hosts with high-level names. The handshake signals
are routed by the high-level names through an overlay
network of servers. These servers are not middleboxes,
however, but rather policy servers that provide name
authentication, negotiation of encryption, and distribu-
tion of credentials so that later session packets can pass
through middleboxes such as firewalls. NUTSS requires
changes to all end-hosts and middleboxes.

mcTLS: Multi-context TLS (mcTLS) [46] enables
middleboxes to operate on encrypted traffic, through a
signaling protocol that (i) establishes a TCP connection
for each hop in the service chain and (ii) exchanges the
relevant security information for decrypting and reen-
crypting the data. Like Dysco, mcTLS has a list of
middleboxes in a set-up message, albeit using the TLS
Hello message, rather than the TCP SYN packet. How-
ever, mcTLS does not support dynamic service chaining
and does not offer end-to-end TCP semantics (for con-
nection set-up, retransmission, congestion control, etc.).

Multipath TCP: Nicutar et al. [47] use Multipath
TCP to insert middleboxes into sessions. However, mid-
dleboxes cannot be inserted until a TCP session is es-
tablished end-to-end. Subsequently a second end-to-end
path is established going through a middlebox, and the
first path is removed. A second middlebox can then be
inserted between an endpoint and the first middlebox,
and so on. This approach takes dynamic insertion too

far—because middleboxes are not included as the ses-
sion is formed, middleboxes cannot protect an endpoint
from unwanted sessions as a firewall does, cannot choose
the endpoint of a session as a load balancer does, and
are not guaranteed to see all packets within a session.

OpenNF: OpenNF [14] (and also Split-Merge [15])
assumes that dynamic service chaining is provided by
updating how SDN switches forward packets. The spe-
cial contribution of OpenNF is efficient, coordinated
control of forwarding changes and middlebox state mi-
gration, so that middleboxes can be replaced quickly
and safely. Our Dysco prototype was easily extended
to support importing and exporting state. As a session
protocol, Dysco can naturally handle a wider range of
reconfiguration scenarios than OpenNF can, including
removing proxies. OpenNF is designed for use in an
SDN environment, while Dysco places no constraints
on the choice of the control plane. Also, there is a risk
of performance problems with OpenNF controllers be-
cause they are responsible for all packet buffering.

Stratos and E2: Stratos [6] and E2 [48] are designed
for middlebox deployment within clouds. They offer in-
tegrated solutions for managing middleboxes, including
elastic scaling of middlebox instances, fault-tolerance,
and placement, as well as (static) service chaining. They
use fine-grained forwarding rules for traffic steering, in-
heriting the scaling challenges mentioned in §1. Dysco
is much simpler and narrower in scope than these ef-
forts; as such, it can be readily combined with various
approaches to middlebox management, including these.

NSH: Network Service Header [16] is an encapsula-
tion format for steering traffic through a service chain.
Packets in this form cannot traverse NATs, and there is
no mechanism for dynamic reconfiguration. Dysco also
improves on encapsulation by using rewriting to prevent
increases in packet size.

7. LIMITATIONS AND CONCLUSION
Our prototype does not implement the security mech-

anisms presented in §2.3. Our choice of UDP for control
signaling has the unfortunate side-effect that reconfig-
uration does not currently work across an unmodified
NAT; TCP packets on the new path from right to left
anchors will appear unsolicited to a NAT between them,
because the new path was set up with UDP. In addi-
tion, currently reconfiguration cannot be used to replace
a failed middlebox, because the old path is needed by
the protocol. We have strategies for adding security and
replacing UDP with TCP signaling. Replacing a failed
stateful middlebox is almost impossible, but we have a
strategy for replacing failed stateless middleboxes.

The next steps for Dysco are to remove these limita-
tions, make additional performance measurements, and
deploy Dysco in a real network. In the longer term we
will integrate Dysco with session-protocol approaches
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to mobility and multihoming for a single, unified solu-
tion. In this integrated solution, mechanisms from con-
tributing session protocols that now have overlapping
purposes can be coalesced for greater simplicity.
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