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ABSTRACT
This paper presents the design and implementation of SpotFi,
an accurate indoor localization system that can be deployed
on commodity WiFi infrastructure. SpotFi only uses in-
formation that is already exposed by WiFi chips and does
not require any hardware or firmware changes, yet achieves
the same accuracy as state-of-the-art localization systems.
SpotFi makes two key technical contributions. First, SpotFi
incorporates super-resolution algorithms that can accurately
compute the angle of arrival (AoA) of multipath components
even when the access point (AP) has only three antennas.
Second, it incorporates novel filtering and estimation tech-
niques to identify AoA of direct path between the localiza-
tion target and AP by assigning values for each path depend-
ing on how likely the particular path is the direct path. Our
experiments in a multipath rich indoor environment show
that SpotFi achieves a median accuracy of 40 cm and is ro-
bust to indoor hindrances such as obstacles and multipath.
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1. INTRODUCTION
Indoor localization systems using WiFi infrastructure sho-

uld ideally satisfy the following three requirements:
• Deployable: They should be easily deployable on exist-

ing commodity WiFi infrastructure without requiring any
hardware or firmware changes at the access points (APs);
they should only work with information like RSSI and
CSI (Channel State Information) that is already exposed
by commodity, deployed APs.
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• Universal: They should be able to localize any target de-
vice that has a commodity WiFi chip and nothing else.
They should not require the target to have any other hard-
ware, be it sensors such as accelerometers, gyroscopes,
barometers, cameras, etc., or radios such as UWB, ultra-
sound, Bluetooth LE, etc.
• Accurate: They should be accurate, ideally as accurate as

the best known localization systems that use wireless sig-
nals (even including those that do not satisfy the above
two requirements). To the best of our knowledge, the
most accurate such localization systems are ArrayTrack [1]
and Ubicarse [2] and these systems achieve an accuracy
ranging from 30–50 cm in office environments. Achiev-
ing such accuracy would be the target.

If the above three requirements are satisfied, we can imagine
indoor localization becoming a ubiquitous service like GPS
that can be installed on already deployed WiFi infrastructure
and made available to any device with a WiFi chip.

However, to the best of our knowledge, no system that sat-
isfies all three requirements exists. RSSI based systems are
deployable and universal, but are not accurate; their median
accuracy ranges from 2–4 m [3, 4, 5]. Recent techniques
that rely on angle of arrival (AoA) estimation such as Ar-
rayTrack and LTEye [6] are accurate and universal but are
not deployable as they require hardware modifications. For
example, ArrayTrack uses six to eight antennas whereas typ-
ical APs have three, and LTEye requires motorized rotating
antennas which are not found on deployed APs. Other tech-
niques that combine inputs from multiple sensors such as
Ubicarse [2] are accurate and deployable but not universal;
they require that the target device has access to other sens-
ing modes such as accelerometers, gyroscopes, etc., which
would not be found on many devices (e.g., laptops, Nest
thermostats). We refer the reader to Sec. 2 for a more de-
tailed survey of related work and where different systems lie
with respect to the above requirements.

The main contribution of this paper is a localization sys-
tem that satisfies all the three requirements above. We present
SpotFi, an indoor localization system that provides a median
accuracy of 40 cm using standard, commodity off-the-shelf
WiFi radios, which is comparable to the best performing sys-
tems such as ArrayTrack [1] and Ubicarse [2]. SpotFi re-
quires no hardware or baseband firmware changes/additions
at the APs, nor does it need any calibration or fingerprinting
of the environment. SpotFi’s localization targets also have
minimal requirements, they only require a commodity WiFi
chip.
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SpotFi incorporates three techniques that enable it to achieve
this combination of accuracy and deployment simplicity:
• Super-resolution AoA Estimation: The first component

of SpotFi is a super-resolution AoA estimation algorithm,
i.e., it accurately resolves all the AoAs of the indoor mul-
tipath in spite of using just three antennas which is stan-
dard in WiFi deployments today. The number of anten-
nas limits the number of multipath components that one
can resolve. As prior work has noted [1, 2, 7, 8, 9], the
more antennas there are, more multipath AoAs can be
resolved more accurately. Our insight is that the multi-
path not only creates measurable changes in CSI across
antennas because of AoA but also affects CSI across sub-
carriers because of time of flight (ToF, time taken by the
signal to reach the AP from the localization target).
Using this fact, instead of just estimating AoA, SpotFi
combines CSI values across subcarriers and antennas to
jointly estimate AoA and ToF of each path. In the pro-
cess, SpotFi creates a virtual sensor array with number
of elements greater than the number of multipath com-
ponents, thus overcoming the constraint of limited an-
tennas. Our unique insight here is that these joint AoA
and ToF estimation algorithms can be implemented us-
ing the CSI information that is already exposed by the
commodity WiFi cards. Using the AoA and ToF parame-
ters estimated from CSI, we empirically demonstrate that,
in commodity WiFi deployments, although the estimated
ToF values are different from the absolute ToFs, the joint
estimation procedure provides AoA accuracy that is com-
parable to systems that require twice as many antennas [8]
or non-standard configurations such as rotating antennas
used in radar [6, 2].
• Robust Direct Path Identification: SpotFi aims to find

the AoA of the direct path component in the multipath
signal from the target. However among the AoA esti-
mates from the previous algorithm, the one correspond-
ing to the direct path may be erroneous or may not even
exist due to several practical reasons such as noisy CSI,
obstructed targets, weak signal strength from the target
and so on. The second key component of SpotFi is a
novel algorithm that assigns values for each path depend-
ing on the likelihood that the particular path is the direct
path. This metric assignment algorithm enables SpotFi to
eliminate AoA estimates that are very likely to be in error
and not belonging to the direct path component, thereby
avoiding making large errors in localization.
• Localization: The final step is a localization algorithm

that incorporates both the direct path AoA estimate from
the above two steps as well as RSSI information avail-
able from each of the APs to calculate the location of the
target. Our key contribution here is a framework that ap-
propriately weights the information from different APs to
take into account how likely it is that the AoA measure-
ment reported by each AP corresponds to the actual direct
path between the target and that AP. This weighting of in-
formation enables SpotFi to select information from APs
with higher confidence metric and improve accuracy.

We implemented SpotFi using Intel 5300 commodity WiFi

cards. We strived to evaluate it under the same environments
as the best performing systems ArrayTrack and Ubicarse [1,
2]; we describe the testbed in Sec. 4. Our experiments show
that SpotFi achieves a median localization error of 40 cm,
and the 80th percentile error is 1.8 m. To put these num-
bers in context, the best performing prior system achieves
a median error of 40 cm using 6 antennas per AP, whereas
our APs have only three. We also show that SpotFi works ro-
bustly in challenging scenarios; for example, it achieves very
good accuracy even when the target has strong direct paths
to only a couple of APs. Finally, we also show that SpotFi
is lightweight and requires CSI measurements for only ten
packets from the target to localize accurately.

