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Multi-Person Localization via RF Body Reflections
Fadel Adib Zachary Kabelac Dina Katabi

Massachusetts Institute of Technology

Abstract– We have recently witnessed the emergence
of RF-based indoor localization systems that can track
user motion without requiring the user to hold or wear any
device. These systems can localize a user and track his
gestures by relying solely on the reflections of wireless
signals off his body, and work even if the user is behind a
wall or obstruction. However, in order for these systems
to become practical, they need to address two main chal-
lenges: 1) They need to be able to operate in the presence
of more than one user in the environment, and 2) they
must be able to localize a user without requiring him to
move or change his position.

This paper presents WiTrack2.0, a multi-person local-
ization system that operates in multipath-rich indoor en-
vironments and pinpoints users’ locations based purely
on the reflections of wireless signals off their bodies.
WiTrack2.0 can even localize static users, and does so by
sensing the minute movements due to their breathing. We
built a prototype of WiTrack2.0 and evaluated it in a stan-
dard office building. Our results show that it can localize
up to five people simultaneously with a median accuracy
of 11.7 cm in each of the x/y dimensions. Furthermore,
WiTrack2.0 provides coarse tracking of body parts, iden-
tifying the direction of a pointing hand with a median er-
ror of 12.5◦, for multiple users in the environment.

1 INTRODUCTION

Over the past decade, the networking community has
made major advances in RF-based indoor localization [5,
34, 21, 26, 38, 17, 21, 11, 22], which led to systems that
can localize a wireless device with centimeter-scale accu-
racy. Recently however the research community has real-
ized that it is possible to localize a user, without requiring
him to wear or carry a wireless device [25, 3]. Such a leap
from device-based to device-free indoor localization can
enable ubiquitous tracking of people and their gestures.
For example, it can enable a smart home to continuously
localize its occupants and adjust the heating in each room
according to the number of people in it. It would also en-
able a smart home to track our hand gestures so that we
may control appliances by pointing at them, or turn the
TV with a wave of our arm. Device-free tracking can also
be leveraged in many applications where it is either in-
convenient or infeasible for the user to hold/wear a device
such as in gaming and virtual reality, elderly monitoring,
intrusion detection, and search and rescue missions [3].

Past work has taken initial steps towards this vision [3,
18, 7]. However, these proposals have fundamental limi-

tations that render them impractical for natural home en-
vironments. Specifically, they either require covering the
entire space with a dense, surveyed grid of sensors [18, 7]
or they fail in the presence of multiple users in the envi-
ronment [3]. Additionally, these past proposals are also
limited in their ability to detect the presence of users.
In particular, they either require the user to continuously
move to detect his presence [3], or they need to perform
extensive prior calibration or training [18, 7].

In this paper, we introduce WiTrack2.0, a device
free localization system that transcends these limitations.
Specifically, WiTrack2.0 accurately localizes multiple
users in the environment. It does so by disentangling the
reflections of wireless signals that bounce off their bod-
ies. Furthermore, it neither requires prior calibration nor
that the users move in order to localize them.

To achieve its goal, WiTrack2.0 has to deal with multi-
ple challenges. As with traditional device-based localiza-
tion, the most difficult challenge in indoor environments
is the multipath effect [34, 17]. Specifically, wireless sig-
nals reflect off all objects in the environment making it
hard to associate the incoming signal with a particular lo-
cation. To overcome this challenge, past work [3] focuses
on motion to capture signal reflections that change with
time. It then assumes that only one person is present in
the environment, and hence all motion can be attributed
to him. However, if multiple people move in the environ-
ment or if the person is static, then this assumption no
longer works.

To address this challenge, we observe that the indoor
multipath varies significantly when it is measured from
different vantage points. Hence, one can address this
problem by positioning multiple transmit and receive an-
tennas in the environment, and measuring the time of
flight from each of these transmit-receive antenna pairs.
However, the signals emitted from the different trans-
mitters will reflect off the bodies of the all the users in
the environment, and these reflections interfere with each
other leading to wireless collisions. In §5, we show how
WiTrack2.0 disentangles these interfering reflected sig-
nals to localize multiple users in the presence of heavy
indoor multipath.

A second challenge that WiTrack2.0 has to address
is related to the near-far problem. Specifically, reflec-
tions off the nearest person can have much more power
than distant reflections, obfuscating the signal from dis-
tant people, and preventing their detection or tracking.
To address this issue, we introduce Successive Silhou-
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ette Cancellation (SSC) an approach to address the near-
far problem, which is inspired by successive interference
cancellation. This technique starts by localizing the clos-
est person, then eliminates his impact on the received sig-
nal, before proceeding to localize further users (who have
weaker reflections). It repeats this process iteratively un-
til it has localized all the users in a scene. Note, however,
that each user is not a point reflector; hence, his wireless
reflection has a complex structure that must be taken into
account, as we describe in §6.

A third challenge that our system addresses is related to
localizing static users. Specifically, past work that tracks
human motion needs to eliminate reflections off static ob-
jects by subtracting consecutive measurements. However,
this subtraction also results in eliminating the reflections
off static users. To enable us to localize static users, we
exploit the fact these users still move slightly due to their
breathing. However, the breathing motion is fairly slow in
comparison to body motion. Specifically, the chest moves
by a sub-centimeter distance over a period of few sec-
onds; in contrast, a human would pace indoors at 1 m/s.
Hence, WiTrack2.0 processes the reflected signals at mul-
tiple time scales that enable it to accurately localize both
types of movements as we describe in §7,

We have built a prototype of WiTrack2.0, using USRP
software radios and an analog FMCW radio. We run ex-
periments both in line-of-sight (LOS) scenarios and non-
line-of-sight (NLOS) scenarios, where the device is in a
different room and is tracking people’s motion through
the wall. Empirical results from over 300 experiments
with 11 human subjects show the following:

• Motion Tracking: WiTrack2.0 accurately tracks the mo-
tion of up to four users simultaneously, without requiring
the users to hold or wear any wireless device. In an area
that spans 5 m × 7 m, its median error across all users is
12.1cm in the x/y dimensions.

• Localizing Static People: By leveraging their breathing
motion, WiTrack2.0 accurately localizes up to five static
people in the environment. Its median error is 11.2 cm in
the x/y dimensions across all the users in the scene.

• Tracking Hand Movements: WiTrack2.0’s localization
capability extends beyond tracking a user’s body to
tracking body parts. We leverage this capability to recog-
nize concurrent gestures performed in 3D space by mul-
tiple users. In particular, we consider a gesture in which
three users point in different directions at the same time.
Our WiTrack2.0 prototype detects the pointing direc-
tions of all three users with a median accuracy of 10.3◦.

