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ABSTRACT
Wireless performance depends directly on the quality of the
channel. A wireless transmitter can improve its performance
by estimating and transmitting on only the strongest chan-
nel, which can be of significantly higher quality than a weak
channel (yielding up to 100% rate improvement). It is con-
sidered impossible to predict the quality of the unseen chan-
nels. Thus, the only way to identify the strongest channel
is by probing each channel individually, incurring large over-
heads. The key contribution of this paper is a discovery of
previously unobserved properties of the wireless channel that
makes it possible to predict the the strongest of a set of chan-
nels from the measurements collected only on a single chan-
nel. We confirm the properties through measurements and
present a theoretical analysis that explains their nature. Our
proposed system, CSpy, utilizes these observations to predict
the strongest channel. CSpy is the first to reliably estimate
the strongest channel by utilizing channel responses extracted
from off-the-shelf wireless chipsets, without probing any ad-
ditional channels. By tracking the strongest channel, CSpy
improves performance by up to 100% in comparison to chan-
nel agnostic schemes.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Wireless commu-
nication

General Terms
Algorithm, Design, Experimentation, Performance

Keywords
Wireless, Cross-Layer, Channel Estimation

1. INTRODUCTION
There has been extensive research towards improving wire-
less performance using both link layer (scheduling, coordina-
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tion, rate-control) and physical layer (MIMO, coding, beam-
forming) innovations. Most of these techniques try to achieve
the highest performance that can be obtained under a given
channel condition. However, wireless performance is ulti-
mately limited by the quality of the channel that the link is
operating on. The channel qualities vary significantly across
the frequency band [1–3]. E.g., a few of the 21 available chan-
nels in the 5GHz band may be strong, and the others weak.
TV whitespaces can provide more opportunities, with up to
40 available channels [4]. Due to environmental changes and
user mobility, the qualities of these channels vary over time
and across channels. We find that the quality of the strongest
channel can be significantly better than the weakest, or even
an average channel. Thus, it is possible to improve the wire-
less performance if we can successfully track and communi-
cate on the strongest channel at all times.

Wireless signals traverse multiple paths before arriving at the
receiver. The signals traversing different paths undergo dif-
ferent attenuations, delays and phase shifts. The phase shifts
are further affected by the carrier frequency. The channel
qualities at different frequencies thus depend on how differ-
ent complex multipath signal components combine at the re-
ceiver. Due to the phase shift induced by the carrier frequency,
signals from some paths that add constructively at one fre-
quency may combine destructively at another frequency. Be-
cause of a large number of paths in a multi-path channel and
a limited resolution of the receivers, it is considered impossi-
ble to predict the quality of any channels other than the ones
being observed. This is why all of the existing channel estima-
tion algorithms (e.g. [1,5,6]) use channel probing to identify
the Strongest Channel Index (SCI)1. But probing is expensive.
Moreover, identifying the strongest channel is not a one time
operation and tracking the strongest channel will require fre-
quent channel probes, incurring a very high overhead.

In this paper we present a novel technique that allows us to
determine the strongest channel from a set of channels while
probing only a single channel from the set. We first present ex-
tensive channel measurements showing that links at different
locations with the same strongest channel index exhibit simi-
larities in their multi-path structures. This is surprising, given
that channels at different locations are typically assumed in-
dependent [7, 8]. We then analyse the observed correlation
under a well-known Saleh-Valenzuela (SV) channel model [9]

1We define strongest channel index as the channel which
yields the highest expected throughput across all available
channels.



and show how to construct a simple estimator that can prov-
ably determine on average the strongest of the two adjacent
channels. This analysis also helps us identify the intrinsic
characteristics of the channel that make the prediction pos-
sible. However, even constructing such a simple estimator of
SCI was not obvious. We thus turn to machine learning tech-
niques to help us automatically learn the best estimator using
a training set of observed channel. We find that the the per-
formance of the machine learning estimator improves as it is
trained with diverse set of environments, e.g., indoors vs. out-
doors. However, it is possible to infer the strongest channel
with up to 80% accuracy using our approach, without probing
any additional channel. Further, by using the strongest chan-
nel, wireless performance can be improved by up to 100%.

Translating the above key ideas to a real system entails a
host of technical challenges. First, how are various chan-
nel profiles in practice, in different real-world environments,
amenable for prediction? Second, is it possible to determine
the strongest channel even if it is far away from the current
operating channel? Third, how do we deal with mobile sce-
narios where the channel can change frequently? In such mo-
bile scenarios, even if it is possible to find the SCI on a per-
packet basis, tracking the strongest channel may incur pro-
hibitive channel switching costs.

