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ABSTRACT

Recognition of human activities and gestures using pre-
existing WiFi signals has been shown to be feasible in
recent studies. Given the pervasiveness of WiFi sig-
nals, this emerging sort of sensing poses a serious pri-
vacy threat. This paper is the first to counter the threat of
unwanted or even malicious communication based sens-
ing: it proposes a blackbox sensor obfuscation technique
PhyCloak which distorts only the physical information
in the communication signal that leaks privacy. The data
in the communication signal is preserved and, in fact,
the throughput of the link is increased with careful de-
sign. Moreover, the design allows coupling of the Phy-
Cloak module with legitimate sensors, so that their sens-
ing is preserved, while that of illegitimate sensors is ob-
fuscated. The effectiveness of the design is validated via
a prototype implementation on an SDR platform.

1 Introduction

A new form of threat has emerged recently that leaks pri-
vate information about the whereabouts and activities of
physical targets merely by observing the ongoing wire-
less communications in the scene. Broadly speaking, as
a wireless signal gets reflected off of people and other
objects in the scene, information about them is leaked
to eavesdroppers by computational analysis of the signal
distortions. Increasingly, researchers have been demon-
strating proofs of concept where not only people pres-
ence but also fine-grain information about their locations
and even breathing, lip movement or keystrokes is leaked
[18, 28, 30, 1, 24]—all from observing communication
signals that are widely prevalent in our homes. While the
upside is that legitimate users can detect these physical
“signatures” simply using existing signals, a burglar can
also detect that there are no people in a house, a passerby
can decipher key presses without leaving a trace [8], and
a neighbor can snoop on the activities in our homes [30].

There is little doubt that several of these privacy exploits
will in due course be realized robustly and commoditized
for broad use. And, given the pervasive nature of wire-
less communications, the privacy implications of such at-
tacks will undoubtedly be of major social importance.

It is thus timely and important to develop suitable
counter-measures for this type of privacy leakage. We
take the first step at tackling this problem by proposing a
solution to address a single-antenna eavesdropping sen-
sor. At first glance, it might appear that an obvious way
to prevent or deter the privacy leakage is to simply jam
the signals [21, 11]. However, jamming is an overkill for
this problem, as the protection we wish lies in physical
and not in the logical (data) layer. Jamming distorts the
information of both layers, therefore it hurts the chan-
nel capacity of the network. In contrast to jamming, our
approach is to distort the physical information that is en-
vironmentally superimposed on the signal as opposed to
the data itself. To make clear the distinction between
these two forms of signal distortion, we refer to the latter
as signal obfuscation.

To avoid any modification of existing receivers, we
need to build an obfuscator (Ox) that works indepen-
dently from a receiver (Rx) and can yet deter privacy
leakage against a single-antenna eavesdropper. At the
same time, Ox should not hurt the ongoing reception at
the intended receiver. In addition, given the diversity of
the design of RF based sensors and invisibility of eaves-
droppers, it is not reasonable to assume Ox that uses
a specific obfuscation approach against a specific Eve.
Thus, our goal is to build a black-box solution which
distorts only the privacy sensitive information while not
affecting the logical information. We design Ox by an-
swering the two questions below:

1. How to distort physical information regardless of
the RF-sensing mechanism? To answer this question,
let us first examine what kind of physical information
is contained in RF signals. Assume the received sig-
nal at a reflector is s(t), then the received signal r(t)

1



686 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

reflected by the reflector can be expressed as follow:
r(t) = a× s(t)× e j2π( fc+Δ f )(t+Δt), where a is the ampli-
tude gain, fc is the carrier frequency, Δ f is the Doppler
shift caused by a reflector that moves at a constant speed
relative to the receiver, and Δt is the delay due to trans-
mission over the path. Here, we can see that the reflec-
tor modifies the reflected copies by controlling three or-
thogonal components: amplitude gain a, delay Δt and
Doppler shift Δ f . All the features exploited by single-
antenna RF based sensors are created by these three de-
grees of freedom (DoFs). Hence, if an Ox distorts the
three orthogonal bases respectively, any features that re-
veal physical information are distorted too.

2. How to preserve logical information (data com-
munication)? As the previous observation suggests, Ox
needs to change the 3 degrees of freedom (DoFs) of a sig-
nal in order to deter eavesdropping of physically sensed
features. Note that in a wireless environment, signals tra-
verse through many paths and experience Doppler shifts:
These effects are similar to dynamic multipath reflec-
tions. Thus, Ox can be a relay node that introduces dy-
namically changing multipath components of the com-
munication signal. In other words, Ox receives the in-
coming communication signal, manipulates the signals
and forwards them back to the environment. To a legiti-
mate receiver, this forwarded signal will simply look like
a multipath component of the signal from the legitimate
transmitter (Tx). Commercial off-the-shelf (COTS) Rx
is capable of tolerating and even exploiting multipath re-
flections to decode data. Thus, a carefully designed Ox
can distort sensing and still preserve communication.

Challenges: PhyCloak works as a full-duplex
amplify-and-forward (A&F) relay at logic layer, and an
Ox at physical layer by distorting the 3 DoFs. While the
solution may appear at first blush to be a simple instance
of full-duplex A&F forwarder [6, 3], there are key chal-
lenges that arise from this design that need to be resolved.
1. Online self-channel estimation with an ongoing ex-
ternal transmission: Online self-channel estimation is
needed for an Ox as it works in an environment where
the channel is varying as a result of target movement,
gestures and activities. When we combine the Ox mod-
ule with a legitimate sensor the self-channel variation be-
comes more significant due to the moving object close to
the sensor. Therefore an Ox has to transmit training sym-
bols to acquire channel estimation every channel coher-
ence interval (∼100ms). But a complication arises that
the training needs to co-exist with ongoing data transmis-
sion. A straightforward way to overcome this problem is
to adopt medium access control (MAC), however, that
would introduce contention and hurt throughput of legit-
imate data transmission given the frequent self-channel
updates.
2. Effectiveness of obfuscating physical information: No

work has been done in validating a full-duplex A&F for-
warder’s capability of controlling physical information
contained in the forwarded copy. In addition, the effec-
tiveness of superposing an Ox’s distorted signal and a
target’s reflected signal in obfuscating an eavesdropping
sensor has yet to be shown.

Contributions: We propose PhyCloak to protect pri-
vacy information from unwanted or even malicious sens-
ing with no modification to existing wireless infrastruc-
tures. In this work, we make the following contributions:

1. To our knowledge, we are the first to address the
potential threats due to the recent development of
communication-based sensing.

2. We propose PhyCloak, the first full-duplex forwarder-
based solution that hides physical information superim-
posed by the channel via adding interference in a 3-
dimensional orthogonal basis so that illegitimate sensing
is disabled and meanwhile data transmission is not af-
fected (and even improved). We go further and add the
capability to spoof human gestures to further confuse il-
legitimate sensors.