Contributions: This paper demonstrates the first device-
free RF-localization system that can accurately localize
multiple people to centimeter-scale in indoor multipath-
rich environments. This is enabled by a novel transmis-
sion protocol and signal processing algorithms which al-
low isolating and localizing different users in the environ-

ment. The paper also presents an evaluation of the sys-
tem, showing that it can localize moving and static users
in line-of-sight and through-wall settings with a median
accuracy of 7-18 cm across all of these scenarios.

2 RELATED WORK
Indoor Localization. WiTrack2.0 builds on a rich net-
working literature on indoor localization [5, 34, 21, 26,
38, 17, 21, 11, 22] which has focused on localizing wire-
less devices. In comparison to all of these works, how-
ever, WiTrack2.0 focuses on localizing users by relying
purely on the reflections of RF signals off their bodies.

WiTrack2.0 is also related to proposals for device-free
localization, which deploy a sensor network and mea-
sure the signal strength between different nodes to local-
ize users [36, 40]. However, in comparison to these past
proposals, WiTrack2.0 neither requires deploying a net-
work of dozens to hundreds of sensors [36, 18] nor does
it require extensive calibration [25, 24, 40]. Furthermore,
because it relies on time-of-flight measurements, it can
achieve a localization accuracy that is 10× higher than
state-of-the-art RSSI-based systems [25, 24, 18, 7, 19].

WiTrack2.0’s design builds on our prior work,
WiTrack [3], which also used time of flight (TOF) mea-
surements to achieve high localization accuracy, and
which did not require prior environmental calibration. In
comparison to WiTrack, which could localize only a sin-
gle person and only if that person is moving, WiTrack2.0
can localize up to five users simultaneously, even if they
are perfectly static (by relying on their breathing motion).

WiTrack2.0 is also related to non-localization systems
that employ RF reflections off the human body [4, 20, 33,
35]. These systems can detect the presence of people or
identify a handful of gestures or activities. However, un-
like WiTrack2.0, they have no mechanism for obtaining
the location of a person.
Radar Systems. WiTrack2.0 builds on past radar litera-
ture. In particular, it uses the FMCW (Frequency Mod-
ulated Carrier Waves) technique to obtain accurate time-
of-flight measurements [15, 23, 31, 9]. However, its usage
of FMCW has a key property that differentiates it from
all prior designs: it transmits from multiple antennas con-
currently while still allowing its receivers to isolate the
reflections from each of the Tx antennas.

More importantly, none of the past work on radar ad-
dresses the issue of indoor multipath. Specifically, past
work on see-through-wall radar has been tailored for us-
age in strictly military settings. Hence, it mostly oper-
ates in an open field with an erected wall [23, 10], or it
focuses on detecting metallic objects which have signifi-
cantly higher reflection coefficients than furniture, walls,
or the human body [13, 28, 27]. Work tested on human
subjects in indoor environments has focused on detecting
the presence of humans rather than on accurately localiz-
ing them [16, 39]; in fact, these techniques acknowledge
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Figure 1—Measuring Distances using FMCW. (a) shows the transmitted FMCW signal and its reflection. The TOF between the transmitted and
received signals maps to a frequency shift Δf between them. (b) shows the TOF profile obtained after performing an FFT on the baseband FMCW
signal. The profile plots the amount of reflected power at each TOF. (c) shows that a moving person’s reflections pop up after background subtraction.
(d) shows how a TOF measurement maps to a round-trip distance, which may correspond to any location on an ellipse whose foci are Tx and Rx.

that multipath leads to the well-known “ghosting effect”,
but ignore these effects since they do not prevent detect-
ing the presence of a human. In comparison to the above
work, WiTrack2.0 focuses on accurate localization of hu-
mans in daily indoor settings, and hence introduces two
new techniques that enable it to address the heavy multi-
path in standard indoor environments: multi-shift FMCW,
and successive silhouette cancellation.
Iterative Cancellation Frameworks. The framework of
iteratively identifying and canceling out the strongest
components of a signal is widely used in many do-
mains. Naturally, however, the details of how the highest
power component is identified and is eliminated varies
from one application to another. In the communications
community, we refer to such techniques as successive
interference cancellation, and they have been used in
a large number of applications such as ZigZag [12],
VBLAST [37], and full duplex [6]. In the radio astronomy
community, these techniques are referred to as CLEAN
algorithms and, similarly, have a large number of instan-
tiations [14, 29, 30]. Our work on successive silhouette
cancellation also falls under this framework and is in-
spired by these algorithms. However, in comparison to
all the past work, it focuses on identifying the reflections
of the humans in the environment and canceling them
by taking into account the different vantage points from
which the time-of-flight is measured as well as the fact
that the human body is not a point reflector.

3 PRIMER
This section provides necessary background regarding

single-person motion tracking via RF body reflections.
The process of localizing a user based on radio reflec-

tions off her body has three steps: 1) obtaining time-of-
flight (TOF) measurements to various reflectors in the en-
vironment; 2) eliminating TOF measurements due to re-
flections of static objects like walls and furniture; and 3)
mapping the user’s TOFs to a location.
Step 1: Obtaining TOF measurements to various re-
flectors in the environment. A typical way for mea-
suring the time-of-flight (TOF) is to use a Frequency-
Modulated Carrier Waves (FMCW) radio. An FMCW
transmitter sends a narrowband signal (e.g., a few KHz)
but makes the carrier frequency sweep linearly in time,

as illustrated by the solid green line in Fig. 1(a). The re-
flected signal is a delayed version of the transmitted sig-
nal, which arrives after bouncing off a reflector, as shown
by the dotted green line in Fig. 1(a). Because time and
frequency are linearly related in FMCW, the delay be-
tween the two signals maps to a frequency shift Δf be-
tween them. Hence, the time-of-flight can be measured as
the difference in frequency Δf divided by the slope of the
sweep in Fig. 1(a):

TOF = Δf/slope (1)

This description generalizes to an environment with
multiple reflectors. Because wireless reflections add up
linearly over the medium, the received signal is a linear
combination of multiple reflections, each of them shifted
by some Δf that corresponds to its TOF. Hence, one can
extract all these TOFs by taking an FFT of the received
signal. The output of the FFT gives us the TOF profile
which we define as the reflected power we obtain at each
possible TOF between the transmit antenna and receive
antenna, as shown in Fig. 1(b).1