2. RELATED WORK
Indoor localization using wireless infrastructure is a well-

studied problem. There is a large body of research which,
for conciseness, we classify into four types: RSSI based,
fingerprinting based, antenna array based, and time based
techniques.
RSSI based approaches: This class of systems measures
the RSSI from the target at multiple APs, combines them
via triangulation along with a propagation model to locate
the target [3, 10, 4, 5, 11, 12, 13]. These systems are easy
to deploy as RSSI values are easily available in current APs.
However the best known systems in this space tend to achieve
a median accuracy of around 2–4 m [3, 4], and the 80th

percentile error is often as high as 5 m due to insufficient
modeling of RSSI which in practice depends not only on the
location of the target but also on the changing environment.
Fingerprinting based approaches: The idea of these ap-
proaches is that one would collect fingerprints such as the
vector of RSSIs from a specific location to all the APs in
range, and if in the future a target were at the same location,
it would exhibit the same fingerprint, enabling us to local-
ize [14, 15, 16, 17, 18, 19, 20, 21, 22]. The best known such
systems provide around 0.6 m of median accuracy [14], and
tail accuracy on the order of 1.3 m. However these systems
are difficult to deploy since they require an expensive and re-
curring fingerprinting operation any time there are changes
in the environment (e.g., when the furniture is moved).
AoA based approaches: With the proliferation of WiFi APs
with multiple antennas to support MIMO communications,
antenna array based techniques which use multiple antennas
at the AP have gained interest recently. The basic idea of
these systems is to calculate the AoAs of the multipath sig-
nals received at each AP, find the AoA of the direct path to
the target, and then apply triangulation to localize [1, 2, 6,
23, 24, 8, 25]. The best known such systems have demon-
strated significant improvements in accuracy with median
accuracy on the order of 0.4 m [1, 2]. However these systems
are relatively difficult to deploy, since they require hardware
changes by introducing as high as 8 antennas [1, 8], or new
boxes itself with rotating antennas [6], or require special APs
to access IQ samples [1, 24].

There are other recently proposed systems that use sensors
such as gyroscopes, accelerometers, etc., along with AoA
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Figure 1: Overall architecture: SpotFi collects CSI and RSSI measurements from all the APs that can hear the packet transmitted by the
target. In the first step, SpotFi calculates the ToF and AoA of all the propagation paths from the target to each of the APs. SpotFi then
identifies the direct path between the target and the AP that did not undergo any reflections. In the final step, SpotFi estimates the location of
the target by using the direct path AoA estimates and RSSI measurements from all the APs.

information [2, 23]. While these sensors are available on
some phones, their accuracy varies widely across different
phone models. Further there are a large number of devices
that may only have a WiFi/Bluetooth chip but none of these
other sensors, e.g., wearables or IoT devices such as Nest,
wireless cameras, and suitcases [26, 27, 28], that would like
to avail of localization capability if possible. Moreover, Ubi-
carse [2] requires that the human holding the device perform
a specific circular motion to enable localization which is not
feasible in many scenarios where localization is needed (e.g.,
locating misplaced or lost objects).
Time based approaches: Systems that use timestamps re-
ported by WiFi cards can obtain time of flight at a granularity
of several nanoseconds, resulting in ranging error of few me-
ters [29, 30, 31, 32, 33, 34]. In spite of hardware/firmware
modifications to overcome coarse ToF estimates, the best
known systems achieve localization error of 2 m [32, 33,
30]. Some systems applied super-resolution algorithms to
obtain finer ToF estimates, but require all the APs to be time
synchronized [35, 36, 37, 38, 39], which is hard to achieve
using commodity WiFi [40]. Algorithms for joint estimation
of AoA and ToF, to improve the accuracy of both the pa-
rameter estimates, have been developed [41, 42, 43, 44, 45],
and tested in simulation [46, 47, 48, 49, 50]. But these algo-
rithms have been implemented in systems where the trans-
mitter and receiver radios are time synchronized [51, 52],
which is not possible in commodity WiFi deployments.
Other approaches: For completeness, we refer to localiza-
tion systems that deploy other modalities like RFIDs [53,
54, 55], ultrawideband [56], ultrasound [57, 58, 59, 60, 61],
IR [62, 63, 64], visible light [65, 66] or beacons like the
ones Apple recently introduced [67]. However, we believe
that none of these are ever likely to be as ubiquitous as com-
modity WiFi AP infrastructure.

3. DESIGN
SpotFi works in three steps:

1. Estimate the angle of arrival (AoA) and time of flight
(ToF) of different multipath components of a target’s sig-
nal arriving at the AP by using the CSI information that
is exposed by commodity WiFi APs.

2. Estimate the likelihood that each AoA and ToF pair is the

one corresponding to the direct path between the AP and
the target without any reflections.

3. Use the above information to calculate the most likely lo-
cation of the target that could have produced the observed
RSSI and estimated AoA.

Before we describe each step of the design in detail, we
briefly discuss SpotFi’s architecture. Fig. 1 shows how SpotFi
would be deployed. A central server collects CSI measure-
ments for each packet received at the APs. All the ma-
jor WiFi chip families (Broadcom, Atheros, Intel, and Mar-
vell) expose quantized CSI per subcarrier per antenna [23].
We use Intel 5300 WiFi chips in the current prototype be-
cause of the availability of CSI extraction software for these
chips [68], but SpotFi can easily be deployed with WiFi APs
that use chips from other manufacturers. SpotFi only adds
the software required to read the reported CSI values, times-
tamps, and MAC addresses at the AP and ships it to the cen-
tral server and nothing else. Hence we believe that SpotFi
can be added to any existing, deployed WiFi AP. Also, like
many other state-of-the-art localization systems, we assume
that we know the locations of the APs themselves from of-
fline, one-time measurements [1, 2, 23].

3.1 SpotFi’s super-resolution algorithm for
estimating AoA and ToF

A target’s signal could reflect off multiple objects and ar-
rive at the AP; typically in an indoor environment there are
around 6-8 significant reflectors [69, 30, 70]. So the key
question is, how might one be able to disentangle these mul-
tipath components and accurately estimate the AoA of each
path even when the AP has only three antennas? To gain in-
sight into how SpotFi solves the problem, it is helpful to
understand how standard AoA computation with the well
known MUSIC algorithm [7] works, which we review next.

3.1.1 Estimating AoA with MUSIC
The basic idea is that different propagation paths have dif-

ferent AoAs, and when the signal from a propagation path is
received across an array of antennas, then the AoA will in-
troduce a corresponding phase shift across the antennas in
the array. The introduced phase shift is a function of both
the distance between antennas and the AoA. To understand
how MUSIC takes advantage of this fact to determine AoA,
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Figure 2: Uniform linear array consisting ofM antennas: For AoA
of θ, the target’s signal travels an additional distance of d× sin(θ)
to the second antenna in the array compared to the first antenna.
This results in an additional phase of −2π×d× sin(θ)×f/c at the
second antenna.

let’s say there are L propagation paths. Let’s assume that
M antennas are arranged in a uniform linear array, similar
to systems like ArrayTrack [1, 23], with equal spacing of
d between consecutive antennas. For the kth propagation
path, let θk denote the angle at which the signal is arriving
with respect to the normal of the antenna array of the AP.
Let γk denote the complex attenuation experienced at the
first antenna in the array by the signal traveling along kth

propagation path. The attenuation at the second antenna in
the array is the same except for an additional phase shift ac-
cumulated due to additional distance traveled by the signal,
and depends on d and θk.

Each propagation path, therefore, has two parameters as-
sociated in this model: the attenuation and the AoA. As de-
scribed in Sec. 2 of ArrayTrack [1] and illustrated in Fig. 2,
relative to the first antenna in the array, the phase shift intro-
duced at mth antenna is −2×π×d×(m− 1)× sin(θk)×f/c
where c is the speed of light and f is the frequency of the
transmitted signal. For simplicity of representation, let us
denote the complex exponential of these introduced phase
shifts as a function of the AoA of the propagation path,

Φ(θk) = e−j2π×d× sin(θk)×f/c. (1)

So the AoA can be thought of as introducing a vector of
phase shifts at the antenna array (or the sensor array). The re-
sulting vector of received signals due to kth path can be writ-
ten as ~a(θk)γk, where γk is the complex attenuation along
the path experienced at the first antenna in the array and

~a(θk) = [1 Φ(θk) . . . Φ(θk)(M−1)]> (2)

using the notation introduced in Eq. 1. This vector ~a(θk) is
also known as the steering vector. We have as many steering
vectors as propagation paths and the overall steering matrix
A is defined as A = [~a(θ1), . . . , ~a(θL)] , and has dimen-
sions M × L .

