
Automating Cross-Layer Diagnosis
of Enterprise Wireless Networks

Yu-Chung Cheng, Mikhail Afanasyev, Patrick Verkaik, Péter Benkö†,
Jennifer Chiang, Alex C. Snoeren, Stefan Savage, and Geoffrey M. Voelker

Department of Computer Science and Engineering
University of California, San Diego

†Traffic Analysis and Network Performance Laboratory (TrafficLab)
Ericsson Research, Budapest, Hungary

ABSTRACT
Modern enterprise networks are of sufficient complexity that even
simple faults can be difficult to diagnose — let alone transient out-
ages or service degradations. Nowhere is this problem more appar-
ent than in the 802.11-based wireless access networks now ubiq-
uitous in the enterprise. In addition to the myriad complexities of
the wired network, wireless networks face the additional challenges
of shared spectrum, user mobility and authentication management.
Not surprisingly, few organizations have the expertise, data or tools
to decompose the underlying problems and interactions responsible
for transient outages or performance degradations. In thispaper, we
present a set of modeling techniques for automatically characteriz-
ing the source of such problems. In particular, we focus on data
transfer delays unique to 802.11 networks — media access dynam-
ics and mobility management latency. Through a combinationof
measurement, inference and modeling we reconstruct sources of
delay — from the physical layer to the transport layer — as well as
the interactions among them. We demonstrate our approach using
comprehensive traces of wireless activity in the UCSD Computer
Science building.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Modeling techniques

General Terms
Modeling, Measurement, Performance

Keywords
Wireless networks, 802.11, modeling, measurement

1. INTRODUCTION
“Is your wireless working?” The familiarity of this refrainunder-

scores both our increasing dependence on ubiquitous Internet con-
nectivity and the practical challenges in delivering on this promise.
The combination of unlicensed spectrum and cheap 802.11 silicon
have driven a massive deployment of wireless access capability —
which started in the home and was soon followed by the workplace.
Today over two-thirds of U.S. corporations provide WiFi-based un-
tethered Internet connectivity [8]. However, there is a significant

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’07, August 27–31, 2007, Kyoto, Japan.
Copyright 2007 ACM 978-1-59593-713-1/07/0008 ...$5.00.

difference between installing a single wireless access point (AP) in
an isolated home — effectively a simple range extender for a wired
Ethernet interface — and wireless deployment throughout anenter-
prise. The latter may comprise hundreds of distinct APs, carefully
sited and configured in accordance with a radio-frequency (RF) site
survey and, ideally, managed to minimize contention, maximize
throughput, and provide the illusion of seamless coverage.More-
over, this intricate machinery is not managed by the 802.11 proto-
col family itself — which, in all fairness, was never designed for
the level of success it has experienced. Instead, the burdenfalls
to the network administrator who must manage the interactions be-
tween the RF domain, link-layer variability, dynamic addressing
and authorization, VLAN setup, as well as the myriad complexities
of the wired network itself.

Given this complexity, it is not surprising that evensimple faults
can be difficult to diagnose — let alone transient outages or service
degradations. Thus, when a network manager is asked, “Why was
the network flaky ten minutes ago?” the answer is inevitably,“I’m
not sure. It looks fine now.” While this problem is not unique to
802.11-based networks, these environments introduce further intri-
cacies that are unique and qualitatively harder to diagnose.

Among these issues, wireless networks interact via shared spec-
trum in ways that may not be observable directly (contentionand
interference) and yet can produce significant end-to-end delays or
packet losses. Further complicating such analysis, the 802.11 stan-
dards allow considerable “latitude” in the media access protocol
and consequently vendors have produced a wide range of “interpre-
tations” — many of which have significant impact on performance.
Finally, the promise of seamless coverage is not a property provided
by 802.11 itself. Instead, most enterprise deployments implement
this property using an undeclared “layer 2.5” patched together from
portions of the 802.11 protocol, VLANs, ARP, DHCP and often
proprietary mobility management and authentication systems. Un-
surprisingly, the resulting Rube-Goldberg contraption has its own
unique failure modes.

In practice, few network administrators have both the detailed
visibility into network behavior and the breadth of knowledge needed
to diagnose such problems. When they do, the process is highly la-
bor intensive and rarely cost effective except for the most severe
and persistent problems. Even then, the range of interactions and
lack of visibility into their causes may stymie manual diagnosis. In
one recent episode at UCSD, wireless users in a new office building
experienced transient, but debilitating, performance problems last-
ing over a year, despite extensive troubleshooting by localexperts
and vendor technicians.1

1We believe we have diagnosed their problem — a subtle bug in

Our experience suggests that such diagnoses must be fully au-
tomated to be effective. As a first step in this direction, we have
developed models of wireless delays from the physical layerto the
transport layer. In particular, we demonstrate techniquesto infer
the causes and effects of both link-layer delays and mobility man-
agement delays. To demonstrate their effectiveness, we useour
models to investigate the causes of transient performance problems
from traces of wireless traffic in the four-story UCSD Computer
Science building. We find that no one anomaly, failure or interac-
tion is singularly responsible for these issues in our environment —
suggesting that our holistic analysis approach may be necessary to
cover the range of problems experienced in real networks.

The remainder of this paper is structured as follows. We firstre-
view the literature we build upon and related efforts in Section 2.
In Section 3 we summarize the monitoring system we use to collect
trace data for use with our models. We then outline the many po-
tential sources of service disruption — the gauntlet faced by each
802.11 packet — in Section 4. Sections 5 and 6 describe our tech-
niques for modeling media access and mobility management be-
havior, respectively, including an analysis of the problems identi-
fied at our location, followed by our conclusions.

2. RELATED WORK
Ever since wireless local-area networks such as 802.11 havebeen

deployed, researchers have sought to understand how these systems
behave and perform based on empirical observations. The monitor-
ing systems used to make these observations have increasingly ex-
panded both in complexity and scope over time. Early systemsused
existing infrastructure, such as the wired distribution network and
the APs, to record wireless traffic and network characteristics [2,
16]. Later systems deployed small numbers of dedicated moni-
toring nodes, sometimes concentrated near the APs, other times
distributed throughout the network, thereby pushing the frontier of
observation into the link-layer domain [12, 18, 23]. Recentefforts
have substantially scaled monitoring platforms to observelarge,
densely deployed networks in their entirety [1, 7], providing the
ability to observe every link-layer network transmission across lo-
cation, frequency, and time [7].

These monitoring systems have been used to directly measurea
number of interesting aspects of 802.11 behavior and performance,
ranging from application workloads and user mobility at thehigh
level to wireless loss, rate adaptation, and handoff delay at the link
layer [10, 13, 19] and even physical layer anomalies [22].

Other techniques infer more detailed network events and charac-
teristics, such as link-layer loss and the transmitters of packets lack-
ing MAC addresses [4, 7, 18], co-channel interference and overpro-
tective APs [7], misbehaving and heterogeneous devices [4,7, 9],
root causes of physical-layer anomalies [22], and regions of poor
coverage [4]. We greatly expand upon these detailed effortsand
present techniques to infer critical path delays [3] of media access
for every packet, such as AP queuing delay and media contention
(mandatory and regular backoff), as well as techniques thatinfer
management delays for supporting intermittent and mobile devices
for every user.

To infer critical path delays for wireless transmissions, we de-
velop a detailed model of 802.11 media access (Section 5). Numer-
ous models have been developed previously to estimate various as-
pects of 802.11 performance, such as the overall network capacity
as governed by the 802.11 protocol [6], the maximum throughput

the AP vendor’s implementation — but it is easy to understandin
retrospect why its discovery was challenging to find throughtrial
and error.