Step 2: Eliminating TOFs of static reflectors. To lo-
calize a human, we need to identify his/her reflections
from those of other objects in the environment (e.g., walls
and furniture). This may be done by leveraging the fact
that the reflections of static objects remain constant over
time. Hence, one can eliminate the power from static
reflectors by performing background subtraction – i.e.,
by subtracting the output of the TOF profile in a given
sweep from the TOF profile of the signal in the previous
sweep. Fig. 1(b) and 1(c) show how background subtrac-
tion eliminates the power in static TOFs from the TOF
profile, and allows one to notice the weak power result-
ing from a moving person.
Step 3: Mapping TOFs to distances. Recall that the
TOF corresponds to the time it takes the signal to travel
from the transmitter to a reflector and back to the receiver.
Hence, we can compute the corresponding round-trip dis-
tance by multiplying this TOF by the speed of light C:

round trip distance = C × TOF = C × Δf
slope

(2)

1The FFT is performed on the baseband FMCW signal – i.e., on the
signal we obtain after mixing the received signal with the transmitted
FMCW.
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(a) Antenna (b) Antenna Setup

Figure 2—WiTrack2.0’s Antennas and Setup. (a) shows one of
WiTrack2.0’s directional antenna (3cm × 3.4cm) placed next to a quar-
ter; (b) shows the antenna setup in our experiments, where antennas are
mounted on a 2m× 1m platform and arranged in a single vertical plane.

Knowing the round trip distance localizes the person to an
ellipse whose foci are the transmit and receive antennas.
4 WITRACK2.0 OVERVIEW

WiTrack2.0 is a wireless system that can achieve
highly accurate localization of multiple users in
multipath-rich indoor environments, by relying purely on
the reflections of wireless signals off the users’ bodies.
For static users, it localizes them based on their breath-
ing, and can also localize the hand motions of multiple
people, enabling a multi-user gesture-based interface.

WiTrack2.0 is a multi-antenna system consisting of
five transmit antennas and five receive antennas, as shown
in Fig. 2. The antennas are directional, stacked in a single
plane, and mounted on a foldable platform as shown in
Fig. 2(b). This arrangement is chosen because it enables
see-through-wall applications, whereby all the antennas
need to be lined up in a plane facing the wall of interest.

WiTrack2.0 operates by transmitting RF signals and
capturing their reflections after they bounce off different
users in the environment. Algorithmically, WiTrack2.0
has two main components: 1) Multi-shift FMCW, a tech-
nique that enables it to deal with multipath effects, and (2)
Successive Silhouette Cancellation (SSC), an algorithm
that allows WiTrack2.0 to overcome the near-far problem.
The following sections describe these components.
5 MULTI-SHIFT FMCW

Multipath is the first challenge in accurate indoor local-
ization. Specifically, not all reflections that survive back-
ground subtraction correspond to a moving person. This
is because the signal reflected off the human body may
also reflect off other objects in the environment before ar-
riving at the receive antenna. As this person moves, this
multipath reflection also moves with him and survives the
background subtraction step. In single-user localization,
one may eliminate this type of multipath by leveraging
that these secondary reflections travel along a longer path
before they arrive at the receive antenna. Specifically, by
electing the smallest TOF after background subtraction,
one may identify the round-trip distance to the user.

However, the above invariant does not hold in multi-
person localization since different users are at different
distances with respect to the antennas, and the multipath

of a nearby user may arrive earlier than that of a more
distant user, or even interfere with it. In this section, we
explore this challenge in more details, and show how
we can overcome it by obtaining time-of-flight measure-
ments from different vantage points in the environment.

5.1 Addressing Multi-path in Multi-User Localiza-
tion

To explore the above challenge in practice, we run an
experiment with two users in a 5 × 7 m furnished room
(with tables, chairs, etc.) in a standard office building. We
study what happens as we successively overlay ellipses
from different transmit-receive pairs. Recall from §3 that
each transmit-receive antenna pair provides us with a
TOF profile – i.e., it tells us how much reflected power
we obtain at each possible TOF between the transmit an-
tenna and receive antenna (see Fig. 1(c)) – and that each
such TOF corresponds to an ellipse in 2D (as in Fig. 1(d)).

Now let us map all TOFs in a TOF profile to the corre-
sponding round trip distances using Eq. 2, and hence the
resulting ellipses. This process produces a heatmap like
the one in Fig. 3(a), where the x and y axes correspond
to the plane of motion. For each ellipse in the heatmap,
the color in the image reflects the amount of received
power at the corresponding TOF. Hence, the ellipse in red
corresponds to a strong reflector in the environment. The
orange, yellow, and green ellipses correspond to weaker
reflections respectively; these reflections could either be
due to another person, multi-path reflections of the first
person, or noise. The blue regions in the background cor-
respond to the absence of reflections from those areas.

Note that the heatmap shows a pattern of half-ellipses;
the foci of these ellipses are the transmit and receive an-
tennas, both of which are placed along the y = 0 axis.
The reason we only show the upper half of the ellipses is
that we are using directional antennas and we focus them
towards the positive y direction. Hence, we know that we
do not receive reflections from behind the antennas.

Fig. 3(a) shows the ellipses corresponding to the TOF
profiles from one Tx-Rx pair. Now, let us see what hap-
pens when we superimpose the heatmaps obtained from
two Tx-Rx pairs. Fig. 3(b) shows the heatmap we obtain
when we overlay the ellipses of the first transmit-receive
pair with those from a second pair. We can now see two
patterns of ellipses in the figure, the first pattern resulting
from the TOFs of the first pair, and the second pattern due
to the TOFs of the second pair. These ellipses intersect
in multiple locations, resulting in red or orange regions,
which suggest a higher probability for a reflector to be in
those regions. Recall that there are two people in this ex-
periment. However, Fig. 3(b) is not enough to identify the
locations of these two people.

Figs. 3(c) and 3(d) show the result of overlaying el-
lipses from three and four Tx-Rx pairs respectively. The
figures show how the noise and multi-path from different
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(a) One Tx-Rx pair
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(b) Two Tx-Rx pairs
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(c) Three Tx-Rx pairs
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(d) Four Tx-Rx pairs

-4 -3 -2 -1  0  1  2  3  4
Distance (meters)

 0

 1

 2

 3

 4

 5

 6

 7

 8

D
is

ta
n
c
e
 (

m
e
te

rs
)

(e) Five Tx-Rx pairs

Figure 3—Increasing the Number of Tx-Rx pairs enables Localizing Multiple Users. The figure shows the heatmaps obtained from combining
TOF profiles of multiple Tx-Rx antenna pairs in the presence of two users. The x/y axes of each heatmap correspond to the real world x/y dimensions.

antennas averages out to result in a dark blue background.
This is because different Tx-Rx pairs have different per-
spectives of the indoor environment; hence, they do not
observe the same noise or multi-path reflections. As a re-
sult, the more we overlay heatmaps from different Tx-Rx
pairs, the dimmer the multipath effect, and the clearer the
candidate locations for the two people in the environment.