The received signal vector ~x at the antenna array is ob-
tained by superposition of signals due to all the paths, i.e.,

~x = A~Γ, (3)

where ~Γ = [γ1 . . . γL]> is the vector of complex attenua-
tions along L paths and A is the steering matrix. In OFDM,

data is transmitted over multiple subcarriers each with dif-
ferent frequency. We can write an equation similar to Eq.
3 for each of the subcarriers, and the steering matrix A does
not change because the steering vectors do not change across
closely spaced subcarriers [7, 8]. Let us construct measure-
ment matrix X by using received signal vectors for each of
the N subcarriers using Eq. 4 below,

X = [~x1 . . . ~xN ] = A[~Γ1 . . . ~ΓN ] = AF, (4)

where vectors ~x1, . . . , ~xN denote the received signal vec-
tors at each of the subcarriers (correspond to ~x in Eq. 3
obtained for different subcarriers), ~Γ1, . . . , ~ΓN are the vec-
tors of complex attenuations of the propagation paths at each
of the subcarriers (correspond to ~Γ in Eq. 3 obtained for dif-
ferent subcarriers), and F is the matrix of complex attenua-
tions/gains.

The overall attenuation and phase shift introduced by the
channel/environment measured at each subcarrier of each
antenna is reported by the WiFi card as a CSI value (it’s a
complex number). For example, Eq. 5 represents a nominal
CSI matrix reported by Intel 5300 WiFi card for 3 antennas
and 30 subcarriers,

CSI matrix =

csi1,1 csi1,2 . . . csi1,30
csi2,1 csi2,2 . . . csi2,30
csi3,1 csi3,2 . . . csi3,30

 , (5)

where csim,n is the CSI value for mth antenna and nth sub-
carrier. Thus, the CSI value at each subcarrier is nothing but
the received signal due to all the paths. Hence, for the AoA
model described above, the received signal vector ~x in Eq. 3
corresponds to one of the columns in the CSI matrix and the
measurement matrix X corresponds to the CSI matrix itself.

The MUSIC algorithm is working with this information
and relationship; the WiFi card measurements provide us the
matrix X and the goal is to estimate the matrix A, from which
it is easy to deduce the AoAs. The key idea behind the MU-
SIC algorithm is that the eigenvectors of XXH correspond-
ing to the eigenvalue zero, if they exist, are orthogonal to the
steering vectors in A1. We omit the mathematical derivation
for brevity but refer to the broad literature discussing these
ideas [7]. The MUSIC algorithm at a basic level proceeds
first by computing the eigenvectors of XXH corresponding
to the eigenvalue zero, and then computing the steering vec-
tors orthogonal to these vectors. Once the steering vectors
are found, the AoAs can be deduced easily.

The key problem however is the assumption that there are
eigenvectors of XXH that correspond to eigenvalue zero and
that they are orthogonal to the steering vectors. Prior work
has shown that it’s true only if the steering matrix A is skinny
and full rank matrix and the matrix F is fat and full rank ma-
trix [7]. In other words the number of rows of steering
matrix A should be larger than the number of columns in
the matrix. Physically this maps to saying that the number
of sensors (in this case antennas) has to be larger than the
number of propagation paths. For example, if we have ra-
dios with only three antennas and environment where there
1XH is conjugate transpose of X.
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are more than three significant propagation paths (which is
quite likely), the above algorithm doesn’t work well. This is
the reason past works have either used more antennas (eight
in ArrayTrack [1]) or used rotating antennas to simulate a
larger antenna array (e.g., LTEye [6]). Also, the number of
columns of matrix F of complex gains should be greater than
the number of its rows, i.e., number of measurements at the
sensor array should be greater than the number of paths.

3.1.2 Super-Resolution AoA Estimation
How might one increase the resolution of AoA estima-

tion? From the above discussion it’s clear that the key factor
is the number of sensors from which we can measure proper-
ties of the propagation paths and the number of independent
measurements we can obtain at the sensor array. SpotFi’s
insight is that the number of sensors is not limited by the
number of antennas, but in fact by leveraging the fact that
WiFi has many OFDM subcarriers on each of which we get
a CSI measurement, the number of sensors can be expanded
to be equal to the product of the number of subcarriers and
the number of antennas. For example, for Intel 5300 WiFi
cards, number of sensors would be equal to 30×3 = 90 sen-
sors rather than the 3 antennas with the modeling described
in Sec. 3.1.1.

However, if each sensor in this extended sensor array is
modeled to measure just AoAs of the paths, then the number
of distinct values in our parametric model of sensor mea-
surements is still limited by the number of antennas. This is
because AoA of a propagation path does not manifest itself
in any measurable way across subcarriers, i.e., AoA does not
introduce any phase shift across subcarriers of an antenna.
This is easy to see given that the relative phase shift intro-
duced by AoA of the kth path across two subcarriers of the
mth antenna is 2π(m−1)d(fi−fj) sin(θk)/c, where fi and
fj denote the frequencies of the two subcarriers. So, with
half-wavelength antenna spacing, for two subcarriers of the
second antenna separated by 40 MHz, any AoA introduces
a phase shift of at most 0.002 radians which is negligible.
Hence, phase shift due to AoA is same across all the sub-
carriers of an antenna since the speed of light factor in the
denominator is much larger than this small frequency differ-
ence. So, although there are 90 subcarriers (from all three
antennas combined) in Intel 5300 CSI measurements, only
2 distinct phase shifts are introduced due to AoA, since we
compute phase shifts relative to the first antenna and there
are three antennas.
Obtaining sensor array larger than the number of paths:
SpotFi’s key insight is counterintuitive. Instead of just es-
timating AoA per propagation path, SpotFi proposes to also
calculate the time of flight (ToF) for each path. By definition
each path will likely have a different ToF too. The reason to
add ToF as a parameter for each path is that it introduces
measurable phase shifts across subcarriers. For example the
phase shift across two subcarriers even across the same an-
tenna for the kth path with ToF τk is given by 2π(fi−fj)τk
which is significant (the reason numerically is the lack of the
speed of light factor in the denominator). Here, fi and fj
denote the frequencies of the two subcarriers as before. For

example, for two subcarriers spaced apart by 40 MHz and
for ToF of 10 ns, there is significant difference of 2.5 radians
in the phase shift introduced at the two subcarriers. Specifi-
cally, for equispaced OFDM subcarriers, kth path with ToF
τk introduces a phase shift of−2×π×(n−1)×fδ×τk at the
nth subcarrier relative to the first subcarrier of an antenna,
where fδ is the frequency spacing between two consecutive
subcarriers. For simplicity of representation, let us denote
the complex exponential of the phase shift introduced be-
tween two adjacent subcarriers as a function of the ToF,

Ω(τk) = e−j2×π×fδ×τk . (6)

SpotFi exploits this insight to expand the number of sensors,
and specifically design a steering matrix A that is skinny and
enables the resolution of all the paths.