Start 1/11/07 @ 00:00
Duration 24 hours

Radio Monitors 192
Infrastructure APs 40

Wireless clients 188

Raw trace size 96 GB
Unique frames captured 210 M

Table 1: Summary of trace characteristics.

of a flow in an 802.11 network [14], and the saturation throughput
and expected access delay of contending nodes [17]. Such models
are typically analytic. To make analysis tractable, they explicitly
make simplifying assumptions such as absence of transmission er-
rors, uniform transmission rates and packet sizes, infinitenode de-
mand and steady contention for media access, uniformly random
probability of collisions and interference, etc. As a result, these
models may be useful for understanding the limits of 802.11 per-
formance under idealized conditions, but omit analysis of important
aspects of real networks that we infer with our model: the magnify-
ing effects of bursty traffic that averages and expected values con-
ceal, and the complexities of workload, protocol, and environment
that lead to correlated and unexpected interactions.

Three recent systems are closely related to the goals of thispaper.
DAIR uses wireless USB dongles attached to desktop machinesin
an enterprise wireless network to measure wireless events through-
out the network [1]. DAIR applications install filters at thewireless
monitors to trace information of interest and store it in a central
database; applications (inference engines) then use this data to per-
form analyses. Very recent work on DAIR develops management
applications that take advantage of client location, such as identi-
fying regions in the network experiencing consistently poor cov-
erage [4]. Our goals are similar in that we develop analyses to aid
network management, but we base analysis on a global understand-
ing of network behavior across all protocol layers.

WiFiProfiler [5] also helps users troubleshoot wireless connec-
tivity problems. WiFiProfiler relies upon peer diagnosis among
clients without the involvement of system administrators,while
our paper uses third-party monitoring and inference. WiFiProfiler
installs custom software on the client to collect detailed network
stack statistics, such as beacon losses and queue length, aswell
as OS and driver details. It then exchanges this informationwith
peers to diagnose connectivity problems. The client can then de-
termine if it has an association problem, DHCP problem, or TCP
problem. The MOJO system develops tools and techniques to iden-
tify the root causes of physical-layer performance anomalies, such
as broadband interference and the capture effect [22]. While we
are interested in physical-layer issues, we identify them as just one
cause among many across the interacting protocol layers.

3. TRACE COLLECTION
The modeling approach we describe in this paper operates on

detailed traces of wireless activity. We use the Jigsaw system de-
scribed in [7] to collect the traces we use in this paper, and we
briefly sketch the system in this section. Jigsaw is a distributed
wireless monitoring platform that we have deployed in our depart-
ment building to monitor the production 802.11 network. Thepro-
duction 802.11 network consists of 40 Avaya AP-8 802.11 b/g ac-
cess points covering four floors and the basement. The APs are
identically configured (except for their channel assignment) and
support both 802.11b and 802.11g without encryption.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

13:00:00 13:00:30 13:01:00 13:01:30 13:02:00

T
im

es
ta

m
p

m
od

ul
o

16
.7

m
s

Time

Figure 1: Physical error frame pattern during microwave oven
use. The y-axis depicts (time % 16) ms, showing the offset of
physical error packets within the 16 ms microwave period. The
x-axis shows two minutes of microwave use.

The hardware monitors consist of 192 radios interspersed be-
tween the infrastructure APs. The radios passively monitorthe
wireless network and report all wireless events across location, chan-
nel, and time via a private wired network to a back-end storage
server. Jigsaw merges and time synchronizes these separateradio
traces into a single, global unified trace. Moreover, Jigsawper-
forms this operation in real time; a single 2.2Ghz AMD Opteron
server can synchronize one minute of raw trace data in under 15
seconds.

We currently configure Jigsaw to capture the first 120 bytes of
each wireless frame. As a result, the aggregate monitor traffic
from all radios ranges from 2–10Mbps and is roughly five times
the amount of production wireless traffic. On a typical weekday,
the raw traces total 80 GB and the merged, synchronized traceis
roughly 10 GB in size. Our analyses are conducted on the synchro-
nized trace; the raw traces are used for debugging purposes only.
The particular trace used in this paper was collected on Thursday,
January 11, 2007. Table 1 shows various high-level characteristics
of the users and traffic contained in this trace.

4. THE TROUBLED LIFE OF A PACKET
There are numerous sources of disruption or performance degra-

dation in an 802.11 network. To illustrate these challengesand
motivate the need for our analyses, we provide a quick primeron
several potential sources of delay and packet loss.

4.1 Physical layer
The physical layer presents the first obstacle for an 802.11 frame

hoping to be delivered. Sharing the unlicensed 2.4GHz ISM band
are a wide range of non-802.11 devices, ranging from cordless
phones to microwave ovens. An 802.11 packet in flight may be
corrupted by broadband interference from such devices or itmay
simply be overpowered at the receiver. Alternatively, the sender
may detect the presence of RF energy on the channel and defer
transmission — incurring delays until the interfering source ceases.

For example, Figure 1 illustrates the interference caused by a
microwave oven. The figure depicts the reception of physicalerror
frames over time. The characteristic pattern (the white gap) results
from the wave doubler circuit used in consumer microwave ovens
to convert A/C line power into microwave energy. Roughly speak-
ing, a U.S. oven will generate swept broadband interferencefor 8

ms (half of the 60-Hz cycle) followed by a similar period of quies-
cence. In all cases, in-range 802.11 radios will defer transmission
until the medium is idle, building queues and adding delay inthe
process. Frames in flight when the oven is turned on may be cor-
rupted, depending on the receiver power of the microwave signal.

Such physical layer interactions are not restricted to non-802.11
devices. The 2.4GHz ISM band combined with the nominal 22-
MHz channel bandwidth used by an 802.11 transmitter can eas-
ily overlap neighboring transmitters on different channels. Indeed,
while conventional wisdom holds that 802.11 has three orthogo-
nal channels in the United States, this statement is not always true
in practice. We have routinely observed adjacent channel interac-
tions and have even witnessed many successful packet receptions
between radios in which the transmitting and receiving radios were
separated by as much as 50 MHz (i.e., channel 1 to channel 11).In
addition to neighboring channel interference, 802.11 alsosuffers
from the capture effect [15], which means a radio often decodes
the frame with higher signal strength when two packets collide at a
receiver.

4.2 Link layer
The 802.11 link-layer presents another potential performance land

mine for user packets. In particular each 802.11 access point man-
ages two critical functions: media access and bindings between
individual stations (clients) and APs. Each of these functions can
induce additional and, at times, unnecessary delays. We consider
each in turn.

Transmission delays. Sources of link-layer transmission delay
include queuing at the AP prior to wireless transmission, proto-
col delays such as mandatory backoff on transmission, exponential
backoff on loss, packet transmission time (a function of theen-
coded frame rate and the packet size), and contention in the net-
work when users and APs overlap and share a contention domain
(or due to interference as mentioned above). A single packetmay
be delayed by all of these factors and, due to retransmission, it may
be impacted multiple times. Moreover, it is common for 802.11
drivers to encode data at a lower rate after a loss, even though this
practice may have unintended negative effects such as increasing
channel utilization.

For example, consider a packet received by an AP at timet. It
may be delayed in a queue waiting for previous packets to be trans-
mitted (each experiencing their own media access delays andre-
transmission overheads). When it reaches the head of the queue
the AP must perform a mandatory backoff, waiting between 0 and
15 slot times (a normal 802.11b slot is 20µs, although 802.11g
permits the use of a “short” 9-µs slot time under certain circum-
stances). After the backoff it must sample the channel for the dura-
tion of a “DIFS” interval (50µs) before sending. If the AP detects
a busy channel, it will perform yet another backoff before com-
mencing the transmission. Finally, the packet is transmitted with
a delay largely determined by the sender’s choice of rate. How-
ever, if the sender does not receive an acknowledgment from the
receiver, the sender performs another backoff before each retrans-
mission. Of course, this explanation is over-simplified andany real
analysis must also deal with delays from interacting protocol fea-
tures like power management and vendor irregularities (e.g., some
vendors allow certain packets to be prioritized in between retrans-
missions of a frame exchange). Unfortunately, most of the delay
components at this level cannot be observed directly since they de-
pend on the internal state of an AP, which is not exposed via any
protocol feature.