Next, we overlay the ellipses from five transmit-receive
pairs and show the resulting heatmap in Fig. 3(e). We can
now clearly see two bright spots in the heatmap: one is red
and the other is orange, whereas the rest of the heatmap
is mostly a navy blue background indicating the absence
of reflectors. Hence, in this experiment, we are able to lo-
calize the two users using TOF measurements from five
Tx-Rx pairs. Combining these measurements together al-
lowed us to eliminate the multipath effects and localize
the two people passively using their reflections.
Summary: As the number of users increases, we need
TOF measurements from a larger number of Tx-Rx pairs
to localize them, and extract their reflections from mul-
tipath. For the case of two users, we have seen a sce-
nario whereby the TOFs of five Tx-Rx pairs were suffi-
cient to accurately localize both of them. In general, the
exact number would depend on multipath and noise in the
environment as well as on the number of users we wish to
localize. These observations motivate a mechanism that
can provide us with a large number of Tx-Rx pairs while
scaling with the number of users in the environment.

5.2 The Design of Multi-shift FMCW

In the previous section, we showed that we can local-
ize two people by overlaying many heatmaps obtained
from mapping the TOF profiles of multiple Tx-Rx pairs to
the corresponding ellipses. But how do we obtain TOFs
from many Tx-Rx pairs? One option is to use one FMCW
transmitter and a large number of receivers. In this case,
to obtain N Tx-Rx pairs, we would need one transmitter
and N receivers. The problem with this approach is that
it needs a large number of receivers, and hence does not
scale well as we add more users to the environment.

A more appealing option is to use multiple FMCW
transmit and receive antennas. Since the signal transmit-
ted from each transmit antenna is received by all receive
antennas, this allows us to obtain N Tx-Rx pairs using
only

√
N transmit antennas and

√
N receive antennas.

Figure 4—Multi-shift FMCW. WiTrack2.0 transmits FMCW sig-
nals from different transmit antennas after inserting virtual delays be-
tween them. Each delay must be larger than the highest time-of-flight
(TOFlimit) due to objects in the environment.

However, the problem with this approach is that the
signals from the different FMCW transmitters will inter-
fere with each other over the wireless medium, and this
interference will lead to localization errors. To see why
this is true, consider a simple example where we want to
localize a user, and we have two transmit antennas, Tx1
and Tx2, and one receive antenna Rx. The receive antenna
will receive two reflections – one due to the signal trans-
mitted from Tx1, and another due to Tx2’s signal. Hence,
its TOF profile will contain two spikes referring to two
time-of-flight measurements TOF1 and TOF2.

With two TOFs, we should be able to localize a sin-
gle user based on the intersection of the resulting el-
lipses. However, the receiver has no idea which TOF cor-
responds to the reflection of the FMWC signal generated
from Tx1 and which corresponds to the reflection of the
FMCW signal generated by Tx2. Not knowing the correct
Tx means that we do not know the foci of the two ellipses
and hence cannot localize. For example, if we incorrectly
associate TOF1 with Tx2 and TOF2 with Tx1, we will
generate a wrong set of ellipses, and localize the person
to an incorrect location. Further, this problem becomes
more complicated as we add more transmit antennas to
the system. Therefore, to localize the user, WiTrack2.0
needs a mechanism to associate these TOF measurements
with their corresponding transmit antennas.

We address this challenge by leveraging the structure
of the FMCW signal. Recall that FMCW consists of a
continuous linear frequency sweep as shown by the green
line in Fig. 4. When the FMCW signal hits a body, it re-
flects back with a delay that corresponds to the body’s
TOF. Now, let us say TOFlimit is the maximum TOF
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Figure 5—Multi-shift FMCW Architecture. The generated FMCW
signal is fed to multiple transmit antennas via different delay lines. At
the receive side, the TOF measurements from the different antennas are
combined to obtain the 2D heatmaps.

that we expect in the typical indoor environment where
WiTrack2.0 operates. We can delay the FMCW signal
from the second transmitter by τ > TOFlimit so that all
TOFs from the second transmitter are shifted by τ with
respect to those from the first transmitter, as shown by
the red line in Fig. 4. Thus, we can prevent the various
FMCW signals from interfering by ensuring that each
transmitted FMCW signal is time shifted with respect to
the others, and those shifts are significantly larger than
the time-of-flight to objects in the environment. We refer
to this design as Multi-shift FMCW.

As a result, the receiver would still compute two TOF
measurements: the first measurement (from Tx1) would
be TOF1, and the second measurement (from Tx2) would
be TOF′

2 = TOF2 + τ . Knowing that the TOF measure-
ments from Tx2 will always be larger than τ , WiTrack2.0
determines that TOF1 is due to the signal transmitted by
Tx1, and TOF′

2 is due to the signal transmitted by Tx2.
This idea can be extended to more than two Tx anten-

nas, as shown in Fig. 5. Specifically, we can transmit the
FMCW signal directly over the air from Tx1, then shift
it by τ and transmit it from Tx2, then shift it by 2τ and
transmit it from Tx3, and so on. At the receive side, all
TOFs between 0 and τ are mapped to Tx1, whereas dis-
tances between τ and 2τ are mapped to Tx2, and so on.
Summary: Multi-shift FMCW has two components: the
first component allows us to obtain TOF measurements
from a large number of Tx-Rx pairs; the second compo-
nent operates on the TOFs obtained from these different
Tx-Rx pairs by superimposing them into a 2D heatmap,
which allows us to localize multiple users in the scene.

6 SUCCESSIVE SILHOUETTE CANCELLATION
With multi-shift FMCW, we obtain TOF profiles from

a large number of Tx-Rx pairs, map them to 2D heatmaps,
overlay the heatmaps, and start identifying users’ loca-
tions. However, in practice this is not sufficient because
different users will exhibit the near-far problem. Specifi-
cally, reflections of a nearby user are much stronger than
reflections of a faraway user or one behind an obstruction.

Figure 7—Finding TOFmin and TOFmax. TOFmin is determined by the
round-trip distance from the Tx-Rx pair to the closest point on the per-
son’s body. Since the antennas are elevated, TOFmax is typically due to
the round-trip distance to the person’s feet.