Specifically, consider the sensor array comprising of all
the subcarriers at all the antennas. The measurement matrix
X is constructed by stacking CSI from all the subcarriers at
all the antennas, and hence is a single column matrix. Each
propagation path introduces a distinct phase shift at each of
the sensors depending both on its ToF and AoA. So, for a
path with AoA θ and ToF τ , the steering vector, for the M ×
N sensors (M antennas times N subcarriers), is formed by
phase shifts introduced at each of the sensors due to both
AoA and ToF, and is given by:

~a(θ, τ) =[

antenna 1︷ ︸︸ ︷
1, . . . ,ΩN−1

τ ,Φθ, . . . ,Ω
N−1

τ Φθ︸ ︷︷ ︸
antenna 2

, . . . ,

antenna M︷ ︸︸ ︷
ΦM−1

θ , . . . ,ΩN−1

τ ΦM−1

θ ]>,

(7)
where Ω(τ) is written as Ωτ and Φ(θ) as Φθ for brevity.

CSI at each sensor is a linear combination of the phase
shifts introduced due to all the paths weighted by their atten-
uations. So, the newly constructed measurement matrix X
is nothing but a linear combination of the steering vectors in
Eq. 7 evaluated for all the paths. Note that phase of complex
attenuation in the model described in Eq. 3 has the phase
shift due to ToF absorbed into it and is different for different
subcarriers, whereas here the phase of attenuation just de-
pends on the objects that the signal interacted with along the
path and is same for all the subcarriers of all the antennas.
The steering matrix corresponding to this extended sensor
array still has number of columns equal to the number of
paths. We have thus increased the number of sensors with-
out increasing the number of paths, i.e., we have achieved a
skinny steering matrix A .

The other fact to note from the previous section’s descrip-
tion of MUSIC is that the number of measurements at the
sensor array, that can be written as linear combination of the
same steering vectors, should be greater than the number of
paths. However, the measurement matrix obtained by stack-
ing CSI from all the subcarriers at all the antennas is a single
column unit rank matrix. We now describe how we obtain
a measurement matrix with number of columns greater than
number of paths.
CSI smoothing: SpotFi’s mathematical trick to obtain a sen-
sor array with multiple independent measurements is best
demonstrated through an example. Let’s say there are L = 2
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Figure 3: (a) The elements of the steering vector in Eq. 7 for two
subsets of sensors. The elements in the dashed red box (second sen-
sor subarray) are obtained by scaling the corresponding elements
in solid blue box (first subarray) by Ω2(τk)Φ(θk). Ωτk represents
Ω(τk) and Φθk represents Φ(θk). (b) csim,n represents the CSI
obtained at nth subcarrier and mth antenna. So, the two columns
on the left hand side of the equation correspond to the CSI values
obtained at the two sensor subarrays displayed in (a). CSI mea-
surements obtained for the second sensor subarray are obtained by
combining the same steering vectors as the first sensor subarray
but with different independent vector of weights. The CSI mea-
surements and the vector of gains corresponding to the first sensor
subarray are colored blue and similarly the corresponding values
for second sensor subarray are colored red.

paths. Consider the CSI at the subcarriers corresponding to
two sensor subarrays displayed in the two columns of the
matrix on the left hand side (LHS) of equation in Fig. 3(b).
First sensor subarray, corresponding to the first column of
Fig. 3(b), is comprised of first three subcarriers at antennas
1 and 2. The second sensor subarray, corresponding to the
second column of Fig. 3(b), is comprised of subcarriers 3 to
5 at antennas 2 and 3. We will show in the following para-
graphs that the measurements at these two sensor subarrays
can be written as linear combination of the same vectors, but
with different gains, as illustrated in Fig. 3(b). So, if we can
identify L such sensor subarrays whose CSI values can be
written as linear combination of same vectors, then the MU-
SIC algorithm can be applied on the measurement matrix
obtained from the CSI measurements at these subarrays.

To gain intuition into why CSI at the two sensor subar-
rays shown in Fig. 3(b) can be written as linear combination
of same vectors, let’s look at the entries of steering vector
in Eq. 7 evaluated for kth propagation path as illustrated in
Fig. 3(a). The phase shifts in the solid blue box correspond
to the steering vector entries of the first sensor subarray and
the phase shifts in the dashed red box correspond to those

in the second sensor subarray. We observe that the phase
shift between the corresponding elements of the two sensor
subarrays are related through a common scaling factor. For
example, phase shift of the top left sensor of second sen-
sor subarray, i.e., subcarrier 3 at antenna 2, is obtained by
multiplying phase shift at the top left sensor of the first sen-
sor subarray, i.e., subcarrier 1 at antenna 1, by Ω2(τk)Φ(θk).
This scaling factor is infact the phase shift term we would
see for this propagation path for a shift of 2 subcarriers and
1 antenna, and is expected since both the sensor subarrays
are structurally same except for a shift of 2 subcarriers and
1 antenna. The common scaling factor, Ω2(τk)Φ(θk), de-
pends on the relative shift in antennas and subcarriers of the
two sensor subarrays as well as the propagation path param-
eters, and hence is different for different paths. How can one
exploit the above insight?

Let α1 and α2 be the complex gains along the two paths.
We obtain CSI values at the sensors belonging to first sub-
array by weighing the corresponding steering vector entries
for the two paths by their complex gains α1 and α2 (see Fig.
3(b)), and similarly for the second sensor subarray. How-
ever, by absorbing common scaling factor Ω2(τk)Φ(θk) into
the complex gains at the second subarray, we can write the
CSI values at the second sensor subarray by weighing the
steering vector entries corresponding to first subarray for
the two paths with the modified gains Ω2(τ1)Φ(θ1)α1 and
Ω2(τ2)Φ(θ2)α2. The same is illustrated in Fig. 3(b). We
have thus shown that CSI at these two sensor subarrays can
be written as linear combination of the same vectors. More-
over, the vector of complex gains of the second subarray is
linearly independent of the vector of the complex gains of
first subarray, because attenuations corresponding to differ-
ent paths are multiplied by different factors to obtain modi-
fied gains at the second subarray.

By generalizing these observations, one can prove that the
CSI values at different sensor subarrays, that are obtained
by shifting a fixed subset of sensors, can be written as linear
combination of the same vectors. Infact, the steering vec-
tor entries of the fixed subset of sensors for different paths
now form the steering matrix A and by combining the vec-
tors of this steering matrix with different weights, we obtain
CSI values at different sensor subarrays. So, if we construct
a measurement matrix X using CSI values at different sen-
sor subarrays that are structurally similar but shifted from
each other, we can successfully apply MUSIC using this new
measurement matrix X. Specifically, let’s consider CSI mea-
surements from Intel 5300 cards. SpotFi considers CSI val-
ues at sensor subarrays that are formed by different shifts of
the fixed sensor subarray comprised of the first 15 subcarri-
ers of first two antennas to construct the measurement matrix
as illustrated in Fig. 4. We term this new measurement ma-
trix X as smoothed CSI matrix. In this construction, steering
matrix A is of dimensions 30 × L, where 30 rows is from
the fact that each sensor subarray consists of the combina-
tions of 15 subcarriers at 2 antennas and L is the number of
propagation paths. The matrix F, due to the shifting trick,
now has dimensions L × 30, where 30 columns is from the
fact that 30 is the maximum number of sensor subarrays we
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Figure 4: This figure illustrates construction of smoothed CSI ma-
trix from the input CSI measurements. csim,n is the CSI value for
mth antenna and nth subcarrier. MUSIC algorithm can be directly
applied on the smoothed CSI matrix to obtain the AoA and ToF of
all the propagation paths.

can form by trying all possible shifts of 15 subcarriers at 2
antennas in a (30 subcarriers × 3 antennas) system.

At this stage, the standard MUSIC algorithm can be ap-
plied on smoothed CSI matrix to find the steering vectors
and then the AoA and ToF parameters corresponding to each
path. The algorithm now works well because by using the
smoothed CSI matrix, SpotFi manages to ensure that the
number of sensors is greater than the number of paths as
SpotFi now has 30 sensors compared to 3 before.