Management delays. Another important source of overhead in
wireless networks broadly falls into the category of wireless man-

agement. 802.11 clients and APs are in a constant dance trying
to determine the best pairing. To address issues of mobility, clients
continually scan their environment looking for a better partner. APs
respond to these scans, and additionally broadcast beaconsto nearby
clients. If a client switches APs, another set of exchanges takes
place that authenticates the client to the network and bindsthe
client and the AP (a process called association).

Additionally, APs must deal with significant heterogeneityin
their client base, which includes distinct capabilities and config-
urations. Consequently, a negotiation takes place betweenclients
and APs about which features are needed — 802.11b vs. 802.11g
transmission, power savings, etc. Unintuitively, the choice of a
single notebook computer to associate with an AP can transform
that AP’s behavior as it tries to accommodate the lowest common
denominator among its clients. For example, in our previouswork
we reported that the presence of a single 802.11b client — even one
that is not transmitting — will often force an AP into 802.11g“pro-
tection” mode, thereby degrading service for all 802.11g users. [7]

4.3 Infrastructure support
APs are fundamentally bridge devices. To obtain Internet con-

nectivity a client must in turn acquire an IP address — typically
via DHCP — and the MAC addresses of next-hops to destinations
— typically via ARP. These protocols exhibit complex dynamics
in themselves, and their failure may isolate a station for some time.
Their use with 802.11 exacerbates their complexity since they are
used in specialized ways, frequently tied together with VLANs us-
ing proprietary mobility management software that authenticates
stations via a single sign-on interface and allows IP addresses to
remain constant as a client roams between APs. There is no stan-
dard for implementing this functionality and, unsurprisingly, failure
modes are not well understood.

4.4 Transport layer
Finally, any underlying delays or losses are ultimately delivered

to the transport layer, usually TCP, which may amplify theireffects
believing these behaviors to be indicative of congestion.

While this complex set of processes frequently works surpris-
ingly well, when it does not it can fail spectacularly and expose
users to significant response time delays. It is the goal of this paper
to systematize the analysis of these issues to better understand the
source of such transient problems.

5. MEDIA ACCESS MODEL
In this section we describe a media access model for measuring

and inferring the critical path delays of a monitored frame trans-
mission.

The model consists of a representation of the wired distribution
network, queuing behavior in the AP, and frame transmissionusing
the 802.11 MAC protocol. The goal of the model is to determine
the various delays an actual monitored frame encounters as it tra-
verses the various stages of the wireless network path. At a high
level, our approach first determines a series of timestamps for a
frame as it traverses this path and is finally transmitted by the AP.
From these timestamps we can compute the delays experiencedby
the packet. Table 2 summarizes the definitions of the timestamps
and delays in our model, and Figure 2 illustrates where in thenet-
work path they occur.

Our model uses measurements of the frame both on the wired
network and the wireless network to determine some of the times-
tamps. The challenge, however, lies in inferring the remaining
timestamps and, hence, delays. The inference techniques wede-
velop, along with the representations of AP queuing and the trans-

mission behavior necessary to perform the inferences, represent a
key contribution of this paper.

In the following sections we describe in detail our model compo-
nents and how we measure and infer these timestamps and delays.
We then show how the critical path delays determined by the model
can provide valuable, detailed insight into the media access behav-
ior of wireless users. Finally, we show how we can use the model
to diagnose problems with TCP throughput.

5.1 Critical path timestamps
To start our analysis, we first measure the timestamp of each

packet as it leaves the wired gateway router on the way to a wireless
access point — a time we define astw. We capture this information
using a SPAN port configured to forward a copy of each packet as
it leaves the building’s main distribution router. These copies are
directed to a dedicated tracing server where they are timestamped
(we assume that this propagation delay is constant).

To calculate additional timestamps we must combine observa-
tions of the packet on the wired network together with observations
of the packet on the wireless network. To match packets across
wireless and wired traces, we compare normalized packet contents
(adjusting for 802.11 vs Ethernet II frame formats) over a one sec-
ond window; one second reflects the empirical maximum wireless
forwarding delay of a wired packet in our network. Most matches
are one-to-one, meaning one wired packet corresponds to onewire-
less packet, but there are cases of one-to-many matches. Forin-
stance, broadcast frames such as ARP requests can match multiple
wireless frames because each AP will forward the ARP requestto
the wireless network. Occasionally, a packet is also dropped due to
AP queue overflows — typically when clients perform bulk down-
loads — which we detect based on frame sequence numbers. Over-
all we match 99.95% of the wired frames in our trace.

The next step is to determine when the AP has received the frame
from its wired interface. Since we do not have taps on the APs or
control the AP software, we cannot directly measure this time, ti,
and instead must infer it.ti is a function of the AP’s Ethernet I/O
delay and the propagation delay between the gateway router and the
AP. For each AP, we estimateti by first measuring the distribution
of the interval (ts − tw), the difference between the wireless trans-
mission time and the wired timestamp of the packet. The minimum
value of this distribution, minus DIFS, is the sum of wired network
delay and AP input processing delay for the minimum packet size.

From here, we determine the transmit queue timestamps of the
packet inside the AP, both when the packet enters the transmit
queue (tq) and when it reaches the head of the queue (th). We
model the AP as having three FIFO packet queues, the transmit
ready queue and two waiting queues based on the 802.11 standard.
If the packet is broadcast or multicast, the AP schedules it onto the
broadcast queue; the AP flushes this queue into the transmit queue
after the next beacon transmission. If the packet is destined to a
power-saving client, the AP buffers it on a power-save queue. The
AP flushes the appropriate packets from the power-save queueinto
the transmit queue when the client wakes up (by receiving a PSM-
reset data or management frame, or a PsPoll frame from the client).
Otherwise, the AP places the packet directly on the transmitqueue.

It is critical to model the queuing behavior precisely to estimate
further wireless delays. For example, if we did not model pack-
ets sent to clients in power-save mode correctly, they wouldappear
to be delayed at the AP for tens of milliseconds. We determine
whether clients are in power-save mode when packets for themar-
rive at the AP by tracking either the PSM bit of client frames in the
wireless trace, or when beacons indicate that the AP has buffered
packets for clients (TIM). Further, the 802.11 standard dictates that

Wireless

Gateway

Wired/Wireless

Monitor

ABroadcast Q

PowerSave Q

Tx Q

t_i t_q t_h t_s t_eTime

d_ps d_q d_mac

t_w

Access Point

Figure 2: Representation of wired distribution network, queu-
ing behavior in the AP, and frame transmission. The arrows in-
dicate where in the network we measure and infer timestamps
as frames traverse the network, and the corresponding delays
we calculate.

an AP should deliver broadcast frames at beacon intervals ifpower-
saving clients exist because these clients only wake up at those
times.

Based on the frame destination and client power status, we tag
each frame with the appropriate queue type. Subsequently, we es-
timate the time when the AP places the frame on the transmission
queue,tq. For a broadcast/multicast frame,tq is the time of the
latest beacon prior to the frame’s transmission. For framesdes-
tined to power-saving clients,tq is the time the client notifies the
AP that it has woken up by sending a frame with the PSM bit off
such as a PsPoll control frame. For the remainder of the frames,
tq = ti because the AP schedules them on the transmission queue
immediately after it has received them from the wired interface.

Next, we infer the time when the packet reaches the head of the
queue,th, and the AP is ready to transmit it using 802.11 DCF.
We determineth under three conditions based upon the end time of
the previous frame exchange,tpe. First, if the AP places the frame
on the transmit queue before the previous transmission completes,
then the frame experiences head-of-line blocking. We conclude the
frame reaches the head of the queue after the previous frame ex-
change finishes (th = tpe), and we label this frame as “head-of-line
blocked.” According to the 802.11 standard, a sender must perform
a mandatory backoff at the end of each frame exchange to provide
fair channel access. We cannot directly measure this randomback-
off window but we know the maximum of this window from the
standard. Therefore, if the frame enters the queue beyond the max-
imum mandatory backoff window aftertpe, the frame must find the
transmit queue empty and the AP can transmit immediately. Hence,
th = tq, and the packet is labeled as “not head-of-line blocked.” Fi-
nally, if the AP places the frame on the transmit queue duringthe
maximum mandatory backoff window of the previous attempt, the
frame may or may not experience head-of-line blocking by thepre-
vious frames. Since this backoff window is very small (300µs in
802.11g), less than 1% of the frames fall into this category.We
assume the transmit queue was empty attq and the frame does not
encounter head of line blocking. Thusth = tq as well.