3. We propose an alternative online self-channel estima-
tion scheme that is contention-free and operates in the
presence of an ongoing transmission. By doing so we
also allow for legitimate sensing by integrating the sen-
sor with our obfuscator.

4. We build a prototype PhyCloak on PXIe-1082, an
SDR platform. Experimental results (Section 5.3) on a
state-of-the-art sensor show that PhyCloak successfully
obfuscates illegitimate sensing, enables legitimate sens-
ing and improves overall throughput of data transmis-
sion. Gesture spoofing to the same type of sensor is also
proved to be feasible.

2 Related Work

RF sensing from communications has been of great inter-
est in the last few years, as it allows data signals to be
exploited to infer remarkable details about the physical
world. Although the primary purpose of the communi-
cation signals is to carry logical information, concepts
of radar analysis [14, 5, 23, 16, 15, 25, 27, 22, 19, 26,
10, 13, 17] are adapted to extract these details. There
are however several challenges in the adaptation since
communication signal is defined particularly for carry-
ing data. For example, radar systems control their res-
olution by specially encoding their transmitting signals,
say in the form of Frequency-Modulated Carrier Waves
(FMCW) for spectrum sweeping, but when sensing from
RF communication a similar sort of transmitter coopera-
tion typically cannot be leveraged. As another example,
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Existing Work Feature Basis Device Sensing Task
WiSEE: Pu et al. [24] Doppler Shift USRP-N210 Gesture recognition

Wi-Vi: Adib and Katabi [1] Phase USRP-N210 Gesture based communication,tracking
E-eyes: Wang et al. [30] RSSI, CSI COTS 802.11n devices Activity classification
Gonzalez-Ruiz et al. [12] RSSI IEEE 802.11g wireless card Obstacle mapping

Wang et al. [29] Phase, CSI COTS 802.11ac devices Activity classification
WiKey: Ali et al. [2] CSI COTS 802.11n devices Key recognition
RSA: Zhu et al. [32] RSS HXI Gigalink 6451 60GHz radios Object imaging

Table 1: Summary of recent SISO sensing systems

sophisticated radar signal processing techniques, say cre-
ating a synthetic aperture using a large number of anten-
nas, cannot be implemented directly in communication
systems due to resource limitations.

Many techniques have been developed and demon-
strated to address the above mentioned challenges for di-
verse sensing tasks including motion tracking [1], activ-
ity/gesture recognition [24, 30, 29], and obstacle/object
mapping/imaging [32, 12], and even minor motions like
keystrokes recognition [8, 2] and lip reading [28]. One
idea is to use one antenna to emulate an antenna array in
the presence of human movement. By tracking the an-
gle of the reflected signal from the target (human) [1],
the system is able to track the motion of the target as
a form of inverse synthetic aperture radar (ISAR). Ubi-
carse [18] exploits the idea of circular synthetic aper-
ture radar (SAR), in which the system rotates a single
antenna so as to emulate a circular antenna array. As
SAR does not require the target to be in motion, un-
like the case of ISAR, Ubicarse proposes a method of
using a handheld device to create circular antenna ar-
ray to perform localization. To overcome any impreci-
sion in the circle created by the rotation, it refines the
formulation of SAR by using the relative trajectory be-
tween two receive antennas. Some other techniques char-
acterize signatures corresponding to the channel varia-
tion caused by human activities. E-eyes [30] shows that
temporal RSS and CSI features, which are available in
COTS devices, can be used in activity classification, al-
beit this requires relatively heavy training. WiSee [24]
proposes a method to extract Doppler shifts from OFDM
symbols by applying a large FFT over repeated symbols,
and gesture recognition is then shown to be possible from
the extracted Doppler shifts. Another interesting tech-
nique used by communication based sensors maps ob-
stacles/objects [12, 20]. The Tx-Rx pairs detect the pres-
ence of obstacles via wireless measurements and thereby
co-operatively draw the indoor obstacle map.

As our protection system is single-input-single-output
(SISO), we focus on breaking any SISO illegitimate
sensing system in this work. Although SISO sensing
systems use diverse techniques exemplified in Table 1,
they all leverage a subset of the 3 DoFs discussed in Sec-
tion 1. Since PhyCloak provides a generic tool to obfus-
cate in all these three dimensions, it can protect against
any SISO sensor.

In contrast, for a multi-antenna sensing system,
there is an additional DoF—the relative placement of
antennas—that yields other types of information like
angle of arrival (AoA) and time difference of arrival
(TDoA). Nevertheless, by rotating PhyCloak’s transmit
antenna or extending our framework to a multi-antenna
protection system, we would have the freedom to also
obfuscate the fourth dimension provided by a multi-
antenna sensing system.

3 Overview

3.1 Threat Model
Assume there is an adversary who is interested in infer-
ring physical information from a SISO wireless commu-
nication channel. The adversary may be active or pas-
sive, i.e., it can transmit itself or just exploit ongoing
wireless transmissions. In both cases, we assume that
the adversary uses a single-antenna receiver to sniff the
wireless transmission. In general, the design and imple-
mentation of adversarial sensing is unknown to the pro-
tection system designer.

Note that some types of sensing require a training
phase to tune recognition patterns with respect to the en-
vironment of interest. To protect against stronger adver-
saries, we assume that the adversary is well trained for
the environment at hand. The details of this training,
whether it occurs concurrently with the training of a le-
gitimate sensor or is based on some historical knowledge,
are outside the scope of our interest here.

Alice Ox Sx

Eve

Bob

unprotected sensing
protect Carol’s 
sensing

CarolIIOx

Figure 1: 4 single-input-single-output (SISO) nodes exist
in the system: Alice, Bob, Carol and Eve: Alice and Bob
perform data transmission and reception; Eve performs
illegitimate sensing by exploiting Alice’s transmission;
Carol also performs sensing, but her obfuscator module
forwards the received signal in a way that distorts physi-
cal information but preserves logical information
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3.2 System and Goals
Our protection system comprises 4 SISO nodes as shown
in Figure 1: Alice (data transmitter), Bob (data receiver),
Carol (legitimate sensor) and Eve (illegitimate sensor).
Both Alice and Bob can be controlled by Eve, thus Carol
does not assume that Alice and Bob are honest.
Goals: 3 tasks co-exist in the network: data transmis-
sion between Alice and Bob, illegitimate sensing at Eve
and legitimate sensing at Carol. By adding Ox to Carol
with no cooperation from any of the other nodes, the pro-
tection system must satisfy the following three goals:

1. Obfuscate Eve’s sensing.
2. Preserve Carol’s sensing.
3. Not degrade the throughput of the link between Alice

and Bob, nor introduce extra computation at Alice and
Bob; i.e., Alice’s and Bob’s behaviors stay unaltered
when Ox operates.