This method of using shifted subsets of sensors is similar
to the spatial smoothing technique [9] applied in localiza-
tion systems like ArrayTrack [1], where the idea is to use
measurements from different antenna subarrays formed by
considering different subsets of antennas. In SpotFi, we
consider different subsets of the antennas and subcarriers
together. Algorithms to jointly estimate AoA and ToF by
using different sensor subarrays have been explored in lit-
erature [42, 43], and applied in systems where all the WiFi
radios are time synchronized [51, 52]. However, SpotFi is
the first system that applies these algorithms with commod-
ity WiFi deployments where the APs and the targets are not
time synchronized. The idea is that although different WiFi
cards are not time synchronized, all the transceiver chains
on a single WiFi card share the same sampling clock. As
a result, lack of time synchronization introduces the same
phase shift in the CSI observed at different antennas of an
AP which we describe later in Sec. 3.2.2. This phase shift
corrupts the ToF values but the AoA values stay the same
as in the case where the radios of the AP and the target are
time synchronized. Thus the joint AoA and ToF estimation
algorithms are still useful in achieving improved AoA accu-
racy in spite of having just three antennas at the AP which
we empirically demonstrate in Sec. 4.

3.2 Identifying Direct Path AoA
SpotFi’s next step is to determine if direct path exists and

identify the AoA of the direct path from the target to the AP.
As described in section 3.1, SpotFi’s super-resolution algo-
rithm provides ToF and AoA for all the paths from the target
to an AP. A natural heuristic is to exploit the ToF informa-
tion. Specifically, at each AP we can identify the path with

the lowest ToF and declare that as the direct path. Further,
we can use the ToF value along with the speed of light to
compute the distance of the target from the AP. In theory,
this information at a single AP along with AoA information
would be sufficient to localize the target.

The above reasonable technique however does not work
in practice because the ToF estimates do not capture the true
time taken by the signal to travel from the target to the AP.
The reason is that in standard WiFi networks, the sender and
the receiver are not time synchronized; so their sampling
clocks at the DAC and the ADC are not in sync. Hence the
ToF estimate also includes delays from sampling time offset
(STO) between the target and AP and is therefore not a true
measure of the distance traveled.

However, since the ToFs of all the paths will have the
same delay added to them due to STO, we can still use the
path with the lowest ToF to identify which path traveled the
shortest relative distance. But the path with the smallest es-
timated ToF may not be the direct path. In many indoor sce-
narios, the direct path may be too weak or nonexistent due to
obstruction by walls, etc. In these scenarios, SpotFi’s super-
resolution algorithm will not even identify the direct path
and all the ToF/AoA estimates will be for indirect paths. In
this case assuming that the path with the lowest ToF is the
direct path would be a mistake. But in cases where there is
a strong direct path, the heuristic works and can be used to
calculate the AoA of the direct path. How might one dis-
tinguish between these two cases, when using lowest ToF
heuristic, without knowing the ground truth?

3.2.1 Using AoA and ToF from Multiple Packets
We build on a practical observation that was articulated in

earlier localization systems [1, 24]: the AoA (and even ToF)
estimates of the direct path over a few consecutive packets
will show much smaller variation compared to the estimated
AoAs (and ToFs) of indirect paths. We demonstrate this ob-
servation in Fig. 5(c) through AoA and ToF estimates calcu-
lated from CSI traces collected for one of our experiments.
SpotFi leverages this observation to estimate likelihoods for
each of the paths to be the direct path between the target and
the AP. The idea is to form a measure of the variations of the
AoAs and ToFs of paths estimated over consecutive packets,
and assign a likelihood metric for each of the paths that is
inversely proportional to the amount of variation in the AoA
and ToF estimates for that path.

Although measuring variation in the AoA parameter alone
is easy, measuring the variation in the ToF parameters is
challenging. Apart from sampling time offset, there is also a
sampling frequency offset (SFO) between every WiFi sender-
receiver pair. SFO changes the sampling time offset from
packet to packet for the same sender-receiver pair, which
in turn results in additive noise to the ToF estimates across
packets. So the variance of ToFs estimated by SpotFi’s super-
resolution algorithm includes this additional variance intro-
duced due to varying sampling time offset. So for every
packet’s measurements, we need to remove the effect of the
random sampling time offset before estimating variance across
packets for AoA and ToF estimates.
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3.2.2 Sanitizing ToF Estimates
STO adds a constant offset to the ToF estimates of all the

paths. This common additional delay manifests itself as a
linear in frequency term in the phase response of the chan-
nel. Hence, STO of τs results in adding −2πfδ(n − 1)τs
to the phase of CSI value of the nth subcarrier. The addi-
tional phase induced by STO is the same across antennas for
a particular subcarrier, as all the receiver chains of the same
WiFi card are time synchronized. We will now show that re-
moving the linear fit that is common to the unwrapped phase
response of all the antennas before estimating multipath pa-
rameters eliminates the varaiance due to changing STO.

Let us consider two consecutive packets transmitted by
the target. Letψi(m,n) represent unwrapped phase response
of the channel for the ith packet at nth subcarrier of mth an-
tenna, and τs,i is the STO for ith packet. By applying ToF
sanitization algorithm described in Algorithm 1, say we re-
moved the linear fit of CSI phase response for first packet to
obtain modified phase response ψ̂1(m,n).

Algorithm 1: SpotFi’s ToF sanitization algorithm

Data: Unwrapped CSI phase ψi for ith packet
1 Obtain the best linear fit of the unwrapped CSI phase as

τ̂s,i = arg min
ρ

M,N∑
m,n=1

(ψi(m,n) + 2πfδ(n− 1)ρ + β)
2

;

2 From the unwrapped CSI phase, subtract the phase that
would have been added due to STO τ̂s,i to obtain
modified CSI phase ψ̂i(m,n) as
ψ̂i(m,n) = ψi(m,n) + 2πfδ(n− 1)τ̂s,i

Phase response of second packet ψ2 can be written as
ψ2(m,n) = ψ1(m,n) − 2πfδ(n− 1)(τs,2 − τs,1). Using
this relationship, one can prove that the modified CSI phase
of the second packet is given by ψ̂2(m,n) = ψ1(m,n) +
2πfδ(n − 1)τ̂s,1, which is same as the modified CSI phase
of first packet. The actual and modified CSI phase responses
for two packets obtained from CSI traces collected from our
experiments are presented in Fig. 5(a) and Fig. 5(b) re-
spectively. The modified CSI phase response, obtained by
applying Algorithm 1 for each packet, does not change even
if the STO changes, and hence is free from the variations of
STO. So, the ToF parameters estimated across packets using
modified CSI are free from variance of changing STO. We
note that the Algorithm 1 is similar to the data sanitization
process in PinLoc [15] and is an extension of the process
to multiple antennas. We also note that although we have
discussed changes in ToF due to SFO alone, the variance
in ToF due to random packet detection delay [40] can also
eliminated by following Algorithm 1.

3.2.3 Estimating Direct Path Likelihoods
Now we have a collection of AoA and ToF estimates whose

variance across packets can be estimated. To assign like-
lihood estimates for each of the estimated paths to be the

direct path between the target and AP, we plot AoA and ToF
estimates from multiple measurements in a two- dimensional
(one each for AoA and ToF) space and apply a clustering al-
gorithm. The intuition is that AoA and ToF estimates from
the same path but different packets will be clustered together,
but the diameter of each cluster (i.e., the tightness of each
cluster) will be a function of the variations in AoA and ToF
values for the corresponding path across packets.