We determine the starting and ending transmission times of the
frame exchange,ts and te, directly from the synchronized trace.
The start timets is the start of the first transmission attempt, in-
cluding the control overhead of RTS/CTS and CTS-to-self. The
end timete is the end of the frame exchange: the end of the ACK

Timestamp Definitions
tw Frame leaves gateway
ti AP receives frame from wired interface
tq Frame enters radio transmit queue
th Frame reaches head of transmit queue
ts First bit of the frame transmitted
te End of last ACK or estimated ACK timeout
Delay Definitions
dps tq - ti: AP power-save/broadcast buffering delay
dq th - tq: AP (transmission) queuing delay
dmac te - th: MAC delay
dt0 ts - th: Access delay of first transmission attempt

Table 2: Summary of timestamps and delays determined by the
media access model.

of the last transmission attempt, including all retransmissions and
contention. For unacked broadcast frames,te is the scheduled end
time of the transmission (NAV end). Consequently, for unacked
broadcast frameste is the end time of the data frame plus 60µs.

Frames internally generated in the AP represent a special case
because we cannot observe when the AP generates them. For ex-
ample, we do not know when the AP has scheduled a scan response
because no corresponding packet appears in the wired trace.Fortu-
nately, these frames are typically management responses toclient
requests, such as scan responses and association/authentication re-
sponses. We assume that the AP generates these responses and
places them on the transmit queue (tq) immediately after it receives
the requests.

5.2 Critical path delays
We calculate the critical path delays as intervals between times-

tamps. In particular, the buffering delay for power-savingclients
and broadcast frames isdps = tq - ti, the time from when the frame
reaches the AP and when the AP places the frame on the trans-
mit queue. We label this “power-saving delay” because broadcast
frames are buffered for power-saving clients who periodically wake
up at beacon intervals. The AP transmission queuing delay isdq =
th - tq, the time between when the AP places the frame on the
queue and the time when it reaches the head of the queue (i.e.,the
AP is ready to transmit it). After the frame reaches the head of the
transmit queue,dmac is the time the AP takes to perform a frame
exchange to the receiver including clear channel assessments, PHY
(re-)transmissions, and any exponential backoffs. Thus,dps + dq +
dmac is the total time the packet spends in the wireless distribution
network.

We further categorize the queuing delaydq into three compo-
nents: delay caused by background management frames such as
beacons, scan responses, etc. (dqb), unicast frames to the same
client (dqs), and unicast frames to other clients (dqo); dq = dqb +
dqs + dqo. These values are calculated by modeling the contents of
the AP queue, characterizing frames queued earlier and summing
their media access delays (dmac).

5.3 Validating the model
To validate our AP model, ideally we would instrument an AP

and compare our inferred timings and the actual ones for every
frame transmitted. Unfortunately, we do not have access to com-
mercial APs or open-source 802.11 drivers that export queuing or
channel-probe delay timestamps on a per-frame basis. However,
we can examine the delays inferred by our model and determine
whether those delays are consistent with delays expected from the
known operation of the 802.11 MAC protocol.

N = CWmin
1. Wait DIFS until channel becomes idle.
2. If channel is not busy, go to step 4.
3. Perform a regular backoff

bo = rand[0, N]
While bo > 0

probe channel for 20us
if busy wait DIFS until idle.
--bo

4. Send the frame; if no ACK is received,
double N and retry from step 1.

5. N = CWmin, perform a mandatory backoff
as in step 3.

Figure 3: Simplified 802.11 DCF operation for unicast.

First we examine the distribution of the access delay of the first
transmission attempt,dt0 = ts - th, from a TCP flow from our trace.
Figure 4 shows the cumulative distribution ofdt0 in microseconds
for one hour of frame exchanges that are “head-of-line blocked”
from an Avaya AP to a client using 802.11g to perform a bulk TCP
download. Most of the traffic from the AP is destined to that client
during that hour. We focus on the first transmission attempt of
head-of-line blocked frames (typical for bulk downloads) because
of the predictable delay distributions that should result from the
802.11 protocol.

To explain the distribution, we first summarize the 802.11 trans-
mission process in Figure 3. This code segment is a simplifiedver-
sion of the unicast DCF operation in the 802.11 standard [11]. For
frames sent in succession, the AP first waits a mandatory backoff
delay. The mandatory backoff delay isbo · 20µs, where the Avaya
AP randomly chooses the integer slotbo between 0–15 for 802.11g.
After the mandatory backoff, the AP will start a regular DCF oper-
ation. First it listens on the channel for the DIFS interval (50µs). If
the channel is idle, the AP transmits the frame immediately.In this
case,dt0 is the mandatory backoff delay plus the DIFS delay. Dur-
ing the backoff, the AP defers decrementingbo until the channel
becomes idle for DIFS. Therefore the backoff delay depends on a
combination ofbo and the channel contention the AP experienced.

The distribution of access delays shown in Figure 4 reflects the
various components that comprise the overall access delaydt0. Ev-
ery frame must wait at least a DIFS interval during the transmit
process; hence, the distribution starts at a delay of 50µs marked
by the first vertical line. The “steps” immediately following cor-
respond to the mandatory backoff delay that doesnot experience
any contention. The frames have a DIFS delay plus the mandatory
backoff delay, a random multiple of 20µs slots from 0–15; each
step in the graph corresponds to one of the slots. The second ver-
tical line (X = 50 + 15 ∗ 20) marks the end of this category of
frames (about 60% of the frames transmitted).

The next group of frames (through 847µs) are frames experienc-
ing contention during the mandatory backoffs. The contention they
experienced is mostly due to TCP-ACK packets from the clientto
the AP. The PHY transmission time of these packets is 447µs. As
a result, the backoff incurs an additional 447 + DIFS = 497µs con-
tention delay — hence the second set of “stairs” that starts at DIFS
(from step 1) + 497 = 547µs and ends at547 + 15 ∗ 20 = 847µs.
The second set of stairs is not as pronounced because the sender
may experience different lengths of contention delays. Theremain-
ing 10% of transmitted frames with the largest delays are frames
that experienced longer contention delays or performed a regular
backoff in step 3 of Figure 3.

 0

 20%

 40%

 60%

 80%

 100%

 0 200 400 600 800 1000

F
ra

ct
io

n
of

 F
ra

m
e

E
xc

ha
ng

es

Microsecond

Figure 4: Access delay (dt0) distribution of one hour of head-
of-line blocked frame exchanges from an Avaya AP-8 AP to a
client doing a bulk TCP download.

0 %

20 %

40 %

60 %

80 %

100 %

 0 200 400 600 800 1000 1200

F
ra

ct
io

n
of

 F
ra

m
e

E
xc

ha
ng

es

Microsecond

no contention
all

contention

Figure 5: Access delay (dt0) distribution of head-of-line blocked
frame exchanges from a Cisco Aironet 350 AP to a client doing
a bulk scp download.

Notice in the first set of stairs that the later steps tend to beshorter
than earlier steps, but the second set of stairs show the opposite
pattern. This behavior is because, having chosen a largerbo value,
the sender is more likely to lose the contention and to have towait
for the winner to finish its transmission. The probability ofgetting
interrupted during mandatory backoff is about 40% (the percentage
of frame exchanges experiencing congestion in the analyzedflow),
which roughly corresponds to the delay ACK policy in TCP (send
ACK on every other TCP-DATA).