3.3 Three Degrees of Freedom
Usually a forwarder relays the signal directly, but in the
context of an Ox a forwarder can do far more. In fact, a
forwarder can be viewed as a special type of reflector; in
theory, whatever change a natural reflector can induce on
a signal, a forwarder can induce likewise. We begin by
examining how a reflector changes the signal.

Letting the received signal at a reflector be s(t), the
received signal r(t) that it reflects can be expressed as

r(t) = a× s(t)× e j2π( fc+Δ f )(t+Δt) (1)

where a is the amplitude gain due to reflection and propa-
gation, fc is the carrier frequency, Δ f is the Doppler shift
caused by a reflector that moves at a constant speed rela-
tive to the receiver, and Δt is the delay due to propagation
over the path. We see that a reflector modifies signals by
changing three components: a, Δ f and Δt. Namely re-
flectors enjoy three DoFs when modifying signals.

We examine what kind of signal processing is needed
at the Ox to effect similar changes in the signal being
forwarded. Rewrite Equation 1 into the following form:

r(t) = a× s(t)× e j2πΔ f t × e j2π( fc+Δ f )Δt × e j2π fct (2)

Amplitude gain a: It is clear that if a forwarder re-
ceives s(t) from the source, then by amplifying the sam-
ples with different levels, a can be easily changed.
Doppler shift Δ f : To emulate a Doppler shift of
Δ f , a forwarder can rotate the nth received sample by
2πnΔ f Δt, where Δt = sampling interval.
Delay Δt: A delay of Δt can be introduced by simply
delaying the to-be-forwarded signals in either the digital
domain or the analog domain at the forwarder. A prob-
lem with delaying signals in the digital domain is that
digital delays are discrete and do not match the speed of
human movement. For example, if an ADC works with

a sampling rate 100MHz, then the minimum delay that
can be introduced in digital domain is 10ns, which cor-
responds to a distance of 3m. Controlling analog delay
while feasible, however requires effort in modifying ex-
isting SDR platforms. Our solution then is to rotate the
to-be-forwarded samples by a fixed phase 2π( fc+Δ f )Δt
in the digital domain, which matches the expected delay
of Δt. In our NI PXIe platform, this calculation can be
made in two clock cycles ( 1

ADC sampling rate ).
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(a) By multiplying the nth
to-be-forwarded sample with
2πnΔ f Δt, and changing Δ f
from 20Hz to -20Hz, the
Doppler shift profile at the re-
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forwarded signals with a cer-
tain phase which changes by
36◦ every 30ms at the for-
warder, the phase of the signal
changes ∼ 36◦ every 30ms

Figure 2: Expected Doppler shift and phases are gener-
ated at a forwarder

Figure 2(a) depicts the Doppler shift profile of the re-
ceived signals that are sent by a forwarder who keeps
changing the to-be-forwarded samples’ Doppler shift
from 20Hz to -20Hz according to the above algorithm.
Similarly, from Figure 2(b) we can see that by multiply-
ing the to-be-forwarded samples with a phase ϕ which
increases 0.2π every 30ms at the forwarder, the phase
of the received samples changes by ∼ 0.2π every 30ms.
These results show that a forwarder can predictably con-
trol Doppler shift and phase.

4 Design

Figure 3 shows a simplified block diagram of our sys-
tem PhyCloak. The physical distortion is introduced af-
ter self-interference cancellation and then the distorted
signal is then forwarded to the transmit antenna.

An
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tio

n

Tx
Rx

Conventional fullduplex design Physical distortion

Clean signals used for legitimate sensing

Figure 3: High-level block diagram of PhyCloak
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4.1 Online Maintenance of Self-Channel
Estimates

As mentioned earlier, PhyCloak is a full-duplex system
that needs to cancel self-interference to operate. How-
ever, human movement close to the full-duplex radio
changes the self channel and affects cancellation. Fig-
ure 4 illustrates this phenomenon as it depicts the power
of the residual noise after cancellation over time when
a human target walks around the fulld-uplex radio. The
full-duplex radio re-estimates the channel every 1s. We
see that if we set the residual threshold to -95dBm, which
is 5 dB above the maximum digital cancellation capabil-
ity (noise = -100dBm), the channel estimation works fine
only for a short duration (∼100ms) after each channel es-
timation update. This observation implies that frequent
self-channel re-tuning (∼100ms) is required.

0 1 2

−95

−85

−75
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 (d

B
m

)

105ms171ms

Power induced by training
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Figure 4: With human movement going on, the self-
interference cancellatoin works fine only for a short du-
ration (∼100ms)

A complication, however, arises when an update is at-
tempted during an ongoing external transmission: the ex-
ternal transmission may distort self-channel estimation
while the transmission that helps with self-channel esti-
mation may interfere with external data reception. There
are two straightforward solutions to this problem: 1)
using MAC; 2) exploiting the silent period defined by
wireless protocols, like short inter-frame space (SIFS) in
WiFi. The former hurts the throughput of data transmis-
sion and moreover interrupted external transmission de-
grades coupling legitimate sensors with the Ox. And in
addition, both of the solutions require a big effort to de-
sign careful adaptation to various wireless communica-
tion protocols.

We therefore propose a self-channel estimation algo-
rithm for PhyCloak that addresses this complication. It
uses two main elements: 1) oversampling and differen-
tial to get rid of any ongoing external transmission, and
2) a special training sequence that yields minimum inter-
ference to external transmissions.

4.1.1 Self-channel estimation with and without ex-
ternal interference

Before we describe our self-channel estimation algo-
rithm, let us first see the impact of training with and
without external interference. Assume A= {a−m,a−m+1,
. . . ,am} is the transmitted training sequence, B= {b0,b1,
. . . ,bm} is the received sample sequence, and H =
{h0,h1, . . . ,hm} is the channel coefficient vector in time
domain with m+1 taps. Therefore, we have

⎧⎪⎪⎨
⎪⎪⎩

b0
b1
. . .
bm

⎫⎪⎪⎬
⎪⎪⎭

=

⎧⎪⎪⎨
⎪⎪⎩

a0 . . . a−m
a1 . . . a−m+1
. . . . . . . . .
am . . . a0

⎫⎪⎪⎬
⎪⎪⎭

×

⎧⎪⎪⎨
⎪⎪⎩

h0
h1
. . .
hm

⎫⎪⎪⎬
⎪⎪⎭

(3)