Specifically, we use well-known Gaussian Mean cluster-
ing algorithm with five clusters to identify the clusters of the
estimated parameters. The number of clusters is chosen as
five because typically we see at best five significant paths in
an indoor environment [1, 8, 24]. The mean of a cluster is
used as an estimate for the actual ToF and AoA of the partic-
ular propagation path. The variance in the ToF of a path is
estimated by calculating the population variance of the ToF
estimates belonging to the cluster of the particular path, and
similarly for AoA. Then the likelihood for kth path to be the
direct path is calculated as

likelihoodk = exp(wCC̄k−wθσ̄θk −wτ σ̄τk −wsτ̄k), (8)

where likelihoodk is the likelihood that the kth path is the
direct path, C̄k is the number of points in the cluster corre-
sponding to that path, σ̄θk and σ̄τk are the population vari-
ances of the estimated AoA and ToF respectively for points
belonging to that cluster, and τ̄k is the mean of ToF for points
in that cluster. The weighting factorswC ,wθ,wτ , andws are
constants to account for different scales of the correspond-
ing terms (for example, ToF values are on the order of ns and
number of points in the cluster is on the order of 10).

The likelihood estimate incorporates a few other terms
apart from the tightness of the cluster. First is the term corre-
sponding to the number of points in the cluster. The insight
here is that if a cluster corresponds to a physical propaga-
tion path, then it is likely to have more measurements than
a cluster which is spurious and doesn’t correspond to an un-
derlying physical path. The intuition for the term related to
the mean ToF is that the direct path will have the smallest
ToF, so a higher ToF term should signify a lower likelihood.

SpotFi declares the path with the highest likelihood metric
as the direct path, and stores the AoA and the likelihood
value of the corresponding path.

3.3 Localizing the Target
Next, SpotFi attempts to localize the target by combin-

ing the direct path AoA estimates and their likelihood values
corresponding to different APs. Further, the server also has
the access to the RSSI measurements for the packets from
the target to each AP that “heard" the target. The server as-
sumes a standard widely used path loss model to relate RSSI
to distance as described in prior work [3, 71]. The server
then fuses all this information to localize the target.

To localize, SpotFi finds the location that best explains the
AoA and RSSI measurements at different APs. We do not
use the ToF information to form distance estimates because
it still does not capture the true ToF of the signal from the tar-
get to the AP. The procedure described in Sec. 3.2.2 to scrub
any distortion in the ToF estimates only helps in removing
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(b) Modified CSI phase (c) AoA-ToF parameters for different packets

Figure 5: (a)Unwrapped CSI phase response for two packets. The added phase due to STO is the same for the CSI observed at any of the
antennas. (b) Modified CSI phase response obtained after applying Algorithm 1 is same for the two packets in spite of different STOs. (c)
ToF-AoA clusters obtained using modified CSI for 170 packets. ToF and AoA values are normalized so that their values lie in the same
range. Both path1 and path4 have similar ToF but the reflected path, path4, has a much higher variance in its estimates than the direct path,
path1. The estimates of direct path form a tight cluster compared to other paths. SpotFi’s direct path likelihood metric rightly chose path1 as
direct path as it considers both smallest ToF and tightness of cluster.

the effect of varying STOs and normalize the ToF values
across packets to a constant STO, but does not give us the
true ToF. To do so, one would need very precise (nanosecond
level) synchronization across nodes or across APs. Recent
work [40] has shown the feasibility of such synchronization
but such mechanisms are not available in current, deployed
WiFi infrastructure. Hence, SpotFi uses its ToF estimates
only for likelihood estimates but not for determining range.

Specifically, for localization, SpotFi finds the location that
minimizes the deviation between AoA and RSSI values that
would have been observed at each AP if the target was actu-
ally at that location and the corresponding values that were
actually observed at each AP. We measure the deviation us-
ing standard least squares cost. Mathematically, we find the
location that minimizes the following objective function:

R∑
i=1

li[(p̄i − pi)2 + (θ̄i − θi)2], (9)

where there are R APs, ith AP has direct path AoA θi and
observed RSSI pi, and θ̄i and p̄i are the AoA and RSSI re-
spectively that would have been observed at the ith AP if the
target was transmitting from that location. The weighting
factor li is the likelihood value of most likely candidate for
the direct path from ith AP.

The deviations for different APs have been weighted dif-
ferently to realize the logical intuition that the APs which
have a lower likelihood metric in their estimate of the direct
path AoA should be penalized and those with higher likeli-
hood metric should be rewarded. We cannot directly apply
convex optimization techniques to find the location that min-
imizes the objective 9 because the RSSI and AoA observed
at an AP are non-convex in terms of the location coordinates.
Hence SpotFi applies a well known heuristic known as se-
quential convex optimization [72] to convexify the objective
function piece-wise and obtains the target location that min-
imizes the objective function 9.

Thus SpotFi accurately determines the location of the tar-
get by effectively filtering the reflection paths through like-

lihood values and then efficiently calculating the target lo-
cation that best explains the RSSI and estimated direct path
AoA observed at the APs. We summarize the complete lo-
calization algorithm in Algorithm 2.

Algorithm 2: SpotFi’s localization algorithm
Data: CSI and RSSI measurements from target to each

of the R APs, and the locations of the APs
Result: Location of the target

1 for each AP i ∈ 1, 2, . . . , R do
2 for each packet p ∈ 1, 2, . . . , 10 do
3 Remove linear fit in CSI phase response by

applying Algorithm 1 ;
4 Obtain smoothed CSI matrix X as in Fig. 4 ;
5 Construct matrix EN whose columns are

eigenvectors of XXH corresponding to
eigenvalues that are smaller than a threshold;

6 Evaluate MUSIC spectrum
PMU (θ, τ) = 1

(~aH(θ,τ)ENEH
N~a(θ,τ))

;

7 Obtain AoA and ToF of multipath components
as peaks of MUSIC spectrum ;

8 end
9 Cluster AoA and ToF from multiple packets ;

10 Declare AoA of cluster with highest likelihood
value (use Eq. 8) as direct path AoA θi ;

11 end
12 Minimize objective 9 with optimization variables as

target’s location and path loss model parameters

4. EXPERIMENTAL EVALUATION

4.1 Implementation
We implemented our system using off-the-shelf Intel 5300

WiFi NICs. We employed Linux CSI tool [68] to obtain the
PHY layer CSI information for each packet. The WiFi NICs
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Figure 6: Experiment testbed showing the target locations (blue
circles) and the AP locations (red squares). The testbed is designed
to evaluate SpotFi in wide variety of deployment scenarios. The
region in dashed red box, covering 16 m × 10 m area, represents
typical indoor office environment. SpotFi has also been tested when
both the APs and the targets are along a corridor. SpotFi has been
further stress-tested in locations where the localization targets have
atmost two APs in LoS.

operate in 5 GHz WiFi spectrum because of firmware lim-
itations [8]. Note that operating in 5 GHz frequencies is
more challenging compared to 2.4 GHz because of higher
attenuation. The firmware provides CSI at only 30 of the
sub-carriers although the data is sent on 116 subcarriers for
40 MHz bandwidth. Also, the CSI information is quantized,
i.e., each of real and imaginary parts of CSI for every sub-
carrier is represented using 8 bits.