Next, we perform a similar analysis using an AP from a different
vendor to show that our approach is not tied to the implementation
of a particular vendor. Since we could not replace an Avaya AP
in our production network with an AP from another vendor, we in-
stead performed a controlled experiment using a Cisco Aironet 350
AP. We downloaded a large file using scp to a client connected via
the Cisco AP using 802.11b/g, and we plot thedt0 delay distribu-
tion as the “all” line in Figure 5.

At first glance the distribution looks dramatically different from
the Avaya’s distribution in Figure 4. But, in fact, it reflects the same
802.11 sender transmission process, albeit using different parame-
ters. The parameters differ from Avaya because the Cisco AP only
used 802.11b, so its minimum contention window,CWmin, is 31

instead of the 15 used by 802.11g. As above, the distributionis a
mix of two kinds of frame exchanges. The first kind are frame ex-
changes that experience contention during the mandatory backoff.
If we detect that the AP has acknowledged some frames (mainly
TCP-ACKs from the client) during the mandatory backoff in step
5, we label the frame exchanges as having contention and plotthe
distribution as the “contention” line in Figure 5. The line forms
a set of stairs starting from around 400µs. This offset is exactly
DIFS plus the pause during backoff to wait for a TCP-ACK trans-
mission. Otherwise, we plot the remaining frame exchange delays
in the “no contention” line, which forms another set of 31 steps
starting at DIFS. If we aggregate these two distributions, it forms
the “all” line analogous to the curve shown in Figure 4.

We have also performed a similar experiment with the Avaya
AP-8 where we change the slot time to the short slot time (9µs)
instead of the regular slot time (20µs). The distribution changes
(the width of a stair) accordingly.

In summary, even though we must infer the timing of some of
the events that determine critical path delays, our experience has
been that our media access model is consistent with 802.11 oper-
ation even for very fine-grained phenomena. Furthermore, wecan
apply our model to different vendor APs, parameterized accord-
ingly. Fortunately, these parameters are straightforwardto obtain.
The model requires 802.11 parameters like minimum contention
window, maximum contention window, and slot time, all of which
can be found in the AP manual or configuration GUI to correctly
parameterize the model for a deployment.

5.4 Applying the model
The media access model makes it possible to measure the critical

path delays for every packet sent from APs to the client. As an
example, we focus on a particular AP in the building where three
clients (Xb, Yb, Zg) are using TCP to download different files from
the same Internet server, and the downloads overlap in time.The
clients compete with each other for both AP resources and airtime.
Two clients use 802.11b (Xb, Yb) and the third uses 802.11g (Zg).

We apply the media access model toYb’s TCP flow to measure
the critical path delays for each of the packets sent from theAP
to the client. Figure 6 shows the delay breakdown for this client’s
packets over four minutes. Each spike in the graph corresponds to
the combined queuing and wireless transmission delays for trans-
mitting one frame. The MAC delay,dmac, is quite small (even with
contention among three clients) and are shown at the top tip of each
spike. We break down the queuing delay into three components:
“other” is the delaydqo waiting for frames to other clients to leave
the queue; “self” is the delaydqs waiting for frames to this client;
and “background” is the delaydqb waiting for background manage-
ment frames (beacons, scans, etc.). Overlayed across the spikes is
the TCP goodput achieved by the client. Above the spikes we show
points in time where a frame was lost during wireless transmission
(triangles) and on the Internet (diamonds).

This detailed breakdown shows a number of interesting interac-
tions and behavior. First, queuing delay in the AP is the dominant
delay on the wireless path to the client. These delays are orders
of magnitude larger than the wireless transmission delay. Second,
roughly half of the time clientYb’s frames were queued for its own
frames, and the other half was caused by delays encountered by
frames for the other two clients. Examining the frame delaysof
the other clients, most of those other frames were for clientXb and
the minority were forZg. Third, Yb experiences occasional wire-
less loss, but wireless loss does not have a substantial impact on
achieved goodput. Fourth,Yb experiences a burst of Internet loss
at 14:39:38, substantially impacting goodput. The AP queuedrains

asYb times out and recovers. Finally,Yb’s download goes through
a phase change just after 14:40:00. The other clients finish down-
loading (the frames in the AP queue are forYb) andYb no longer
has to share the channel. AP queue occupancies drop and goodput
increases substantially beyond the level when it was contending
with other clients.

5.5 TCP throughput
Next we describe how we can use the media access model as

a basis for diagnosing problems with TCP throughput for wire-
less users, and show that there can be many causes that can limit
TCP throughput. Given a TCP flow using wireless, we first iden-
tify whether the TCP flow is attempting to transmit and maximum
speed. We then examine the flow to determine whether throughput
performance appears to be limited by wireless network conditions.
If so, we use the media access model to determine critical path de-
lays for packets in the flow, evaluate how those delays interact with
TCP, and assign a root cause for why the TCP flow throughput was
limited when using the wireless network. Our goal to is to show
the systems administrator the distribution of potential performance
problems so they can focus on improving the major bottlenecks.

The first step is to determine whether a TCP flow contained data
transfer periods whose throughput could be limited by wireless
conditions. Since a given TCP flow may have idle periods (e.g.,
think times during persistent HTTP connections), we identify pe-
riods of time during a TCP flow when it is performing a bulk data
transfer. We call such a period aTCP transaction. A TCP transac-
tion period starts when we observe new, unacknowledged TCP data
and ends when all outstanding data packets have been acknowl-
edged. Most of the packets in this period must also be MSS-sized
except for the last data packet, reflecting a period when a bulk of
data is being sent. We calculate the amount of data transferred dur-
ing the flow to identify transactions of sufficient size that they could
potentially take full advantage of the wireless channel; wecurrently
use a threshold of 150 KB.

We then take these transactions and determine whether through-
put performance appears to be limited by wireless network condi-
tions, and, if so, why. In our approach, we assume that there is
a single root cause and that factors are largely independent(e.g.,
wireless loss is independent of Internet loss). We then analyze the
transaction through a series of filters. First, if the transaction is
achieving near optimal throughput for the 802.11 rate used,we la-
bel it ideal and perform no further analysis. Additionally,if the
client ever announces a zero-sized receiver window during the bulk
transfer, we label it as receiver window limited.

Next, we model the TCP throughput by extracting the network
and host conditions. We use TCP throughput estimation analy-
sis [20] to perform this estimation, calculating idealizedthroughput
from the measured path RTT, measured path loss rate, and an esti-
mated RTO. We fine-tune the throughput model by identifying the
client OS from their DHCP messages and applying OS dependent
TCP parameters [21]. To ensure the throughput model works for
a particular transaction, we compare the modeled throughput with
the actual throughput measured. We proceed only if the modeled
throughput is within 10% of the actual throughput. To determine if
the wired portion of the connection is the bottleneck, we estimate
what the TCP throughput for the transactionmight have been if the
client was directly connected to the Ethernet by removing the wire-
less losses and wireless RTT. If the estimated throughput improves
by more than 20% compared to the measured throughput, we label
the transaction as Internet limited.

If the Internet is not the limit, we examine if wireless loss ex-
ported to the TCP layer is the root cause by adding wireless loss

 0

 200

 400

 600

 800

 1000

 1200

14:37:00 14:37:30 14:38:00 14:38:30 14:39:00 14:39:30 14:40:00 14:40:30 14:41:00
 0

 100

 200

 300

 400

 500

 600

 700

m
s

K
B

ps

time

Wireless Loss
Internet Loss

MAC delay
Q data(other)

Q data(self)
Q background

Goodput

Figure 6: Critical path delays, goodput, and losses over time for frame exchanges from an AP to a client doing a bulk TCP download.

0 %

5 %

10 %

15 %

20 %

25 %

30 %

MiscExp
Backoff

Prot.
Mode

QD
Same
User

QD
Other
User

QD
BG

Wrls
Loss

IdealInternetRecv
Window

Figure 7: Root causes that limit TCP flow throughput.

rate into the throughput estimation; if throughput drops over 20%,
we label the flow as wireless-loss limited. At this point, there-
maining flows are likely victims of the high delays in the wireless
network. We label the transactions as being either limited by queu-
ing delays (dq, i.e., background traffic, frames to self, or frames to
other user), power-save (dps), or MAC delay (dmac) accordingly.