To address the above questions, we present a system called
CSpy. To the best of our knowledge, CSpy is the first system
that is able to predict the best channel without probing. We
show that CSpy performs well under realistic channel con-
ditions, providing significant performance gains over channel
agnostic approaches and no channel probing overhead. More-
over, we leverage physical layer information to estimate the
coherence time of the channel, and trigger channel switch-
ing only if estimated SCI can be used for reasonable duration.
Also, note that inferring the strongest channel index is orthog-
onal to detecting the least used channel [10–12]. Ideally, both
should be combined (as in e.g. [13]), but this is out of scope
of our current work. The main contributions of this paper are
as follows:

• A measurement study to understand the channel quality
across the 5GHz frequency band in a typical office envi-
ronment. We find that the achievable throughput gain by
tracking the strongest channel, compared to fixed channel
strategies, can be substantial (up to 100%). The channels
with the same SCI resemble to each other while they differ
from channels with different SCIs.

• A theoretical analysis on the effect of multi-path on chan-
nel inferring capability. We prove that even with limited
multipath information from a single 20MHz channel, it is
possible to determine the strongest amongst the adjacent
channels in a typical indoor environment.

• A learning based approach to determine the strongest
channel by utilizing the channel responses extracted
from off-the-shelf WiFi chipsets. We extract the multi-
path information from commodity chipsets, and utilize it to
determine the strongest channel index.

• A demonstration of performance gains. We implement
CSpy algorithms in our test-bed, and quantify our gains for
various scenarios. We show that we can predict the SCI

among 5 adjacent channels on each side achieving 85%
throughput of the optimal “oracle” algorithm, and yielding
around 50% gain in rates over an average channel, and up
to 2.5x gain over the worst channel.

The subsequent sections expand on each of these contribu-
tions, including controlled measurements, followed by analy-
sis, design, and evaluation.

2. MULTIPATH CHANNEL RESPONSE
We start with a quick primer on channel response, how it af-
fects the link quality and why it is difficult to predict it.

Channel impulse response (CIR): The wireless signal from
the transmitter to the receiver traverses through multiple paths,
undergoing reflections, diffractions, and scattering. Essen-
tially, the received signal contains multiple time-delayed, at-
tenuated, and phase-shifted copies of the original signal. If
x(t) is the transmitted signal at time t, and h(t, τ) captures
the Channel Impulse Response (CIR) at time t to an impulse
transmitted at time t− τ , the received signal is [7]:

y(t) =

∞∫
−∞

h(τ)x(t− τ)dτ + w(t), (1)

where w(t) is additive white noise. The channel impulse re-
sponse h can be considered time-invariant during the packet
duration (thus we drop the dependency on t), and is defined
as:

h(τ) =

P−1∑
p=0

A(p)δ(τ − τ(p)), (2)

where A(p) = a(p)eiφ(p) is a complex response of path p, P is
the (very large) number of paths between the transmitter and
the receiver and a(p), φ(p), τ(p) are the attenuation, phase
and delay of the signal traversing on path p. The Fourier
transform H(f) = F (h(t)) of CIR is often called the Channel
Frequency Response (CFR). An equivalent of (1) in frequency
domain is

Y (f) = X(f)H(f), (3)

where Y (f) = F (y(t)) and X(f) = F (x(t)) are Fourier
transform of the received and transmitted signal, respectively.

Extracting channel information from commodity chipsets:
Most modern digital radios use OFDM communication, and
transmit signals across orthogonal subcarriers at different fre-
quencies. An OFDM receiver implementation includes a chan-
nel estimation logic in the hardware as a part of basic opera-
tions. Some WiFi chipsets, such as Atheros 9390, can export
the estimated discrete CFR to the driver. Let fc be the car-
rier frequency of channel c, W be the bandwidth of the radio
and n be the number of subcarriers. In most 802.11 a/g/n re-
ceivers, we have W = 20 MHz and n = 64. The reported dis-
crete CFR Ĥ

c
= [H(fc−W/2), H(fc−W/2+1), · · · , H(fc−

W/2 + n − 1)] is a complex vector that describes the quality
of channel c at each subcarrier. Figure 1 shows examples of
a few discrete CFR vectors.

The channel impulse response ĥc = D−1Ĥc can be obtained
by applying an inverse (fast) discrete Fourier transform on
the CFR. By applying the aforementioned transforms we get



0 10 20 30 40 50

0

5

10

15

Subcarrier Number

S
N

R
 (

dB
)

0 10 20 30 40 50
−2

−1

0

1

2

Subcarrier Number

P
ha

se
 (

ra
di

an
)

Figure 1: Magnitude (top) and phase (below) of CFR re-
ported for 10 consecutive packets.

a discrete CIR ĥc with n number of taps:

ĥc = [ĥc[0], . . . , ĥc[n]] where

ĥc[l] = 1
P

∑P−1
p=0 A(p)e−2π(fc−W/2)τ(p)) 1−e−i2πWτ(p)

1−ei2π(l/n−Wτ(p)/n) .