In the presence of external transmission, B becomes:
⎧⎪⎪⎨
⎪⎪⎩

b0
b1
. . .
bm

⎫⎪⎪⎬
⎪⎪⎭

=

⎧⎪⎪⎨
⎪⎪⎩

a0 . . . a−m
a1 . . . a−m+1
. . . . . . . . .
am . . . a0

⎫⎪⎪⎬
⎪⎪⎭

×

⎧⎪⎪⎨
⎪⎪⎩

h0
h1
. . .
hm

⎫⎪⎪⎬
⎪⎪⎭
+

⎧⎪⎪⎨
⎪⎪⎩

s0 . . . s−m
s1 . . . s−m+1
. . . . . . . . .
sm . . . s0

⎫⎪⎪⎬
⎪⎪⎭

×

⎧⎪⎪⎨
⎪⎪⎩

h
�
0

h
�
1

. . .

h
�
m

⎫⎪⎪⎬
⎪⎪⎭

(4)

where S = {s−m,s−m+1, . . . ,si, . . . ,sm} is the external
transmitted sample sequence, and H

�
= {h

�
0,h

�
1, . . . ,h

�
m}

is the channel coefficient vector which corresponds to the
channel between the transmit antenna of the external de-
vice and the receive antenna of the Ox.

4.1.2 Oversampling and differential to get rid of ex-
ternal interference

To overcome the external interference in Equation 4,
which is unknown to PhyCloak, we exploit oversam-
pling. Say PhyCloak samples at a rate 2m times higher
than the sampling rate of the external transmitter, it fol-
lows that approximately s−m = . . .= sm. So
⎧⎪⎪⎨
⎪⎪⎩

s0 . . . s−m
s1 . . . s−m+1
. . . . . . . . .
sm . . . s0

⎫⎪⎪⎬
⎪⎪⎭

×

⎧⎪⎪⎨
⎪⎪⎩

h
�
0

h
�
1

. . .

h
�
m

⎫⎪⎪⎬
⎪⎪⎭

=

⎧⎪⎪⎨
⎪⎪⎩

s0 × (h
�
0 + . . .+h

�
m)

s0 × (h
�
0 + . . .+h

�
m)

. . .

s0 × (h
�
0 + . . .+h

�
m)

⎫
⎪⎪⎬
⎪⎪⎭
(5)

Therefore, by differential we have
⎧⎪⎪⎨
⎪⎪⎩

b1 −b0
b2 −b1
. . .

bm −bm−1

⎫⎪⎪⎬
⎪⎪⎭

=

⎧
⎪⎪⎨
⎪⎪⎩

a1 −a0 . . . a−m+1 −a−m
a2 −a1 . . . a−m+2 −a−m+1
. . . . . . . . .

am −am−1 . . . a1 −a0

⎫⎪⎪⎬
⎪⎪⎭

×

⎧
⎪⎪⎨
⎪⎪⎩

h0
h1
. . .
hm

⎫⎪⎪⎬
⎪⎪⎭

(6)

It may appear that we have already been able to get rid
of external interference, however, A is an m× (m+ 1)
matrix, so the rank of A is less than m+ 1. This means
that we can get only a unique solution for at most m

5



690 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

of the m + 1 unknowns contained in H, where H =
{h0,h1, . . . ,hm}T and

A =

⎧⎪⎪⎨
⎪⎪⎩

a1 −a0 . . . a−m+1 −a−m
a2 −a1 . . . a−m+2 −a−m+1
. . . . . . . . .

am −am−1 . . . a1 −a0

⎫⎪⎪⎬
⎪⎪⎭

(7)

4.1.3 A special training sequence

To ensure that Equation 6 has a unique solution for
{h0,h1, . . . ,hm−1}T , we leverage a special training se-
quence, namely a square wave, which is shown in Fig-
ure 5(a). As shown in Figure 5(b), the fundamental fre-
quency of the square wave is the square wave frequency,
and its odd harmonics are decreasing in size. To be more
specific, for a square wave over a period consisting of
N samples with B MHz sample rate, the frequency com-
ponents are at 1 f , 3 f ,. . ., (2i+ 1) f , . . . with decreasing
amplitude, where f = B

N MHz.
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(b) Training sequence in fre-
quency domain

Figure 5: Training sequence
The rationale for using this training sequence is two-

fold: First, the square wave has a unique solution to
{h0,h1, . . . , hm−1}T as long as a−m = a−m+1 = . . . =
a0 = a1 + c = . . . = am + c, where c is a non-zero con-
stant. And second, the spikes it produces in the frequency
domain are sparse. For example, with B = 100MHz
and N = 16, the space between neighboring spikes is
12.5MHz. Such sparse spikes are tolerable in wireless
systems. For example, in a 20MHz WiFi band using
OFDM, as claimed by Flashback [9], existing WiFi sys-
tems have a relatively large SNR margin. And because
the interference of any such spike is constrained to at
most one subcarrier, the loss of a few bits does not sig-
nificantly affect decoding, as successful packet transmis-
sions always respect SNR margins.

4.1.4 The training procedure

Training is performed as follows: PhyCloak samples at
a rate n times higher than that of external transmission.
A training sequence which is the concatenation of con-
secutive 1s and -1s is sent during training. The received
samples corresponding to the transition points (1 to -1
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Figure 6: Channel coefficients measured at different
sampling rates

or vice versa) are used to calculate the channel coeffi-
cients. More specifically, the received sample b0 which
corresponds to the point right before the transition oc-
curs is equal to h0 + · · ·+hm, and the next received sam-
ple b1 is equal to −h0 + · · ·+hm. Thus, we can compute
h0 = (b0 − b1)/2. The rest of the channel coefficients
are calculated in a similar way. One concern is whether
the desired oversampling rate can be supported. Take
802.11g as an instance, which has the smallest band-
width (20MHz) among WiFi standards. If training were
to require a 20X oversampling rate, we would need a
platform that supports 400MHz sampling rate, which is
very expensive. We figure out that, however, a 4X over-
sampling rate is sufficient to eliminate the effect of an
external transmission of 802.11g. The reason is that the
delay spread of non-ultra-wideband transmission in an
indoor setting does not expand more than 3 taps.

To understand that, we need to know the fact that
power delay profile is decided by two factors: multi-
path propagation and inter-symbol-interference (ISI). Let
us study them one by one. First is the multipath prop-
agation. For a 20MHz radio, one tap corresponds to
3×108m/s

20MHz = 15m. So the fourth tap corresponds to a 60-
meter reflective path. The power conveyed by the 60-
meter reflective path is significantly smaller than that
conveyed by the short (∼10cm) line-of-sight path be-
tween the co-located transmitting and receiving anten-
nas. Second, due to ISI each received sample is affected
by not only the intended transmitted symbol, but also its
two neighboring symbols. Therefore the delay spread
expands across 3 taps. Figure 6 plots the channel esti-
mation of the self channel under different sampling rates
in the same environment. We see that in all cases, the
main energy is always spread across 3 taps. So as long
as we can accurately estimate the three dominant taps in
non-ultra-wideband, we can achieve good cancellation
performance. That implies we need the external inter-
ference to be stable during the reception of at least four
consecutive samples at the transition point of the training
sequence so as to get the three main taps by differential.
Namely 4X oversampling is required.