The system consists of multiple computers equipped with
WiFi cards which act as access points. One machine which
is mobile on a cart acts as the target whose location is of in-
terest. The locations of the access points with respect to a
map are measured accurately by using laser range finder and
architectural drawings of the building where we deployed
SpotFi. The APs operate in monitor mode and obtain the
CSI for the packets transmitted by the target. The APs export
the CSI, along with a timestamp at which CSI is obtained, to
a central server. The server processes and combines the CSI
information from multiple access points to determine the lo-
cation of the target. SpotFi’s localization algorithm, that is
described in Algorithm 2 and is executed on the server, is
implemented using MATLAB in our current prototype and
has not been optimized for speed.
Deployments tested: We deployed SpotFi in different loca-
tions of our building. Specifically, we deployed SpotFi over
almost the entire floor of our building. The building has a
variety of spaces, from students labs to a cafeteria to long
corridors with smaller offices. Locations of WiFi APs and
55 target locations are depicted in Fig. 6.
Compared Approaches: We compare SpotFi with practical
implementation of ArrayTrack based on CSI from a WiFi
NIC with three antennas and no further hardware modifi-
cations [8]. Throughout this section, ArrayTrack refers to

the localization application described in Phaser [8], which
is mathematically similar to the method applied in Array-
Track [1]. We chose ArrayTrack with three antennas as the
comparison point because among recently proposed designs
it is the best performing system which can be deployed with-
out any hardware or firmware modifications at the APs. Note
that we do not use the ArrayTrack implementation described
in an earlier paper [1] with WARP boards because it needed
6–8 antennas to be effective. We also do not use a recent pro-
posal [8] from the same group to stitch together two WiFi
NICs with additional hardware to create a five antenna AP
since once again it requires hardware modifications. Our
implementation faithfully reproduces the ArrayTrack algo-
rithm and design but is constrained to use three antennas and
the CSI measurements from commodity APs.

Systems such as Ubicarse [2] do not require infrastructure
hardware/firmware modifications, but they require that the
target has gyroscopes and at least two antennas, and more-
over that it should be held by a human and he/she moves it
in a particular circular way. SpotFi’s requirements do not al-
low for any such assumptions, localization has to work even
if the target has a simple, single antenna commodity WiFi
chip and nothing else and is on a completely static target
(e.g., locating a phone lost somewhere in a home).

4.2 Overview of Evaluation
We tested a series of hypotheses to understand how well

SpotFi performs when deployed in typical indoor environ-
ments. Following is a summary of the main results from
evaluation.

• SpotFi achieved median localization error of 0.4 m in de-
ployments similar to those used for testing ArrayTrack
and Ubicarse.
• Even in challenging conditions where the target has only

two APs with a robust direct path, SpotFi still performs
well with median localization error of 1.6 m compared
to ArrayTrack whose median error is 3.5 m. Similarly
in scenarios such as corridors where even though there
may be multiple APs the target is not surrounded in all
directions by them, SpotFi provides a median error of 1.1
m compared to 4 m for ArrayTrack.
• SpotFi’s accuracy stems from two key components. First

is its super-resolution AoA estimation algorithm whose
median error is less than 5 degrees in LoS conditions and
less than 10 degrees in NLoS conditions. The MUSIC al-
gorithm used in practical implementation of ArrayTrack
only achieves an estimation error of 7.4 and 15.2 degrees
respectively for the same scenarios. Second, SpotFi’s
likelihood estimation algorithm ensures that among the
available estimates, incorrect estimates for the direct path
are likely not picked, and even if they are, they will be
weighted with low confidence and have a lesser impact
on the location estimate.

4.3 SpotFi’s Accuracy
In this evaluation, we test the localization accuracy achieved

by SpotFi in different deployment scenarios.
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Figure 7: Plots CDFs of SpotFi’s localization error for different deployments in the testbed in Fig. 6 and compares with the localization
error achieved by practical implementation of ArrayTrack with three antennas for the same data.

4.3.1 Indoor Office Deployments
Localization accuracy is dependent on the multipath envi-

ronment, the material used in walls, the presence of metallic
objects, the density of WiFi AP deployment and many other
factors. Hence we start first by replicating the deployment
scenario used in evaluating state-of-the-art systems such as
ArrayTrack and Ubicarse. Specifically both these systems
used an indoor office environment with an area of roughly
15 × 10 sq.m and deployed five-six APs to span the area.
Target locations are also located within the same area. The
environment is very multipath rich and typically has 4–5 APs
with a sufficiently strong direct path. Both ArrayTrack (see
Sec. 6 and 4 in [1]) and Ubicarse (see Sec. 8 in [2]) use
a very similar environment. Our testbed with APs and loca-
tions for this experiment are highlighted by a dashed red box
in Fig. 6.
Method: All experiments are conducted as follows. First,
all APs are set in monitor mode on a channel with 40 MHz
bandwidth in the 5GHz band. For every target location shown
in the testbed, we place our Intel NUC based WiFi client
and configure it to be on the same channel as the APs. First
we measure the ground truth location of the client using the
lasers as described above. The target then transmits 500
packets with 100 ms interval and six of our AP nodes sur-
rounding the client that can hear the client log the packets
as well as the CSI and MAC address associated with that
packet. The measured CSI and MAC address traces are sent
with timestamps to the central server. The server chops up
the CSI traces into groups of forty consecutive CSI mea-
surements at a time on which the localization algorithm 2
is applied. The same data is also used for ArrayTrack as
described above. We repeat this experiment for each target
location in the testbed. Fig. 7(a) shows the CDF of localiza-
tion errors for SpotFi and ArrayTrack.
Analysis: We observe from Fig. 7(a), SpotFi achieves a me-
dian localization error of 0.4 m compared to 1.8 m for Ar-
rayTrack. The 80th percentile tail errors for SpotFi and Ar-
rayTrack are 1.8 m and 4 m respectively. To put these num-
bers in context, ArrayTrack with six-eight antennas and Ubi-
carse/LTEye with rotating antennas achieve between 0.3–0.4
m median accuracy; hence SpotFi achieves the same accu-

racy as these prior systems while using commodity WiFi
cards on both the AP and the client and nothing else. To
the best of our knowledge, no other localization system that
works only with information that is already exposed by com-
modity WiFi cards and with no war-driving can achieve even
sub-meter accuracy.

4.3.2 High NLoS Deployments
Next, we evaluate SpotFi under stressful conditions. First

we test SpotFi under conditions where only two or less num-
ber of APs have a decent direct path from the client due to
blockages. To do this, we use 23 locations in our testbed
where this condition holds based on our ground truth esti-
mates. Much prior work [1, 8, 2] does not study such stress-
ful scenarios, so it is hard to comment on how they might
perform. However we do compare our system against our
ArrayTrack implementation. We repeat the same localiza-
tion experiments as before and plot the CDF of localization
errors in Fig. 7(b).

As expected, localization error is worse in these scenar-
ios. SpotFi achieves a median accuracy of 1.6 m whereas
ArrayTrack degrades to 3.5 m. The reason is that the direct
path AoA estimation error is higher in such scenarios rela-
tive to the indoor office deployment scenario. But SpotFi’s
super-resolution algorithm still works much better compared
to the AoA estimation algorithm which ArrayTrack uses,
and the accuracy is still acceptable for many applications.
Also, SpotFi’s unique direct path likelihood estimates evalu-
ated at each AP result in less weight for measurements from
APs which do not have strong direct path to the target thus
reducing the inaccuracy in location estimation.

4.3.3 Corridors
Another feature of indoor spaces such as offices and malls

are corridors, and these are precisely the areas where people
desire localization capabilities for indoor navigation. Corri-
dors are challenging, especially narrow ones, because it is
unlikely that a particular target location is surrounded by
APs such that the target’s AoA can be measured from di-
verse vantage points. Typically APs are deployed just along
the side wall of the corridor and many of the AoA measure-
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ments at each AP will be very close to each other due to
geometry of the corridors. Also, even if the client has more
APs in LoS, they are generally farther away than when com-
pared to indoor office deployments. This has an important
implication on localization accuracy since it leads to scenar-
ios where many APs have inaccurate and correlated AoA
measurements and it becomes harder for some AP to correct
the errors of other APs.