(4)
Intuitively, ĥc[l] approximately aggregates the effects of paths
p with τ(p) ∈ [l/W, (l + 1)/W ]. Figure 2 shows an example
of a discrete CIR vector. Note from (4) that ĥc changes with
the carrier frequency fc, since it is a sum of complex vectors
whose phase shift depends on the carrier frequency.

Difficulty of predicting the quality of unseen channels:
Our goal is to predict a performance of an unseen channel
c′ using an observed discrete CIR ĥc from a different channel
c 6= c′. We will now argue that it is impossible to do so with-
out assuming some structure on the amplitude a(p) and phase
φ(p) of each individual path. To see that, consider the system
of equations (4) jointly for channels c and c′. This system has
2n equations and P unknown complex variables A(p). Be-
cause the number of paths P is very large (c.f. [9]), much
larger than the number of subcarriers n, this system is un-
derdetermined and has infinitely many solutions. Thus, there
exists a set of values for {a(p), φ(p)}p=0,··· ,P−1 that would
achieve any discrete CIRs ĥc and ĥc

′
in channels c and c′.

Without some assumption on the channel we are not able to
infer anything about channel c′ only by observing channel c. In
reality, the channel {a(p), φ(p)}p=0,··· ,P−1 has some structure
which we will exploit. In the subsequent section we will first
show that we can indeed make some prediction about unseen
channels and in Section 4 we will explain why it works.

Metric for determining channel quality: Channel quality
can be measured by the per-packet SNR metric that 802.11
drivers usually provide in the form of Received (or Relative)
Signal Strength Indicator (RSSI). However RSSI is known to
be an unreliable indicator of channel quality [14–16]. In
search of a better metric, we find that the effective SNR (eSNR)
value, as described in [14] can correctly capture the quality of
the channel from the CFR. eSNR first uses the CFR to compute
the SNR and bit-error rate (BER) of each subcarrier. From the
subcarrier-specific BER, a channel-wide BER is computed and
translated into eSNR. eSNR can further be used to determine
the highest bit-rate that the channel can support. As shown
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Figure 2: Amplitude of a part of a CIR vector obtained
from a CFR after applying IFFT.

in [14], eSNR can estimate the correct bit-rate of the chan-
nel with great accuracy, and performs significantly better than
the per-packet SNR metric. Out of all the available channels
in the 5GHz frequency band, we define the strongest channel
index (SCI) as the channel that supports the highest bit-rate.
We also adjust for link layer overheads (using [17]) to cal-
culate the Expected Throughput of a channel from the bit-rate
prescribed by the eSNR metric. In the rest of our paper we use
the eSNR-based expected throughput metric to compare the
throughput of the different channels from their CFR vectors.

3. MEASUREMENT AND HYPOTHESES
This section aims to show that PHY layer CIR information can
be an indicator of the strongest channel. We also demonstrate
that tracking the strongest channel can indeed improve the
network performance. We present three main hypotheses if
CIRs from a single channel can be used to infer the strongest
channel:

1. The quality of the channel varies across frequency. Wire-
less performance can be significantly improved by iden-
tifying and tracking the strongest channel, in compari-
son to a random fixed channel.

2. Links with the same strongest channel shares some statis-
tical similarity in their multipath structure. It is possible
to identify some features from the CIR information that
can indicate the SCI.

3. Links with different strongest channel index exhibits dif-
ferent multipath characteristics.

To verify our hypotheses, we first describe our experimental
methodology, followed by the key findings.

3.1 Measurement Setup
Our initial experiments were conducted at 10 locations in an
office building. We use laptops equipped with Atheros 9390
WiFi card operating on the 5GHz frequency spectrum as trans-
mitters and receivers. We instrument the Atheros 9390 driver
to extract the CFR information on a per-packet basis. The
Atheros firmware exports a subset of the CFR (56 out of 64
subcarriers), and we only use these to compute the CIR. Al-
though there are 21 available channels in the 5GHz frequency
band, the Atheros 9390 driver is not Dynamic Frequency Se-
lection (DFS) enabled [18] and hence can operate on only 9
of the 21 available channels. Hence, we perform experiments
on channel indices 36− 48 and 149− 165 only.

We design experiments to measure the quality of all the 9
available channels at 5GHz. We make necessary driver mod-
ifications at both the transmitter and the receiver to cycle
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Figure 3: Magnitude of CFR vectors collected from chan-
nels 149− 165.

through the channels. The transmitter starts from channel
36 at 5GHz and transmits 10 short packets, before switching
onto the next channel. To maintain synchronization, the re-
ceiver also follows the same predefined sequence. Due to soft-
ware restrictions, a single round takes considerable amount of
time – approximately 70ms. To ascertain no arbitrary multi-
path changes within a single round, we consider only those
measurements where the channel characteristics were highly
correlated across two consecutive rounds. We use the mea-
surements to verify our key hypotheses in the following sub-
section.