Fig. 6(a) illustrates this challenge. It shows the 2D
heatmap obtained in the presence of four persons in the
environment. The heatmap allows us to localize only two
of these persons: one is clearly visible at (0.5, 2), and an-
other is fairly visible at (−0.5, 1.3). The other two people,
who are farther away from WiTrack2.0, are completely
overwhelmed by the power of the first two persons.

To deal with this near-far problem, rather than localiz-
ing all users in one shot, WiTrack2.0 performs Successive
Silhouette Cancellation (SSC) which consists of 4 steps:
1. SSC Detection: finds the location of the strongest user

by overlaying the heatmaps of all Tx-Rx pairs.
2. SSC Re-mapping: maps a person’s location to the set of

TOFs that would have generated that location at each
transmit-receive pair.

3. SSC Cancellation: cancels the impact of the person on
the TOF profiles of all Tx-Rx pairs.

4. Iteration: re-computes the heatmaps using the TOF
profiles after cancellation, overlays them, and proceeds
to find the next strongest reflector.

We now describe each of these steps in detail by walking
through the example with four persons shown in Fig. 6.
SSC Detection. In the first step, SSC finds the location of
the highest power reflector in the 2D heatmap of Fig. 6(a).
In this example, the highest power is at (0.5, 2), indicating
that there is a person in that location.
SSC Re-mapping. Given the (x, y) coordinates of the per-
son, we map his location back to the corresponding TOF
at each transmit-receive pair. Keep in mind that each per-
son is not a point reflector; hence, we need to estimate
the spread of reflections off his entire body on the TOF
profile of each transmit-receive pair.

To see how we can do this, let us look at the illustra-
tion in Fig. 7 to understand the effect of a person’s body
on one transmit-receive pair. The signal transmitted from
the transmit antenna will reflect off different points on
the person’s body before arriving at the receive antenna.
Thus, the person’s reflections will appear between some
TOFmin and TOFmax in the TOF profile at the Rx antenna.

Note that TOFmin and TOFmax are bounded by the clos-
est and furthest points respectively on a person’s body
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(b) Detect Second Person
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(c) Detect Third Person
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(d) Detect Fourth Person
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(e) Focus on First Person
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(f) Focus on Second Person
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(g) Focus on Third Person
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(h) Focus on Fourth Person

Figure 6—Successive Silhouette Cancellation. (a) shows the 2D heatmap obtained by combining all the TOFs in the presence of four users. (b)-(d)
show the heatmaps obtained after canceling out the first, second, and third user respectively. (e)-(h) show the result of the SSC focusing step on each
of the users, and how it enables us to accurately localize each person while eliminating interference from all other users.

from the transmit-receive antenna pair. Let us first focus
on how we can obtain TOFmin. By definition, the closest
point on the person’s body is the one that corresponds to
the shortest round-trip distance to the Tx-Rx pair, where
the round-trip distance is the summation of the forward
path from Tx to that point and the path from that point
back to Rx. Formally, for a Tx antenna at (xt, 0, zt), an Rx
antenna at (xr, 0, zr),2 we can compute dmin as:

min
z

√
(xt − x)2 + y2 + (zt − z)2 +

√
(xr − x)2 + y2 + (zr − z)2

(3)
where (x, y, z) is any reflection point on the user’s body.

One can show that this expression is minimized when:

z − zt

z − zr
= −

√
(xt − x)2 + y2

(xr − x)2 + y2
(4)

Hence, using the detected (x, y) position, we can solve
for z then substitute in Eq. 3 to obtain dmin.

Similarly, TOFmax is bounded by the round-trip dis-
tance to point on the person’s body that is furthest from
the Tx-Rx pair. Again, the x and y coordinates of the fur-
thest point are determined by the person’s location from
the SSC Detection step. However, we still need to figure
out the z coordinate of this point. Since the transmitter
and receiver are both raised above the ground (at around
1.2 meters above the ground), the furthest point from the
Tx-Rx pair is typically at the person’s feet. Therefore, we
know that the coordinates of this point are (x, y, 0), and
hence we can compute dmax as:

dmax =

√
(xt − x)2 + (y)2 + z2

t +
√

(xr − x)2 + (y)2 + z2
r .

Finally, we can map dmin and dmax to TOFmin and
TOFmax by dividing them by the speed of light C.

2Recall that all the antennas are in the vertical plane y = 0, which is
parallel to a person’s standing height.

SSC Cancellation. The next step is to use TOFmin and
TOFmax to cancel the person’s reflections from the TOF
profiles of each transmit-receive pair. To do that, we take
a conservative approach and remove the power in all
TOFs between TOFmin and TOFmax within that profile. Of
course, this means that we might also be partially can-
celing out the reflections of another person who happens
to have a similar time of flight to this Tx-Rx pair. How-
ever, we rely on the fact that multi-shift FMCW provides
a large number of TOF profiles from many Tx-Rx pairs.
Hence, even if we cancel out the power in the TOF of a
person with respect to a particular Tx-Rx pair, each per-
son will continue to have a sufficient number of TOF mea-
surements from the rest of the antennas.

We repeat the process of computing TOFmin and
TOFmax with respect of each Tx-Rx pair and cancelling
the power in that range, until we have eliminated any
power from the recently localized person.
Iteration. We proceed to localize the next person. This
is done by regenerating the heatmaps from the updated
TOF profiles and overlaying them. Fig. 6(b) shows the
obtained image after performing this procedure for the
first person. Now, a person at (−0.5, 1.3) becomes the
strongest reflector in the scene.

We repeat the same procedure for this user, canceling
out his interference, then reconstructing a 2D heatmap in
Fig. 6(c) using the remaining TOF measurements. Now,
the person with the strongest reflection is at (0.8, 2.7).
Note that this heatmap is noisier than Figs. 6(a) and 6(b)
because now we are dealing with a more distant person.

WiTrack2.0 repeats the same cancellation procedure
for the third person and constructs the 2D heatmap in
Fig. 6(d). The figure shows a strong reflection at (1, 4).
Recall that our antennas are placed along the y = 0 axis,
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Figure 9—Disentangling Crossing Paths. When two people cross
paths, they typically keep going along the same direction they were go-
ing before their paths crossed.

which means that this is indeed the furthest person in the
scene. Also note that the heatmap is now even noisier.
This is expected because the furthest person’s reflections
are much weaker. WiTrack2.0 repeats interference can-
cellation for the fourth person, and determines that the
SNR of the maximum reflector in the resulting heatmap
does not pass a threshold test. Hence, it determines that
there are only four people in the scene.