We further investigate transactions limited by high MAC delays.
If over half of the delay is contributed by exponential backoffs,
we label the transaction as contention/backoff limited. Note while
high wireless losses normally cause many exponential backoffs due
to local retransmissions, we have already filtered out thesecases.
Typically transactions that are limited by backoffs have many local
802.11 retransmissions but do not suffer from TCP layer losses. For
example, we found some vendors retry up to 15 times and reduce
the rate from 54 Mbps to 1M bps in one frame exchange. The frame
exchange might eventually go through but the exponential backoffs
could take over 220 ms.

Finally, if an 802.11g client is connected to an over-protected
AP using 802.11g protection mode [7], we label the transaction
as over-protection limited. Over-protection happens whenan idle
slow 802.11b client causes all fast 802.11g clients to take up to
two times longer to transmit data than in normal 802.11g. If none
of these cases apply, we label the transactions as limited bysome
unknown factor. Such transactions likely would not benefit signifi-
cantly by addressing any of the potential issues we considered.

We can apply the above analysis to the bulk flows in a trace of
typical wireless activity in our network (Section 3). In total we
identify 2,605 bulk transactions in 1,375 TCP flows from 864 users.
85% of the flows are HTTP or SCP downloads. We filtered out 28%
of the transactions because the modeled throughput is not within
10% of the measured throughput; we find, for example, that the
analytic model over-predicts throughput for low-bandwidth flows,

and we are continuing to refine our approach for these cases.
Figure 7 shows the breakdown of root causes across the remain-

ing, properly-modeled transactions. The graph shows four interest-
ing results. First, flows can be limited by a wide range of different
causes; for a particular user experiencing poor TCP throughput, we
must model and check all such causes to diagnose their particular
problem. Second, over 20% of the transactions are limited bywire-
less loss. This is mainly caused by a faulty 802.11g link-level retry
policy used by the APs in our building. At 802.11g rates, the APs
only perform one link-level retry before giving up when the AP is
in protection mode; not surprisingly, this policy limits TCP perfor-
mance when using those rates. Third, over 22% of the transactions
are limited because our APs are too conservative in using 802.11g
protection mode. Thus, both the retry and over-protection problems
can be easily solved by simply revising the AP software. Indeed,
the vendor has acknowledged the problem we reported and started
to investigate the solutions. Finally, nearly 27% of the transactions
turn out to be limited by the receiver window size — indicating that,
although wireless conditions may initially be suspect, throughput
can be limited simply by the client’s TCP stack configuration. Any
diagnosis must suspect causes outside of wireless as well.

6. MOBILITY
The second class of overhead in the 802.11 environment is the

expense of the various types of mobility management, including
scanning for access points, association, ARP, DHCP, authentica-
tion, etc. Mobility management overhead can cause delays, for
example, while waiting for an IP address when joining a network
for the first time, or because of interruptions of normal network ac-
tivity due to scanning for alternate APs. In this section we describe
how we model delays due to mobility management overhead, and
we apply the model to traffic in our trace to illustrate how these
delays can impact network use under typical wireless conditions.

6.1 Overhead analysis
We categorize mobility management packets into one of eight

categories: scanning, PSM sleep, association (including authoriza-
tion, association, reauthorization, and reassociation requests), DHCP,
DNS, ARP, TCP, and “misc”. In our environment, “misc” includes
WEP/WPA (while none of our APs support encryption, clients may
occasionally send such packets), IPv6, mDNS, Windows network-
ing, and miscellaneous other IP traffic. We then organize thecate-
gorized packets into contiguousspans; we consider outgoing pack-
ets only and ignore packets in-bound to the client (with the ex-
ception of deauthorization packets sent by the base-station, which
terminate the current span).

How much time do clients spend performing mobility manage-
ment tasks? Figure 8 presents a time series of the average fraction
of time an active client spends in each type of span. The graph

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

11:00 11:10 11:20 11:30 11:40 11:50 12:00

F
ra

ct
io

n
of

 c
lie

nt
 ti

m
e

TCP
Power Saving

Scan
Other

Figure 8: Time series of different types of spans.

plots five-second bins, averaged over one-minute intervals. For
clarity, we show only the categories that take the significant part of
a client’s time: TCP, power save mode, and scanning; the “Other”
category includes association, DHCP, DNS, ARP, and “misc” spans.
Within each five-second bin, we calculate the fraction time each ac-
tive client spends in each type of span, and normalize for thenum-
ber of clients active in that bin. If a client sends no packetsin a
five-second interval, it is not counted. While the absolute fraction
of active time in any interval depends on the bin size (clients are
bursty; the longer the sample period the less dense the activity),
the relative length of each type of span remains relatively constant.
From the graph we can conclude that roughly one third of a clients
active time is spent scanning or in some other maintenance activity
(ARP, DHCP, association, etc.) — overhead directly due to mobil-
ity maintenance.

6.2 Impact of scanning
Figure 8 shows that 802.11 clients are constantly scanning for

other APs that may offer better associations. If the stationis other-
wise idle at the time, scanning is inconsequential — at leastfrom
the point of view of the client. If the interface is busy, on the other
hand, this behavior results in observable delay.

We therefore further refine our model so that we can quantify the
delay observed by active 802.11 clients due to scanning. Ourgoal
is to isolate those scan events that occur while the client was oth-
erwise occupied. Because we do not know precisely what a given
client is doing at any point in time, we have to make a conservative
estimate. To do this, we label a TCP span “active” if the throughput
is over 100 bps in a five-second bin. Otherwise we label it “idle”.

To what extent does mobility management interrupt client activ-
ity, thereby imposing undesirable delays? Going back to ourtrace,
about 40% of stations have no interruptions at all, either because
our criteria is too strict, the cards are smart enough to avoid inter-
rupting, or the stations are just not active enough during our moni-
toring period. Figure 9 shows the CDF of interruption durations for
the remaining 60% of the stations. The average interruptionlasts
for roughly 250 ms, and over 20% of interruptions last longerthan
one second. Most interruptions are caused by scanning behavior,
but we also observe a substantial number of occasions where the
station goes into power-save mode (i.e., sends a NULL packetwith
power save on, followed eventually by NULL packet with power
save off). The “PSM Sleep” line in Figure 9 shows that, while PSM
interruptions can be much shorter than scans, the average duration
is roughly comparable and is unlikely to take longer than a second.

0%

20%

40%

60%

80%

100%

 1e-04 0.001 0.01 0.1 1 10 100

F
ra

ct
io

n
of

 s
ta

tio
ns

Time, seconds

Scan
PSM Sleep

Figure 9: CDF of duration for scans and sleep periods.

0%

20%

40%

60%

80%

100%

 0.01 0.1 1 10 100 1000 10000

F
ra

ct
io

n
of

 s
ta

tio
ns

Time, seconds

Figure 10: CDF of intervals between scans.

Short interruptions might be tolerable if they occurred infrequently,
but Figure 10 shows that, for hosts that experience interruptions,
they occur with wildly varying frequency. The average interrupted
host is interrupted only once every 10 seconds or so. Such inter-
ruptions would not significantly affect the throughput, hence they
fall in the “misc” category in our previous TCP analysis in Fig-
ure 7. However, 10% of the interrupted hosts are interruptedmore
than once a second, interruptions which are more likely to frustrate
users using interactive applications like SSH.

In addition to delaying traffic at the scanning station itself, probes
also tend to exacerbate the hidden terminal problem. Recallthat
the hidden terminal problem occurs when two stations transmit to
the same third station simultaneously. A scan probe might bere-
ceived by multiple nearby APs which are unable to hear each other.
These “hidden” APs will attempt to respond simultaneously and
may cause interference at the client. We are able to detect over-
lapping transmissions by comparing the start timestamp of every
packet destined for an AP with the end timestamps of previous
packets directed to the same AP. If they overlap, we mark both
packets as having collided due to hidden terminals. We observe
that over half of the stations sent probes that collided withanother
station’s packets, and, for the worst offenders, over 10% oftheir
probes collided with other stations’ packets. As a result, hosts have
to scan frequently to get responses from the available APs.