Note that 4X oversampling does not guarantee the re-
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Figure 7: The granularity of the spectral decreases as the Doppler shifts change from 1s to 0.05s
ception of the desired 4 samples happen in the duration
of one external interference sample. But we can leverage
the interference reduction provided by averaging over
multiple transition points, and partially accurate estima-
tion of the channel taps, and still achieve good perfor-
mance. Even lower oversampling rate (2X/3X) also per-
forms well according to the experiment (see Section 5.2).

4.2 Obfuscation of Patterns in 3 DoFs
To motivate how we obfuscate patterns in the three DoFs,
let us first examine the result of superposing a signal via
one path with an obfuscated version via another path.

Assume we have two paths: one with {a1,Δ f1,Δt1},
and the other via the Ox with {a2,Δ f2,Δt2}. The super-
position of the signals through these two paths is given
by the following formula:

r̂(t) =a1 × s(t)× e j2π( fc+Δ f1)(t+Δt1)

+a2 × s(t)× e j2π( fc+Δ f2)(t+Δt2)
(8)

Now, is superposing an obfuscated signal sufficient for
hiding the original triplet {a1,Δ f1,Δt1}? The answer is
partially yes: The amplitudes and delays are instanta-
neously covered in the superposed signal, but the respec-
tive Doppler shifts remain distinguishable after superpo-
sition. So, a and Δt can be hidden instantly by randomly
changing amplitude and delay of the signal by the Ox.1
To see why Doppler shifts are distinct even after super-
position, consider the frequency response of the received
signals:

R( f ) =
∫

r̂(t)e−2π j f t dt

=
∫
(a1 × s(t)× e j2π( fc+Δ f1)(t+Δt1))e− j2π f t dt

+
∫
(a2 × s(t)× e j2π( fc+Δ f2)(t+Δt2))e− j2π f t dt

=a1e j2π( fc+Δ f1)Δt1 S( f − f c−Δ f1)

+a2e j2π( fc+Δ f2)Δt2 S( f − f c−Δ f2)

(9)

where S( f ) is the frequency response of s(t). In an
OFDM system, we can see two frequency components
that are shifted by Δ f1 and Δ f2 around the subcarrier f .

1In theory for a high sampling rate receiver, delays might be separa-
ble in the brief prefix that arrives before the obsfuscated signal arrives,
but how much information a sensor can accurately extract from the
brief clean prefix is questionable.

4.2.1 Doppler shift obfuscation

As amplitude and delay can be instantly changed by su-
perposition with an obfuscated signal, patterns that rely
only on amplitude and delay can be hidden by Ox, by
randomly changing them on a per packet basis. At first
glance, it may appear that this scheme cannot be made to
work for patterns that rely on Doppler shift, but it turns
out the scheme can be made to work for Doppler shift,
assuming the moments of change are carefully chosen.

The rationale for choosing the moments of change is
based on the fact that a t-second observation in the time
domain leads to 1/t Hz granularity in the frequency do-
main. To choose the appropriate Δ f at 1/t Hz granu-
larity, there is an implicit requirement that the Δ f needs
to last for at least t seconds. Therefore, if the forwarder
changes its Δ f every t seconds while the other copy’s
Δ f does not change, an observer would still only see 1/t
Hz granularity. Since human movements typically result
in -20Hz to 20Hz Doppler shifts in the 2.4GHz band,
a Doppler shift of the forwarded copy that changes ev-
ery 0.1s creates sufficient confusion at an observer. Fig-
ure 7 shows that when the Doppler shifts of the transmit-
ted signals are varied from every 1s to every 0.05s, the
spectral seen by an observer with 1s observation interval
have progressively finer granularity, to the point where a
time-frequency pattern gets hidden.

4.2.2 Effect of superposing with randomly changing
obfuscated signals

The basic idea of PhyCloak then is to superpose sig-
nals from the target with naturally changing {a,Δ f ,Δφ}
with the obfuscated signals with randomly changing
{a,Δ f ,Δφ}. More specifically, as analyzed above, Phy-
Cloak changes the value of the triple every 0.1s. We illus-
trate the blackbox effect of obfuscation experimentally
using two state-of-the-art sensors, WiSee [24] and Wi-
Vi [1], which we implemented. WiSee performs gesture
recognition by extracting Doppler shifts from OFDM
symbols, whereas Wi-Vi uses ISAR to track the angle
of human motion with respect to the receive antenna of
the sensor.

For the case of obfuscating Doppler shift patterns, Fig-
ure 8 shows the superposition of a signal with the syn-
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Figure 8: The pattern that a WiSee sensor sees in Figures 2(a) is hidden by an obfuscated signal where Doppler shift
changes every 0.1 second
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Figure 9: The constant angle of human motion (starting from 9th second) that a Wi-Vi style sensor sees in (a) is hidden
by an obfuscated signal where phase changes randomly every 0.1 second

thetically generated Doppler shift pattern described in
Figure 2(a) and an obfuscated copy of the pattern where
Doppler shift changes randomly every 0.1s. We see that
pattern of Figure 2(a) is covered by the “noise map” cre-
ated by the randomly changing copy. As the strength
ratio of the former relative to the latter, which we define
as signal to obfuscation ratio (SOR), decreases from 0dB
to -9dB, the visibility of the artificial pattern decreases.

For the case of obfuscating phase-based patterns, we
synthetically emulated a human moving towards the re-
ceive antenna of our Wi-Vi style sensor at a constant an-
gle, as shown in Figure 9(a), and then superposed the
signal with a randomly obfuscated copy where phase
changes every 0.1s. Figure 9 shows that as SOR de-
creases from 0dB to -6dB, the pattern shown in Fig-
ure 9(a) becomes progressively invisible at the Wi-Vi
style sensor.