We note that each of these heatmaps are scaled so that
the highest power is always in red and the lowest power is
in navy blue; this change in scale emphasizes the location
of the strongest reflectors and allows us to better visual-
ize their locations. To gain more insight into the power
values and to better understand how SSC improves our
detection of further away users, Fig. 8 plots the Signal to
Interference and Noise Ratio (SINR) of the fourth person
during each iteration of SSC. The fourth user’s SINR ini-
tially starts at -21dB and is not visible in Fig. 6(a). Once
the first and second users are removed by SSC, the SINR
increases to -7dB and we can start detecting the user’s
presence in the back of Fig. 6(c). Performing another it-
eration raises the fourth person’s SINR above the noise
floor to 7dB. It also brings it above our threshold of 6dB
– i.e., twice the noise floor – making him detectable.

We perform four additional steps to improve SSC:
• Refocusing Step: After obtaining the initial estimates of

the locations of all four persons, WiTrack2.0 performs
a focusing step for each user to refine his location esti-
mate. This is done by reconstructing an interference-free
2D heatmap only using the range in the TOF profiles
that corresponds to TOFs between TOFmin and TOFmax

for that Tx-Rx pair. Figs. 6(e)- 6(h) show the images ob-
tained from this focusing step. In these images, the lo-
cation of each person is much clearer,3 which enables
higher-accuracy localization.

• Leveraging Motion Continuity: After obtaining the esti-
mates from SSC, WiTrack2.0 applies a Kalman filter and
performs outlier rejection to reject impractical jumps in
location estimates that would otherwise correspond to
abnormal human motion over a very short period of time.

• Disentangling Crossing Paths: To disentangle multiple
people who cross paths, we look at their direction of
motion before they crossed paths and project how they
would proceed with the same speed and direction as
they are crossing paths. This helps us with associating
each person with his own trajectory after crossing. Fig. 9
shows an example with two people crossing paths and
how we were able to track their trajectories despite that.
Of course, this approach does not generalize to every sin-
gle case, which may lead to some association errors after
the crossings but not to localization errors.

• Extending SSC to 3D Gesture Recognition: Similar to
past work [3], WiTrack2.0 can differentiate a hand mo-
tion from a whole-body motion (like walking) by lever-
aging the fact that a person’s hand has a much smaller
reflective surface than his entire body. Unlike past work,
however, WiTrack2.0 can track gestures even when they
are simultaneously performed by multiple users. Specif-
ically, by exploiting SSC focusing, it zooms onto each
user individually to track his gestures. In our evalua-
tion, we focus on testing a pointing gesture, where dif-
ferent users point in different directions at the same time.
By tracking the trajectory of each moving hand, we can
determine its pointing direction. Note that we perform
these pointing gestures in 3D and track hand motion by
using the TOFs from the different Tx-Rx pairs to con-
struct a 3D point cloud rather than a 2D heatmap.4 The
results in §10.3 show that we can accurately track hand
gestures performed by multiple users in 3D space.

7 LOCALIZATION BASED ON BREATHING

We extend WiTrack2.0’s SSC algorithm to localize
static people based on their breathing. Recall from §3 that
in order to track a user based on her radio reflections, we
need to eliminate reflections off all static objects in the
environment (like walls and furniture). This is typically
achieved by performing a background subtraction step,
i.e., by taking TOF profiles from adjacent time windows
and subtracting them out from each other.5

3This is because all other users’ reflections are eliminated, while,
without refocusing, only users detected in prior iterations are eliminated.

4Recall from §3 that a given TOF maps to an ellipse in 2D and an
ellipsoid in 3D. The intersection of ellipsoids in 3D allow us to track
these pointing gestures.

5Recall that we obtain one TOF profile by taking an FFT over the re-
ceived FMCW signal in baseband. Since the FMCW signal is repeatedly
swept, we can compute a new TOF profile from each sweep.
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(a) Short subtraction window
localizes a walking person.
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(b) Short subtraction window
misses a static person.
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(c) Long subtraction window
smears a walking person.
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(d) Long subtraction window
localizes a static person.

Figure 10—Need For Multiple Subtraction Windows. The 2D heatmaps show that a short subtraction window accurately localizes a pacing person
in (a) but not a static person in (b). A long subtraction window smears the walking person’s location in (c) but localizes a breathing person in (d).

Whereas this approach enables us to track moving peo-
ple, it prevents us from detecting a static person – e.g.,
someone who is standing or sitting still. Specifically, be-
cause a static person remains in the same location, his
TOF does not change, and hence his reflections would
appear as static and will be eliminated in the process of
background subtraction. To see this in practice, we run
two experiments where we perform background subtrac-
tion by subtracting two TOF profiles that are 12.5 mil-
liseconds apart from each other. The first experiment
is performed with a walking person and the resulting
heatmap is shown in Fig. 10(a), whereas the second ex-
periment is performed in the presence of a person who
is sitting at (0, 5) and the resulting heatmap is shown in
Fig. 10(b). These experiments show how the heatmap of a
moving person after background subtraction would allow
us to localize him accurately, whereas the heatmap of the
static person after background subtraction is very noisy
and does not allow us to localize the person.

To localize static people, one needs to realize that even
a static person moves slightly due to breathing. Specif-
ically, during the process of breathing, the human chest
moves by a sub-centimeter distance over a period of few
seconds. The key challenge is that this change does not
translate into a discernible change in the TOF of the per-
son. However, over an interval of time of a few seconds
(i.e., as the person inhales and exhales), it would result in
discernible changes in the reflected signal. Therefore, by
subtracting frames in time that are few seconds apart, we
should be able to localize the breathing motion.

In fact, Fig. 10(d) shows that we can accurately localize
a person who is sitting still by using a subtraction window
of 2.5 seconds. Note, however, that this long subtraction
window will introduce errors in localizing a pacing per-
son. In particular, since typical indoor walking speed is
around 1 m/s [8], subtracting two frames that are 2.5 sec-
onds apart would result in smearing the person’s location
and may also result in mistaking him for two people as
shown in Fig. 10(c).

Thus, to accurately localize both static and mov-
ing people, WiTrack2.0 performs background subtraction
with different subtraction windows. To localize moving
users, it uses a subtraction window of 12.5 ms. On the

other hand, normal adults inhale and exhale over a period
of 3–6 seconds [32] causing their TOF profiles to change
over such intervals of time. Hence, we consider the first
TOF profile during each 10-second interval, and subtract
it from all subsequent TOF profiles during that interval.
As a result, breathing users’ reflections pop up at differ-
ent instances, allowing us to detect and localize them.