0%

20%

40%

60%

80%

100%

 0.1 1 10 100 1000 10000 100000

of

 s
ta

tio
ns

Time, seconds

Good only
First to TCP

Without OS delay

Figure 11: CDF of the delay experienced on startup by 802.11
clients in our network.

6.3 Startup
Next we describe how we model startup delays for when clients

first connect to a wireless network. When a client first appears on
the 802.11 network it must initiate a sequence of steps to effectively
join the network before it can communicate at the IP level. The
standard behavior of a host is as follows:

• Scan. Determine a candidate AP to associate with.

• Associate. Attempt to associate with the chosen AP.

• DHCP. Once the host has successfully joined the 802.11 net-
work, it must obtain an IP address to begin communicat-
ing. In our environment, hosts obtain a dynamic IP address
through DHCP.

• ARP. Equipped with an IP address, the first thing a host must
do is determine the MAC address of the next-hop router to
route IP packets towards their destination. Hence, the host
will issue an ARP “who has” for the IP address of the next-
hop router indicated by the DHCP server.

• DNS. Finally, once IP routing is established, the host can
begin communicating with a non link-local IP address. Typ-
ically remote hosts are identified through domain names, so
the host must resolve the name using the domain name ser-
vice. Once DNS resolves the IP address of the destination,
the host can begin sending actual data.

We begin by considering the delay associated with end-system
startup. In an attempt to isolate those stations that are truly starting
up—as opposed to simply re-associating after a period of idleness—
we define a set of candidate selection rules. A station is deemed to
be starting up if the first packet we see from it is a scan request.
Because we are interested in the behavior of clients that should be
able to use the network, we only consider stations that eventually
succeed in associating with one of our access points and sendat
least one TCP packet.

How long are these delays? Figure 11 shows the distribution of
startup times for those clients that do successfully connect to our
network. There are three curves; “First to TCP” is the total wall-
clock time from the first probe request to the first TCP segment.
Surprisingly, most hosts take more than ten seconds before they
begin communicating on the network, and the average host takes
almost a minute. We conjecture, however, that the bulk of that time

0%

20%

40%

60%

80%

100%

 1e-04 0.001 0.01 0.1 1 10 100 1000

of

 s
ta

tio
ns

Total time (seconds)

Scan
Associate

ARP
DHCP

DNS

Figure 12: CDF of time spent in each successful phase of
startup.

is spent idling—meaning the machine is not actively trying to make
progress towards sending data.

To validate our conjecture, we attempt to determine if each suc-
cessive span was successful or not—if successful, the time between
spans is likely due to delays on the end host. In contrast, we as-
sume that time between failed spans is due to some sort of network
timeout. We define a scan to be successful if it is not followedby
a subsequent scan; association, DHCP, and DNS are successful if
the last packet in the span was outgoing from base station to client
(i.e., an ACK). The “without OS delay” line removes estimated OS
delays from the measured startup latency by subtracting idle time
between successful spans under the presumption that any delay in
initiating the subsequent span is due to the end host (i.e., the oper-
ating system has not yet initialized the network stack).

The average host spends almost eight seconds idling, presumably
because the operating system is booting or resuming from power-
save mode. Interestingly, however, if we sum only the duration of
successful spans, we observe that the average host spends over 20
seconds during or after unsuccessful spans. The “good only”line
represents a best-case scenario, with no idle time between stages.
The question, then, is what’s going wrong—why the big gap be-
tween optimal and common case? To address this question, we
first examine the successful spans.

Even the successful spans take a non-trivial amount of time.Fig-
ure 12 shows the breakdown of the various stages in the startup
process. This breakdown uses span durations only, and ignores the
time between spans. (Summing all curves from this graph together
yields the “Good only” curve from above.) Clients spend the vast
majority of this time scanning for an appropriate access point with
which to associate. Association itself generally takes less than 10
ms, at which point communication with hosts beyond the access
point can begin. DHCP, on the other hand, because it depends on
a remote server, can take a variable amount of time. We will ex-
pand on the performance of DHCP in our environment in the next
section. For now, however, we note it generally takes somewhere
between 10 ms and five seconds to obtain an IP address.

Surprisingly, ARP, while frequently fast, takes longer than one
second in more than half the cases. This delay results because most
stations issue an “ARP to self”—an ARP “who has” request for
their own IP address—to ensure no other station is using thatIP ad-
dress before they begin communication. By design, such an ARP
request must timeout, hence the one-second delay. Note thatsome

0%

20%

40%

60%

80%

100%

 1e-04 0.001 0.01 0.1 1 10 100 1000 10000 100000

of

 s
ta

tio
ns

Total time, seconds

Scan
Associate

ARP
DHCP

DNS

Figure 13: CDF of delays experienced by 802.11 clients due to
timeouts.

DHCP Transactions 611 (100%)
Client had no known current lease 204 (33.39%)
Client had used 25% of current lease 288 (47.14%)
Client newly associated shortly before193 (31.59%)
Client re-associated shortly before 56 (9.17%)
No valid reason determined 76 (12.44%)

Table 3: Potential reasons why clients initiated DHCP transac-
tions over a day. For some DHCP transactions multiple poten-
tial reasons exist.

graphs start at greater than 0%; the clients not shown on the graph
do not send those packets during startup. For example, over 20%
of hosts do not issue a DNS query before starting a TCP connec-
tion, presumably because they are communicating with a manually
specified IP address or because the corresponding DNS entry was
previously cached.

Returning to unsuccessful spans, we observe that timeouts can be
quite expensive. Figure 13 shows that while some stages, like DNS
and association, frequently timeout in about 10 ms, they cantake
tens of seconds to complete in the worst case. The minimum DHCP
timeout appears to be 100 ms and goes up from there. Failed scans
are extremely expensive (a minimum of seven seconds) because
a failed scan probably means there are no desirable access points
in range. In this situation, it makes no sense to retry after short
timeout, and most stations appear to wait for at least ten seconds
before re-scanning the network. More interestingly, some hosts
continue to scan for extremely long periods of time, presumably
because they never find an AP they wish to join; i.e., they’re looking
for a non-existent SSID.

6.4 Dynamic address assignment
Finally, we model dynamic address assignment using DHCP.

DHCP is an inherent aspect of most 802.11 wireless networks.It
is convenient for both users and network administrators, but the re-
sults above also indicate that DHCP can potentially impose notice-
able and annoying delays to wireless users who desire and expect
to be able to use the network quickly.

Clients initiate DHCP transactions for a variety of reasons: their
last least expired (or they had none), their existing lease is start-
ing to expire (conservatively, when 75% of their current lease time
remains), they associate with a new AP, or they re-associatewith
a previous AP. For instance, Table 3 shows a breakdown of the

0%

20%

40%

60%

80%

100%

 1e-04 0.001 0.01 0.1 1 10 100 1000 10000

F
ra

ct
io

n
of

 D
H

C
P

 tr
an

sa
ct

io
ns

Time (seconds)

all (611 trans.)
apple (140 trans.)

windows (393 trans.)

Figure 14: Distribution of DHCP transaction durations for a n
entire day.

reasons why clients in our building initiate DHCP transactions for
an entire typical weekday of use. The dominant reason for DHCP
transactions are clients contacting the server to start thelease re-
newal process. The vast majority of leases in our network arefor
three hours, so stable clients, once connected, initiate DHCP trans-
actions throughout the day.

How long are DHCP transactions? The “all” line in Figure 14
plots the distribution of the duration of DHCP transactionsfor a
typical weekday in the building. These results show that themajor-
ity of transactions complete in a reasonable amount of time:75%
of transactions complete in under six seconds. Users experiencing
longer delays, however, are likely to be annoyed. On this day, over
10% of the DHCP transactions took longer than a minute to com-
plete; for users connecting to the network for the first time that day,
such a delay is quite noticeable.