It is worth noting that power passively reflected by hu-
man is much smaller compared to that actively forwarded
by an Ox that has its own power supply. Therefore 0dB
SOR can be readily achieved. To illustrate this point, we
can build a simplified power model of our system. In
our system Ox’s goal is to minimize SOR at Eve with no
knowledge of the locations of any of the other parties,
so its best strategy is to work at the maximum transmis-
sion power. If we assume free-space attenuation, then
SOR ∼ a

A (
d3d4
d1d2

)2, where a and A are the reflection gains
at target and Ox respectively, and d1,d2,d3 and d4 are
the distances as shown in Figure 10(a). Figure 10(b)
plots the simulation result of the CDF of SOR when we
randomly place Alice, Eve, Ox and human target in a
10m×5m room, with reflection gains being set to -3dB

Eve

Ox

Alice

(a) Placement of all the involved parties

−60 −40 −20 0 20 400
0.2
0.4
0.6
0.8

1

SOR (dB)

C
D
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(b) SOR distribution
Figure 10: A simplified power model

and 10dB respectively. We see that in around 88% cases,
SOR is smaller than 0dB.

4.2.3 Security analysis

We believe that our system is robust against a single an-
tenna eavesdropper given certain SOR because of the
fact: little information can be extracted from two random
signals which occupy similar bands as long as the power
of the undesired signal is higher than that of the desired
one. In our case, the desired signal is the natural channel
variation induced by target, while the undesired one is
the artificial channel variation induced by PhyCloak. It is
worth noting that as human motion is slow, natural chan-
nel variation has a small bandwidth, which is comparable
to that of the artificial channel variation that changes ev-
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Figure 11: The signal (real channel state information)
and the noise (artificial channel state information) have
similar bandwidths

ery 0.1s.
To illustrate the above point, we compare the RSSI

variations induced by human and PhyCloak. Fig-
ure 11(a) and 11(b) plot the RSSI changes caused by
human movement and PhyCloak respectively, and Fig-
ure 11(c) and 11(d) plot the corresponding power spec-
trums. From the figure, we see that the occupied band-
widths of the two channel state traces are similar.
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Figure 12: Spoofing

4.3 Spoofing
According to the above discussion, our design succeeds
in obfuscating any RF-based single-antenna sensors by
creating false negative results. But an Ox can achieve
more than that: it can create false positives also by spoof-
ing changes in the 3 DoFs that are similar to the changes
created by a target. By splitting the to-be-forwarded sam-
ples into multiple streams, applying different instantia-
tions of the triple {a,Δ f ,Δt} to them, and forwarding the
combination of the processed streams as one stream, an
Ox can emulate multiple reflectors corresponding to dif-
ferent parts of the target (say a human body). But unlike
the case of false negatives, the effectiveness of creating
false positives at a sensor grows as the Ox knows more

about the features and algorithms used by the sensor. For
example, if an Ox knows a sensor uses the WiSee algo-
rithm [24], it can create a Doppler shift profile accord-
ingly without making an effort to model accurate human
movement. Figure 12 depicts the extracted Doppler pro-
file of a human gesture (pull) and that spoofed by an Ox.
WiSee segments a Doppler profile into positive and nega-
tive parts according to its power distribution and encodes
them into 1s and -1s respectively. Since both of the pro-
files contain positive Doppler shifts of negligible power,
they will be encoded as -1s and mapped to the same tar-
get by a WiSee sensor.

4.4 PhyCloak

By obfuscating using random physical distortion, an Ox
is able to confuse Eve, and by online maintenance of self-
channel estimates, Ox is able to output interference-free
signals to Carol for legitimate sensing. However, one
critical requirement is still not met: preserving the com-
munication throughput in the presence of Ox.

Although PhyCloak works as a relay at logical layer
which can potentially improve the throughput [31], it is
not clear that obfuscation would not hurt the decoding
process. We find that, however, as long as the change
of the triplet {a,Δ f ,Δφ} does not happen in the mid-
dle of packet transmission, obfuscation is safe with re-
spect to data communication. The reason for this is that
from the perspective of a data receiver, the Ox effec-
tively just adds variability to the channel. Since data
receivers usually perform channel estimation at the be-
ginning of the received packet, as long as the channel is
stable during the reception of the packet, decoding can
be successful. We, therefore, refine the design of Phy-
Cloak as follows: PhyCloak switches between two trans-
mitting modes: training and forwarding. In the training
phase, the PhyCloak sends the above mentioned training
sequence and computes its self-channel estimate accord-
ing to Section 4.1.4; in the forwarding phase, PhyCloak
then performs self-interference cancellation, applies the
physical distortion {a,Δ f ,Δφ} to the interference-free
signal and forwards the distorted signal via the transmit
antenna. The PhyCloak randomly chooses an instance of
{a,Δ f ,Δφ} in the predefined pool and updates the cur-
rent value when the channel is free and the last update
happened more than 0.1s ago. In this way, PhyCloak
avoids interfering with the transmission. And in theory,
there is still a chance that due to the delay caused by
free-channel detection, PhyCloak changes the channel
after several samples of a packet has been transmitted,
but that chance is quite low. Even if it happens, because
PhyCloak only affects a few samples at the beginning,
the packet might still be decodable.

9
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5 Validation

We now describe a prototype of PhyCloak that we have
built, and our experiments to validate its performance.

5.1 Experimental Setup
Our prototype is based on PXIe 1082 SDR platform. We
built the transmitter, receiver, eavesdropping sensor and
legitimate sensor on the same platform, which all fol-
low the 802.11g standard, i.e., working at 2.4GHz with
a 20MHz band. PhyCloak works at the same center fre-
quency but with a 50MHz sampling rate, about 3 times
the rate of an external data transmission, which gives it
a reasonable margin to perform self-channel estimation
with an ongoing external transmission (see Section 5.2).

PhyCloak contains two RF chains, one for transmit-
ting and one for receiving. Each of the RF chains con-
tains an NI-5791 (FlexRIO RF transceiver equipped with
one antenna) for transmitting or receiving and an NI
PXIe-7965R (a Xilinx Virtex-5 FPGA) for digital pro-
cessing. Analog cancellation is implemented according
to our earlier design [7, 4]. The self-channel estimation,
digital cancellation and physical layer distortion are im-
plemented on the FPGA. The distortion processing intro-
duces a latency of about 100ns. Our experiments were
conducted in a 5m×7m lab.

5.2 Self-Interference Cancellation
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Figure 13: Self-interference cancellation performance

We begin with the performance of the digital cancel-
lation of our self-channel estimation algorithm. As dis-
cussed in Section 4.1.4, Ox tolerates external interfer-

ence during self-channel estimation using oversampling.
So, we first examine the oversampling rate needed to
achieve reasonably accurate self-channel estimates in the
presence of external transmission. We let a full-duplex
transceiver operate at 50MHz with a 10-tap filter for self-
interference (digital) cancellation. Self-channel estima-
tion is obtained by averaging over 128 training rounds,
which altogether takes about 20μs.