8 IMPLEMENTATION

We built WiTrack2.0 using a single FMCW radio
whose signal is fed into multiple antennas. The FMCW
radio generates a low-power (sub-milliWatt) signal that
sweeps 5.46-7.25 GHz every 2.5 milliseconds. The range
and power are chosen in compliance with FCC regula-
tions for consumer electronics [2].

The schematic in Fig. 5 shows how we use this radio
to implement Multi-shift FMCW. Specifically, the gen-
erated sweep is delayed before being fed to directional
antennas for transmission.6 At the receive side, the signal
from each receive antenna is mixed with the FMCW sig-
nal and the resulting signal is fed to the USRP. The USRP
samples the signals at 2 MHz and transfers the digitized
samples to the UHD driver. These samples are processed
in software to localize users and recognize their gestures.7

The analog FMCW radio and all the USRPs are driven
by the same external clock. This ensures that there is no
frequency offset between their oscillators, and hence en-
ables subtracting frames that are relatively far apart in
time to enable localizing people based on breathing.

9 EVALUATION

Human Subjects. We evaluate the performance of
WiTrack2.0 by conducting experiments in our lab with

6The most straightforward option to delay the signal is to insert a
wire. However, wires attenuate the signal and introduce distortion over
the wide bandwidth of operation of our system, reducing its SNR. In-
stead, we exploit the fact that, in FMCW, time and frequency are lin-
early related; hence, a shift τ in time can be achieved through a shift
Δf = slope× τ in the frequency domain. Hence, we achieve this delay
by mixing FMCW with signals whose carrier frequency is Δf . This ap-
proach also provides us with the flexibility of tuning multi-shift FMCW
for different TOFlimit’s by simply changing these carrier frequencies.

7Complexity-wise, WiTrack2.0’s algorithms are linear in the number
of users, the number of Tx antennas, and the number of Rx antennas.
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eleven human subjects: four females and seven males.
The subjects differ in height from 165–185 cm as well
as in weight and build and span 20 to 50 years of age.
In each experiment, each subject is allowed to move as
they wish throughout the room. These experiments were
approved by MIT IRB protocol #1403006251.
Ground Truth. We use the VICON motion capture sys-
tem to provide us with ground truth positioning informa-
tion [1]. It consists of an array of infrared cameras that
are fitted to the ceiling of a 5 m × 7 m room, and requires
instrumenting any tracked object with infrared-reflective
markers. When an instrumented object moves, the system
tracks the infrared markers on that object and fits them
into a 3D model to identify the object’s location.

We evaluate WiTrack2.0’s accuracy by comparing it to
the locations provided by the VICON system. To track
a user using the VICON, we ask him/her to wear a hard
hat that is instrumented with five infrared markers. In ad-
dition, for the gestures experiments, we ask each user to
wear a glove that is instrumented with six markers.
Experimental Setup. We evaluate WiTrack2.0 in a stan-
dard office environment that has standard furniture: ta-
bles, chairs, boards, computers, etc. We experiment with
two setups: line-of-sight and through-the-wall. In the
through-wall experiments, WiTrack2.0 is placed outside
the VICON room with all transmit and receive anten-
nas facing one of the walls of the room. Recall that
WiTrack2.0’s antennas are directional and hence this set-
ting means that the radio beam is directed toward the
room. The VICON room has no windows; it has 6-inch
hollow walls supported by steel frames, which is a stan-
dard setup for office buildings. In the line-of-sight exper-
iments, we move WiTrack2.0 inside the room. In all of
these experiments, the subjects’ locations are tracked by
both the VICON system and WiTrack2.0.
Detection. Recall that WiTrack2.0 adopts iterative can-
cellation to detect different users in the scene. This lim-
its the number of users it can detect because of residual
interference from previous iterations. Therefore, we run
experiments to identify the maximum number of people
that WiTrack2.0 can reliably detect under various condi-
tions. Detection accuracy is measured as the percentage
of time that WiTrack2.0 correctly outputs the number of
users present in the environment. The number of users in
each experiment is known and acts as the ground truth.
We run ten experiments for each of our testing scenarios,
and plot the accuracies for each them in Fig. 11.

We make two observations from this figure. First, the
accuracy of detection is higher in line-of-sight than in
through-wall settings. This is expected because the wall
causes significant attenuation and hence reduces the SNR
of the reflected signals. Second, the detection accuracy
for breathing-based localization is higher than that of the
tracking experiments. While this might seem surprising,
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Figure 11—WiTrack2.0 ’s Detection Accuracy. The figure shows the
percentage of time that WiTrack2.0 accurately determines the number
of people in each of our evaluation scenarios.

it is actually due to the fact that the breathing experiments
operate over longer subtraction windows. Specifically, the
system outputs the number of people detected and their
locations by analyzing the trace over windows of 10 sec-
onds. In contrast, the tracking experiments require out-
putting a location of each person once every 12.5 ms,8

and hence they might not be able to detect each person
within such a small time window.

For our evaluation of localization accuracy, we run ex-
periments with the maximum number of people that are
reliably detectable, where “reliably detectable” is defined
as detected an accuracy of 95% or higher. For reference,
we summarize these numbers in the table below.

Line-of-Sight Through-Wall
Motion Tracking 4 3
Breathing-based
Localization

5 4

Table 1—Maximum Number of People Detected Reliably.

10 PERFORMANCE RESULTS
10.1 Accuracy of Multi-Person Motion Tracking

We first evaluate WiTrack2.0’s accuracy in multi-
person motion tracking. We run 100 experiments in to-
tal, half of them in line-of-sight and the second half in
through-wall settings. In each experiment, we ask one,
two, three, or four human subjects to wear the hard
hats that are instrumented with VICON markers and
move inside the VICON-instrumented room. Each sub-
ject’s location is tracked by both the VICON system and
WiTrack2.0, and each experiment lasts for one minute.
Since each FMCW sweep lasts for 2.5ms and we average
5 sweeps to obtain each TOF measurement, we collect
around 5,000 location readings per user per experiment.

Figs. 12 and 13 plot the CDFs of the location error
along the x and y coordinates for each of the localized
persons in both line-of-sight and through-wall scenarios.
The subjects are ordered from the first to the last as de-
tected by SSC. The figures reveal the following findings:

8Since the user is moving, combining measurements over a longer
interval smears his signal.
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Figure 12—Performance of WiTrack2.0’s LOS Tracking. (a) and (b)
show the CDFs of the location error in x and y for each of the tracked
users in LOS. Subjects are ordered from first to last detected by SSC.