We evaluate SpotFi under such a scenario in our testbed.
Specifically we look at the target locations in the two cor-
ridors that we see in Fig. 6. There are 25 points overall
in such locations. We repeat the localization experiments
as described above and compute the localization error for
both SpotFi and ArrayTrack. Again as seen from Fig. 7(c),
the median localization error for SpotFi is around a meter,
whereas ArrayTrack’s error worsens to 4 m.

Improved localization accuracy of SpotFi is due to two
factors. First, SpotFi resolves multipath more accurately
with the same number of antennas compared to schemes
which use only the relative phase information between the
antennas. Second, SpotFi’s novel localization algorithm which
accurately identifies the direct path between the target and
the APs among the estimated multipath components. We
now test individually the significance of these factors next.

4.4 Deep Dive into SpotFi

4.4.1 AoA Estimation Accuracy
Method: The goal here is to show that the super-resolution
algorithm of SpotFi provides a much more accurate set of
AoA estimates for all propagation paths. However, we have
ground truth AoA for only the direct path between the target
and the AP. So, we measure the accuracy of the AoA estima-
tion algorithm by measuring the difference between ground
truth direct path AoA and estimated AoA that is closest to
this ground truth. This way, we remove the effect of direct
path selection process which identifies the direct path AoA,
which we will quantify in the next section separately.

For this evaluation, we classify the data into Line of Sight
(LoS) scenarios and Non-Line of Sight (NLoS) scenarios.
For AoA estimation error purposes, we define NLoS sce-
nario for an AP as a scenario where there is a strong block-
ing object like a wall obstructing the line joining the target
and the AP and hence the direct path is significantly weaker
or non-existent compared to reflected paths. All other sce-
narios are declared as LoS. We refer to the AoA estimation
algorithm used in localization systems like Phaser [8], and
described in Sec. 3.1.1, as MUSIC-AoA algorithm.
Analysis: Fig. 8(a) plots the CDFs for AoA estimation er-
ror for all the APs. In LoS cases, SpotFi achieves median
AoA accuracy of 2.4 degrees better than that achieved by
MUSIC-AoA. In NLoS scenarios the accuracy is even bet-
ter, achieving an improvement of nearly 5.2 degrees in di-
rect path AoA error. The reason is that in LoS scenarios
even MUSIC-AoA works reasonably well since the direct
path is likely the strongest of all paths. But in NLoS scenar-
ios many reflected paths will have the same or higher power
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Figure 8: Reconstructing the effect of different components of
SpotFi in improving the localization accuracy: (a) plots the CDFs
of SpotFi’s AoA estimation error with respect to the MUSIC-AoA
scheme which only models the phase shifts across antennas to es-
timate AoA. The comparison is made individually for cases where
there is a strong obstruction like wall between the target and AP
(NLoS) and in cases where there is none (LoS). (b) plots the CDFs
of SpotFi’s error in selecting the AoA corresponding to direct path
AoA and compares with schemes used in CUPID [23] and LT-
Eye [6] systems.

compared to the direct path, and standard AoA-based MU-
SIC with three antennas does not have sufficient resolution
to estimate the direct path’s AoA accurately.

4.4.2 Direct Path AoA Selection Accuracy
Method: Next, we compute the efficacy of SpotFi’s like-
lihood based technique to pick out the direct path from a
bunch of candidate paths as described in section 3.2. To
demonstrate the merit of SpotFi’s direct path selection al-
gorithm, we compare it with three other AoA selection algo-
rithms used in prior work [6, 23]:
• LTEye [6] declares the direct path as the one with small-

est ToF. However note that, unlike LTEye, we do not have
access to the actual ToF between the target and the AP
as they are not time synchronized. However, path with
smallest estimated ToF also corresponds to the path with
smallest actual ToF because lack of synchronization just
adds a constant delay to ToFs of all the paths.
• CUPID [23] declares the AoA with the largest value in

the MUSIC spectrum as the the direct path AoA.
• Oracle selection algorithm which chooses the AoA clos-

est to the ground truth direct path AoA.
Analysis: We define AoA selection error as the difference
between the ground truth direct path AoA and AoA selected
by the direct path selection algorithm described in Sec. 3.2.
Note that all of these schemes are working with the AoA
estimates from SpotFi’s super-resolution algorithm, not the
standard AoA-based MUSIC. Fig. 8(b) plots the CDF of the
error for all the four schemes considering all the deploy-
ment scenarios. SpotFi’s technique is the best scheme rel-
ative to the Oracle, whereas the smallest delay based AoA
selection has 80th percentile error 10 degrees worse than
SpotFi. Picking the AoA with largest value in MUSIC spec-
trum, or equivalently direction with largest energy, performs
the worst. This is because in a typical indoor environment
with objects and humans blocking direct path to the AP, the
direct signal can get heavily attenuated compared to signals
traveling along reflected paths.
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Figure 9: (a) plots CDFs of SpotFi’s localization error as we vary
the number of APs that can hear the target. This represents de-
ployment scenarios with different densities of WiFi APs. (b) plots
the CDFs of SpotFi’s localization error as we vary the number of
packets used for localizing the target.

4.4.3 Impact of WiFi Deployment Densities
Method: We emulate different WiFi AP densities by localiz-
ing using CSI from only random subsets of the APs. We vary
the number of APs that can hear the target between three and
five to demonstrate the performance of SpotFi with increas-
ing deployment density.
Analysis: Fig. 9(a) plots the localization error for target lo-
cations in indoor office deployment. We observe that accu-
racy improves with increasing number of APs as expected.
As we have more APs, it becomes easier to find at least a few
APs that have decent direct path signal from the target and
thus eliminate spurious estimates. We observe that SpotFi
achieves median localization error of 0.6 m, 0.8 m, and 1.9
m with five, four and three APs respectively. So, even with
four APs, SpotFi outperforms practical implementation of
ArrayTrack with six APs. We observed a big improvement
when we increased the number of APs from three to four,
and much smaller improvement as we added more APs. The
reason for diminishing improvements in accuracy with in-
creasing number of APs is that once we have two strong
direct path measurements, additional direct path measure-
ments, if accurate, will only help in improving location ac-
curacy incrementally, and if inaccurate, will effectively not
be considered due to SpotFi’s robust localization algorithm.

4.4.4 Impact of Number of Packets
Method: Using multiple packets improves SpotFi’s accu-
racy in identifying the direct path among the estimated paths
as described in section 3.2. Ideally, we want a localization
system to perform well using small number of packets so
that localization delay is minimized and the system works
robustly even when the target can only send a small amount
of traffic. We vary the number of packets SpotFi uses for
localization from 6 packets to 40 packets and plot the effect
on the localization accuracy for the target locations in indoor
office deployment in Fig. 9(b).
Analysis: We observe from Fig. 9(b) that even with 10 pack-
ets, SpotFi accurately identifies the direct path and achieves
a median localization accuracy of 0.5 m compared to 0.4 m
obtained using 40 packets. So, SpotFi works well with just

10 CSI measurements; in other words, SpotFi requires the
target to transmit just 10 packets for accurate localization.

5. CONCLUSION
SpotFi provides accurate indoor localization services us-

ing commercial off-the-shelf WiFi NICs with three antennas
and with an accuracy comparable to state-of-the-art localiza-
tion systems with large antenna arrays which are not suitable
for wide deployments. SpotFi’s techniques for AoA estima-
tion and direct path filtering however are more widely ap-
plicable for other problems such as device free localization,
gesture recognition and motion tracing. Exploring them is
future work.
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