Figure 13(a) plots the self-interference cancellation
performance of our square-wave based training. In the
figure, as we fixed the sampling rate of the full-duplex
radio (50MHz), different oversampling rates correspond
to different external transmission rates with the received
power of the external transmissions being the same as
that of self-interference signal at Ox’s receive antenna2.
1X oversampling rate corresponds to the case when the
training and data communication use the same sampling
rate, in which case square-wave based training and tradi-
tional pilot based training would achieve similar perfor-
mance. We see that the performance of self-interference
cancellation of square-wave based training gets better as
the oversampling rate increases from 1 to 4, but it stops
increasing after 4, and achieves similar performance as
that in the case when there is no external transmission
going on (indicated by the red bar). It shows that Ox can
reliably estimate and cancel self-interference even in the
presence of strong external transmission when the over-
sampling parameter is 4X as supported by our observa-
tion in Section 4.1. In addition, 2X and 3X oversam-
pling rates also produce high cancellation as they ben-
efit from two factors: 1) accurate estimation of part of
the channel taps, and 2) averaging over multiple tran-
sition points. Takeaway: Our oversampling technique
makes self-interference cancellation reliable at modest
oversampling rates even in the presence of strong ongo-
ing external transmission.

The analysis above considers external interference
sent at a fixed power. To enable legitimate sensing, self-
interference cancellation performance needs to be sta-
ble even when the received power from external trans-
mission is varying. For example, an unstable self-
interference canceler can render an amplitude-based sen-
sor useless since the (varying) residual self-interference
will affect the received signal amplitude. Figure 13(b)
plots the full-duplex radio’s cancellation performance
with 3X oversampling rate over time during which the re-
ceived power from the external transmitter fluctuates. We
see that the self-interference cancellation performance of
square-wave based training is insensitive to the variation
of external interference. Takeaway: Our oversampling
technique results in a stable cancellation performance at

2Note that this is a very strong external interference and we choose
this setting to show oversampling strategy’s performance even under
strong external interference.
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modest oversampling rates even when the received signal
from external transmitter is varying.

5.3 Obfuscation Performance
5.3.1 Obfuscation vs. SOR in 3 DoFs

We first measure the different levels of obfuscation cre-
ated by PhyCloak by comparing the correlation of the
amplitude, phase and Doppler shift with and without the
presence of PhyCloak. The transmitter is programmed to
send continuous OFDM symbols with QPSK modulation
with varying amplitude and phase. An artificial Doppler
shift of 10Hz is also added at the transmitter. PhyCloak
performs obfuscation by randomly changing the ampli-
tude, phase and Doppler shifts every 0.1s.
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Figure 14: Obfuscation level of each of the three features
decreases as SOR (original signal over obfuscation sig-
nal) increases

Figure 14 depicts the correlation between the pairs of
amplitude, phase, and Doppler shifts at different SORs:
Again, SOR is the signal strength ratio of original signal
over obfuscation signal (see Section 4.2.2). We see that
as SOR increases, the correlation of each pair of the three
features increases, i.e., the obfuscation degree decreases.
Amplitude sequence pair and phase sequence pair see
lower correlation than Doppler shift pair when SOR is
high. This is because amplitude and phase are instan-
taneous quantities, while Doppler is a statistical quan-
tity that is derived from multiple instantaneous samples.
But, even for Doppler shift, a 10dB SOR is low enough
to hide the patterns contained in signals reflected by tar-
gets. It’s worth noting that in practice, as PhyCloak is in-
dependently powered while the target only passively re-
flects signals, the desired SOR to successfully obfuscate
is readily achieved. Takeaway: PhyCloak effectively ob-
fuscates sensing even at a relatively high SOR.

As different sensors differ in their robustness to noise,
PhyCloak’s effectiveness is sensor dependent. While we
are unaware of any research on the robustness of the
communication-based sensors, we may infer from Fig-
ures 8, 9 and 14 that less obfuscation power is needed to
confuse a phase or amplitude based sensor as compared

to a Doppler shift based sensor. Therefore, we choose
to validate the PhyCloak’s capability of confusing ille-
gitimate sensing and preserving legitimate sensing in the
context of WiSee, which is the state-of-the-art Doppler
shift based sensor.

5.3.2 Degradation of illegitimate sensing

We built a Doppler-based sensor in our platform per the
method proposed by WiSee [24]. The method consists of
two parts: 1) extraction of Doppler shifts from repeated
OFDM symbols by applying a large size FFT; and 2)
using sequence matching to classify gestures. We note
since we could not get to the original WiSee code and
some of the details are missing, we implement WiSee
with a few adaptations. For example, we randomly map
the sequence to the predefined classes with uniform dis-
tribution in case the sequence does not match any of
the predefined sequence. Our implementation shows a
classification accuracy of 93% across 5 gestures in none-
line-of-sight (NLoS) setting with the human target 5 feet
away from the WiSee sensor, while WiSee reports 94%
across 9 gestures. While there is this small discrepancy
in replication, the core algorithm is the same and our
main goal is to study obfuscation performance.

We examine the performance of an illegitimate WiSee
sensor with obfuscation from a PhyCloak. We conduct
two sets of experiments to validate PhyCloak’s coverage
range and its overall effectiveness under different chan-
nel conditions respectively.

Obfuscation coverage: First, we randomly choose
10 pairs of locations to place Tx and Eve, and then place
Ox in locations such that the distance dT E between Tx
and Eve is equal to the distance dTO between Tx and
Ox as shown in Figure 15(a), but the distance dEO be-
tween Eve and Ox varies from 0.5dT E to 2dT E . The
channels between any two of the three parties are line-
of-sight (LoS).3 A human target performs five gestures
drag, push, pull, circle and dodge close to Eve. With no
obfuscation, Eve’s classification accuracy in this place-
ment is about 90% across the five gestures.

For simplicity, we normalize dEO by dTO (dT E ), and
plot the classification accuracy against the normalized
dEO in Figure 15(b). As we know, the received obfusca-
tion power at Eve from Ox is a function of dTO and dOE ,
therefore as dEO increases the power ratio of obfuscation
over human reflection decreases. From the figure we see
that classification accuracy of Eve increases as dEO in-
creases as expected. Note that since we have 5 classes,

3WiSEE sensors have a slightly worse performance in LoS (≈ 90%)
than NLoS (≈ 93%) as strong direct power from the transmitter hides
the information provided by target’s reflection. For the next two experi-
ments, we choose LoS instead of NLoS because it makes the placement
easier to make sure dEO is the only variable which would change the
power ratio of the obfuscation and human reflection.
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a classification accuracy of 0.2 means a random guess.
PhyCloak can obfuscate Eve near perfectly when dEO is
smaller than 0.8, and it totally fails when it is larger than
1.7. Takeaway: The closer Ox is to Eve, the better the
achieved obfuscation.
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(b) Classification accuracy of Eve in
the presence of PhyCloak increases
as dEO increases

Figure 15: Eve’s classification accuracy vs dEO
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(b) Classification accuracy of Eve in
the presence of PhyCloak increases
as dTO increases

Figure 16: Eve’s classification accuracy vs dTO

In the second experiment, we make dT E = dOE , and
vary dTO as shown in Figure 16(a). And again in Fig-
ure 16(b), we see that as dTO increases, Eve’s classifica-
tion accuracy increases. Takeaway: the closer Ox is to
Tx, the better obfuscation is achieved.