• WiTrack2.0 can accurately track the motion of four
users when it is in the same room as the subjects. Its
median location error for these experiments is 8.5 cm
in x and 6.4 cm in y for the first user detected, and de-
creases to 15.9 cm in x and 7.2 cm in y for the last
detected user.

• In through-wall scenarios, WiTrack2.0 can accurately
localize up to three users. Its median location error
for these experiments is 8.4 cm and 7.1 cm in x/y for
the first detected user, and decreases to 16.1 cm and
10.5 cm in x/y for the last detected user. As expected,
the accuracy when the device is placed in the same
room as the users is better than when it is placed behind
the wall due to the extra attenuation (reduced SNR)
caused by the wall.

• The accuracy in the y dimension is better than the ac-
curacy in the x dimension. This discrepancy is due to
the asymmetric nature of WiTrack2.0’s setup, where
all of its antennas are arranged along the y = 0 axis.

• The localization accuracy decreases according to the
order the SSC algorithm localizes the users. This is due
to multiple reasons: First, a user detected in later iter-
ations is typically further from the device, and hence
has lower SNR, which leads to lower accuracy. Sec-
ond, SSC may not perfectly remove the reflections of
other users in the scene, which leads to residual inter-
ference and hence lower accuracy.

10.2 Accuracy of Breathing-based Localization

We evaluate WiTrack2.0’s accuracy in localizing static
people based on their breathing. We run 100 experiments
in total with up to five people in the room. Half of these
experiments are done in line-of-sight and the other half
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Figure 13—Performance of WiTrack2.0’s Through-Wall Tracking.
(a) and (b) show the CDFs of the location error in x and y for each of the
tracked users. Subjects are ordered from first to last detected by SSC.
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Figure 14—Accuracy for Localizing Breathing People in Line-of-
Sight.. The figure shows show the median and 90th percentile errors in
x/y location. Subjects are ordered from first to last detected by SSC.

are through-wall. Experiments last for 3-4 minutes. Sub-
jects wear hard hats and sit on chairs in the VICON room.

Figs. 14 and 15 plot WiTrack2.0’s localization error in
line-of-sight and through-wall settings as a function of the
order with which the subject is detected by the SSC algo-
rithm. The figures show the median and 90th percentile of
the estimation error for the x and y coordinates of each of
the subjects. The figures show the following results:

• WiTrack2.0’s breathing-based localization accuracy
goes from a median of 7.24 and 6.3 cm in x/y for the
nearest user to 18.31 and 10.85 cm in x/y for the furthest
user, in both line-of-sight and through-wall settings.

• Localization based on breathing is more accurate than
during motion. This is because when people are static,
they remain in the same position, providing us with a
larger number of measurements for the same location.

10.3 Accuracy of 3D Pointing Gesture Detection

We evaluate WiTrack2.0’s accuracy in tracking 3D
pointing gestures. We run 100 experiments in total with
one to three subjects. In each of these experiments, we
ask each subject to wear a glove that is instrumented with
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Figure 15—Accuracy for Localizing Breathing People in Through-
Wall Experiments.. The figure shows show the median and 90th per-
centile errors in x/y location. Subjects are ordered from first to last de-
tected by SSC.
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(a) Pointing Accuracy in φ
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(b) Pointing Accuracy in θ

Figure 16—3D Gesture Accuracy. The figure shows the CDFs of the
orientation accuracy for the pointing gestures of each participant. Sub-
jects are ordered from first to last detected by the SSC algorithm.

infrared-reflective markers, stand in a different location
in the VICON room, and point his/her hand in a random
3D direction of their choice – as if they were playing a
shooting game or pointing at some household appliance
to control it. In most of these experiments, all subjects
were performing the pointing gestures simultaneously.

Throughout these experiments, we track the 3D lo-
cation of the hand using the VICON system and
WiTrack2.0. We then regress on the 3D trajectory to de-
termine the direction in which each user pointed (similar
to [3]). Fig. 16(a) and 16(b) plot the CDFs of the orienta-
tion error between the angles as measured by WiTrack2.0
and the VICON for the 1st, 2nd and 3rd participant (in the
order of detection by SSC). Note that we decompose the
3D pointing gesture along two directions: azimuthal (in
the x − y plane), which we denote as φ, and elevation (in
the r−z plane), which we denote as θ. The accuracy along
both of these angles is important since appliances which
the user may want to control in a home environment (e.g.,
lamps, screens, shades) span the 3D space.

The figure shows that the median orientation error in

φ goes from 8.2 degrees to 12.4 degrees from the first to
the third person, and from 12 degrees to 16 degrees in θ.
Note that WiTrack2.0’s accuracy in φ is slightly higher
than its accuracy in θ. This is due to WiTrack2.0’s setup,
where the antennas are more spread out along the x than
along the z, naturally leading to lower robustness to errors
along the z axis, and hence lower accuracy in θ. These ex-
periments demonstrate that WiTrack2.0 can achieve high
accuracy in 3D tracking of a pointing gesture.

11 DISCUSSION & LIMITATIONS

WiTrack2.0 marks an important step toward enabling
accurate indoor localization that does not require users to
hold or wear any wireless device. WiTrack2.0, however,
has some limitations that are left for future work.

1. Number of Users: WiTrack2.0 can accurately track up to
4 moving users and 5 static users. These numbers may
be sufficient for in-home tracking. However, it is always
desirable to scale the system to track more users.

2. Coverage Area: WiTrack2.0’s range is limited to 10m
due to its low power. To cover larger areas and track
more users, one may deploy multiple devices and hand
off the trajectory tracking from one to the next, as the
person moves around. Managing such a network of de-
vices, coordinating their hand-off, and arbitrating their
medium access are interesting problems to explore.

3. Lack of Identification: The system can track multiple
users simultaneously, but it cannot identify them. Addi-
tionally, it can track limb motion (e.g., a hand) but can-
not differentiate between different body parts (a hand vs.
a leg). We believe that future work can investigate this
issue by identifying fingerprints of various reflectors.

4. Limited Gesture Interface: WiTrack2.0 focuses on
tracking pointing gestures; however, the user cannot
move other body parts while performing the pointing
gesture. Extending the system to enable rich gesture-
based interfaces is an interesting avenue for future work.
Overall, we believe WiTrack2.0 pushes the limits of in-

door localization and enriches the role it can play in our
daily lives. By enabling smart environments to accurately
follow our trajectories, it paves way for these environ-
ments to learn our habits, react to our needs, and enable
us to control the Internet of Things that revolves around
our networked homes and connected environments.
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