Sometimes users wonder whether wireless behavior depends upon
their operating system. Based on well-known Ethernet vendor codes
for MAC addresses and the “Vendor Class” option in the DHCP
protocol, we can determine the manufacturer of the operating sys-
tem and networking hardware for almost all of the 186 stations in
the trace. For comparison, we group the various versions of Mi-
crosoft Windows as “Windows” (118 stations) and hardware man-
ufactured by Apple as “Apple” (51 stations) and show distribu-
tions for these groups as well. Apple clients consistently experi-
ence longer DHCP transactions than Windows clients. Apple hosts
running OS X use the Zeroconf standard by default, which causes
them to spend an additional ten seconds on startup. These clients
optimistically attempt to renew their most recent lease (frequently
from a private network at the user’s home), which is invalid in the
campus building environment.

7. CONCLUSION
Modern enterprise networks are of sufficient complexity that even

simple faults can be difficult to diagnose — let alone transient out-
ages or service degradations. Nowhere is this problem more appar-
ent than in the 802.11-based wireless access networks now ubiqui-
tous in the enterprise. We believe that such diagnosis must be auto-
mated, and that networks must eventually address transientfailure
without human involvement. As a first step in this direction,we
have developed a set of models that take as input wireless trace
data and can then accurately determine the impact of protocol be-
havior from the physical layer to the transport layer on transmis-
sions in the trace. While some sources of delay can be directly

measured, many of the delay components, such as AP queuing,
backoffs, contention, etc., must be inferred. To infer these delays
from measurements, we develop a detailed model of MAC protocol
behavior, both as it is described in the 802.11 specificationas well
as how it is implemented in vendor hardware. We also explore an
inherent class of overheads due to mobility management in 802.11
networks, including scanning for access points, association, ARP,
DHCP, authentication, etc. To demonstrate the effectiveness of our
models, we investigate the causes of transient performanceprob-
lems from traces of wireless traffic in a four-story office building.
We find that no one anomaly, failure or interaction is singularly re-
sponsible for these issues and that a holistic analysis may in fact
be necessary to cover the range of problems experienced in real
networks.

Acknowledgments
We would like to thank a number of people for their contribu-
tions to this project. Lou Forbis dependably assisted us with all
aspects of our wireless production network, and Jim Madden sup-
ported the operational needs of our network measurement efforts.
We would also like to thank our shepherd Aditya Akella for his
insightful feedback and support, and the anonymous reviewers for
their valuable comments. Finally, Michelle Panik provideddetailed
feedback and copy-editing of earlier versions of this paper. This
work was supported in part by the UCSD Center for Networked
Systems (CNS), Ericsson, NSF CAREER grant CNS-0347949 and
by U.C. Discovery CoRe grant 01-10099 as a Calit2-sponsoredre-
search project.

8. REFERENCES
[1] P. Bahl, J. Padhye, L. Ravindranath, M. Singh, A. Wolman,

and B. Zill. DAIR: A framework for managing enterprise
wireless networks using desktop infrastructure. In
Proceedings of the Fourth Workshop on Hot Topics in
Networking (HotNets), Nov. 2005.

[2] A. Balachandran, G. M. Voelker, P. Bahl, and P. V. Rangan.
Characterizing User Behavior and Network Performance in a
Public Wireless LAN. InProceedings of ACM
SIGMETRICS, June 2002.

[3] P. Barford and M. Crovella. Critical path analysis of TCP
transactions. InProceedings of the ACM SIGCOMM
Conference, Stockholm, Sweden, Aug. 2000.

[4] R. Chan, J. Padhye, A. Wolman, and B. Zill. A
location-based management system for enterprise wireless
LANs. In Proceedings of the 3rd ACM/USENIX Symposium
on Networked Systems Design and Implementation (NSDI),
Mar. 2007.

[5] R. Chandra, V. Padmanabhan, and M. Zhang. Wifiprofiler:
Cooperative diagnosis in wireless LANs. InProceedings of
MobiSys, June 2006.

[6] P. Chatzimisios, A. C. Boucouvalas, and V. Vitsas.
Performance analysis of the IEEE 802.11 MAC protocol for
wireless LANs.Wiley International Journal of
Communication Systems, 18(6):545–569, June 2005.

[7] Y.-C. Cheng, J. Bellardo, P. Benko, A. C. Snoeren, G. M.
Voelker, and S. Savage. Jigsaw: Solving the puzzle of
enterprise 802.11 analysis. InProceedings of the ACM
SIGCOMM Conference, Pisa, Italy, Sept. 2006.

[8] E. Daley. Enterprise LAN Grows Up, 2005.http:
//www2.cio.com/analyst/report3401.html.

[9] K. N. Gopinath, P. Bhagwat, and K. Gopinath. An empirical
analysis of heterogeneity in IEEE 802.11 MAC protocol

implementations and its implications. InProceedings of
WiNTECH, 2006.

[10] T. Henderson, D. Kotz, and I. Abyzov. The Changing Usage
of a Mature Campus-wide Wireless Network. InProceedings
of ACM Mobicom, Sept. 2004.

[11] IEEE Computer Society LAN MAN Standards Committee.
IEEE Standard 802.11, Wireless LAN Media Access Control
(MAC) and Physical Layer (PHY) Specifications, 1999.

[12] A. P. Jardosh, K. N. Ramachandran, K. C. Almeroth, and
E. M. Belding-Royer. Understanding Congestion in IEEE
802.11b Wireless Networks. InProceedings of ACM IMC,
Oct. 2005.

[13] A. P. Jardosh, K. N. Ramachandran, K. C. Almeroth, and
E. M. Belding-Royer. Understanding Link-Layer Behavior in
Highly Congested IEEE 802.11b Wireless Networks. In
Proceedings of ACM E-WIND, Aug. 2005.

[14] J. Jun, P. Peddabachagari, and M. Sichitiu. Theoretical
maximum throughput of IEEE 802.11 and its applications. In
Proceedings of the 2nd IEEE International Symposium on
Network Computing and Applications, Apr. 2003.

[15] A. Kochut, A. Vasan, A. U. Shankar, and A. Agrawala.
Sniffing out the correct physical layer capture model in
802.11b. InProceedings of ICNP, 2004.

[16] D. Kotz and K. Essien. Analysis of a Campus-wide Wireless
Network. InProceedings of ACM Mobicom, Sept. 2002.

[17] B.-J. Kwak, N.-O. Song, and L. E. Miller. Performance
analysis of exponential backoff.IEEE/ACM Transactions on
Networking, 13(2), Apr. 2005.

[18] R. Mahajan, M. Rodrig, D. Wetherall, and J. Zahorjan.
Analyzing the MAC-level Behavior of Wireless Networks in
the Wild. InProceedings of ACM SIGCOMM, Sept. 2006.

[19] A. Mishra, M. Shin, and W. Arbaugh. An Empirical Analysis
of the IEEE 802.11 MAC Layer Handoff Process.ACM
Computer Communications Review, 33(2), 2003.

[20] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose. Modeling
TCP Reno performance: A simple model and its empirical
validation.IEEE/ACM Transactions on Networking, Apr.
2000.

[21] S. Rewaskar, J. Kaur, and F. D. Smith. A passive
state-machine approach for accurate analysis of TCP
out-of-sequence segments.ACM Computer Communication
Review, 36(3), 2006.

[22] A. Sheth, C. Doerr, D. Grunwald, R. Han, and D. Sicker.
MOJO: A distributed physical layer anomaly detection
system for 802.11 WLANs. InProceedings of MobiSys,
pages 191–204, June 2006.

[23] J. Yeo, M. Youssef, and A. Agrawala. A Framework for
Wireless LAN Monitoring and its Applications. In
Proceedings of ACM WiSe, Oct. 2004.