In other experiments we vary either the human-Eve or
human-Ox distance while keeping the power received by
Ox and human from Tx stay constant. As these distances
respectively reduced, the effectiveness of the sensing and
obfuscation respectively increased.
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Figure 17: Eve’s classification accuracy under different
Tx-Ox and Ox-Eve channel conditions

Obfuscation effectiveness under different channel
conditions: In addition to the coverage range in LoS set-
ting, we also measure Eve’s classification accuracy when

channels between the transmitter and obfuscator and the
channel between the obfuscator and Eve are under dif-
ferent LoS and NLoS combinations. Intuitively, when
both channels are NLoS, Eve receives the least power
forwarded by the obfuscator, and therefore, she achieves
the best performance. We care about these channel con-
ditions because in some scenarios the transmitter is under
control of the adversary, and therefore the adversary may
enjoy the freedom to create “good” channels to mitigate
PhyCloak’s obfuscation.

In the experiment, we make the channel between Tx
and Eve NLoS, and the channel between Tx and the hu-
man and that between human and Eve LOS, so as to
make sure Eve sees high classification accuracy when
no obfuscation is going on. The channel between Tx
and Ox and the channel between Ox and Eve have four
possible channel condition combinations. A human tar-
get performs 500 times of the 5 predefined gestures near
Eve in each of the four combinations. Figure 17(a) is
an example of how we create a channel combination of
Los/Los in the lab, where the first LoS refers to the chan-
nel condition of the channel between Tx and Ox, while
the second refers to that of the channel between Ox and
Eve. NLoS channels are created by placing obstacles in
the direct propagation paths.

Figure 17(b) depicts Eve’s classification accuracy
without obfuscator and with obfuscator in four channel
combinations. We can see that as expected, Eve sees
the highest classification accuracy (65%) in NLoS/NLoS
setting among the four channel conditions, but it is still
smaller than the case when no obfuscation is happening
(93%). Eve sees similar performance in Los/NLoS and
NLoS/LoS scenarios as power forwarded by obfuscator
in both the settings is similar. Takeaway: although NLoS
channel degrades the received power at Eve from Ox, the
degradation is not dramatic since there is rich multipath
propagation in indoor environment.

drag push pull circle dodge

drag spoof 0.907 0.030 0.01 0.03 0.02

push spoof 0.01 0.9375 0 0.02 0.03

pull spoof 0 0 0.957 0.03 0.01

circle spoof 0.03 0.052 0.03 0.833 0.05

dodge spoof 0.03 0.05 0.04 0.08 0.80

Figure 18: False positives with a spoofing Ox

5.3.3 Feasibility of spoofing

We built a spoofing obfuscator by reverse engineering
the five predefined sequences corresponding to the five
gesture types that our WiSee sensor recognizes. The ba-
sic difference between this spoofing obfuscator and Phy-
Cloak is that the former changes Doppler shift according
to the five well-defined gestures, while the latter changes
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Doppler shift randomly. The result is shown in Figure 18.
Takeaway: the spoofing obfuscator fools a WiSee sensor
with a high success rate, averaging 88.69% across the 5
gestures, in the absence of human gesturing.
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Figure 19: Square wave based training preserves legiti-
mate sensing

5.3.4 Preservation of legitimate sensing

Next, we examine PhyCloak’s capability of supporting
coupled legitimate sensing. That is, we evaluate whether
our self-channel estimation method produces consistent
and sufficient self-interference cancellation in a chang-
ing environment to preserve legitimate sensing. Fig-
ure 19 depicts the legitimate sensor’s classification ac-
curacy for three different sensing modes: 1) obfuscation
free sensing; 2) legitimate WiSee sensing coupled with
a PhyCloak module that uses the proposed square-waved
based self-channel estimation; 3) legitimate WiSee sens-
ing coupled with a PhyCloak module that uses traditional
pilot based self-channel estimation. We also vary the
channel between Tx and the legitimate sensor by plac-
ing and removing obstacles. From the figure we see
that the WiSee sensor equipped with PhyCloak module
that uses square-wave based training achieves compara-
ble performance as obfuscation-free sensing in both LoS
and NLoS, while the WiSee sensor equipped with Phy-
Cloak module that uses traditional training fails dramat-
ically. This is because not enough self-interference can-
cellation is achieved in the presence of external transmis-
sions using extant self-channel estimation techniques.
Takeaway: Square wave based training provides suffi-
cient self-interference cancellation to preserve legitimate
sensing with external transmission going on.

5.4 Throughput Performance

As discussed in Section 4.4, PhyCloak would not hurt
the average throughput by virtue of being a relay as long
as it avoids parameter changes in the middle of packet
transmissions. And, its online training would introduce
some interference albeit of small measure. To validate
that the net throughput benefit that a data receiver ob-
tains from PhyCloak is not affected but even improved,
we measured the throughput performance of a data link
with and without PhyCloak in our testbed. We randomly
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Figure 20: Throughput

picked 20 location triples to place a data transmitter, a
data receiver, and PhyCloak. The data transmitter trans-
mits back-to-back packets continuously, and we can thus
see the throughput performance in the worst case where
PhyCloak performs parameter updates in the middle of
some packets. Figure 20 plots the CDF of the throughput
with and without the PhyCloak. Takeaway: The average
throughput increases with the help of PhyCloak.

6 Conclusion

We have shown that the threat created by recent devel-
opments in communication based sensing can be coun-
tered in a black-box fashion. PhyCloak obfuscates multi-
dimensional physical signatures of human targets. We
have empirically validated this for certain state-of-the-
art sensors. We have also shown that when white box de-
tails of particular sensors can be obtained, PhyCloak can
be refined to spoof those sensors. Notably, the method-
ology not only preserves but in fact improves the link
throughput of the ongoing data transmissions, and sup-
ports co-existence of legitimate sensors while obfuscat-
ing illegitimate sensors.

Looking beyond the scope of the present work, we
find that the methodology is readily generalized to pro-
tect against sensing of other types of physical targets
and their properties, and allows for a network of Phy-
Cloak devices to collaboratively cover a large region, the
details of which are topics for future studies. In addi-
tion, when we extend our current single-antenna Phy-
Cloak to a multiple-antenna system, how to fully exploit
the space diversity provided by the multiple antennas is
worth studying.
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