3.2 Measurement and Verification
Hypothesis 1: The quality of the channel varies across frequency.

The CFR vectors, collected from a single round of transmis-
sions, provide a snapshot of the characteristics of the chan-
nels across all the available frequencies in the 5GHz band.
Figure 3 shows 3 such snapshots of 5 different channels. We
observe that the CFRs across different frequencies are quite
dissimilar. To understand how the wireless performance may
vary across different channels, we compute the expected through-
put from the CFRs. Figure 4 plots the difference between the
expected throughput of the strongest channel over the weak-
est and a random fixed channel. Evidently, the performance
gap is considerably large. On average, the expected through-
put of the strongest channel is almost 2 − 3 times than that
of the weakest channel. Thus, we conclude that the channel
quality varies significantly across frequency. If we can identify
the strongest channel, wireless performance will improve signif-
icantly.

Impact of temporal variations: Channel quality can change
over time due to environmental changes. Figure 5(a) illus-
trates the performance of a single link across 5 different chan-
nels over a duration of 50 seconds. A single channel demon-
strates gradual but significant throughput variations due to
the slow fading caused by environmental variations. We find
that the performance also varies widely across channels. The
quality of a channel depends on how the different multipath
components combine at its operating frequency. As the envi-
ronment changes, the multipath structure of the signal also
changes. The multipath components may combine construc-
tively at one frequency and destructively on another, while
over time, the multipath structure can change in such a way
that the previously stronger channel becomes weaker and vice
versa. Thus, we find that the strongest channel index also
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Figure 4: Distribution of expected throughput gain by us-
ing the strongest channel.

changes over time (figure 5(b)). It is not enough to identify
the strongest channel only once, we need to track it to maximize
performance.
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Figure 5: (a) The expected throughput of a particular link
for different channels. (b) SCI changes over time.

Hypotheses 2: Links with the same strongest channel shares
some statistical similarity in their multipath structure.

The channel quality depends on the multipath characteristics
observed at a location. If at some instance, two links have
similar multipath characteristics, they will also probably have
the same strongest channel. To verify this hypotheses, let
group Gi,j contain all the CIRs collected from channel num-
ber iwhen the SCI was j. In other words, each group contains
CIRs from the same channel, but collected at different times
and locations, such that the SCI was the same at those in-
stances. According to our hypotheses the CIRs belonging to
the same group should be similar to each other. We find the
similarity between two CIRs, a and b, by using the the cross
correlation metric:
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Figure 6: (a) Similarity between the CIRs gathered from channel 36 at different locations when the SCI was the same. (b)
CDF of difference in similarities Cown − Cothers, observed at different locations, for different SCI values. (c) Throughput
loss due to mispredicting the SCI.

c(a,b) =

∑
s asbs√∑

s a
2
s

√∑
s b

2
s

. (5)

Figure 6(a) shows that CIRs from the same group have high
correlation, suggesting that the same SCI may imply similar
multipath structure. If we can apriori learn some unique fea-
tures about the multipath, we may be able to infer the SCI by
observing the CIR from a single channel. Our observation in
figure 6(a) may appear coincidental. However we will explain
in section 4 why it may be possible to identify such differen-
tiating features about the multipah at all.

Hypotheses 3: Links with different strongest channel index
exhibits different multipath characteristics.

We evaluate the (dis)similarity between two groups of CIRs
that were collected from the same channel but had a differ-
ent SCI. Whenever a CIR from a group Gi,j , is more similar
to the CIRs of a different group, Gi,k|k 6=j , than those from
its own group, we will mispredict the strongest channel. To
evaluate the probability of such mispredictions, we arbitrar-
ily choose a test CIR from a group Gi,j , and use correlation
to find the similarity between the test CIR with a randomly
chosen CIR from the same group. The correlation value, de-
noted as Cown, indicates similarity of a sample test CIR with
responses which have the same SCI. Now, for the CIRs from all
other groups, Gi,k|k 6=j , we find the similarity of a randomly
chosen CIR with the test CIR – we denote this similarity as
Cothers. If a test CIR is more similar to a different group than
its own group, we will naturally misclassify its SCI.

Figure 6(b) plots the CDF of the difference in similarities,
Cown − Cothers, for 5 different strongest channels. If the dif-
ference is negative, then the SCI is likely to be misclassified.
We find that the CIRs are often sufficient to correctly clas-
sify the SCI. However, in some cases more than 25% of the
responses are misclassified. To understand these mispredic-
tions, figure 6(c) plots the difference in expected throughput
between the mispredicted strongest channel and the correct
strongest channel. We find the performance gap is small, im-
plying that there can be multiple strong channels with similar
quality. As long as we can infer one of the stronger channels,
we will be able to improve the wireless performance.

Impact of resolution on SCI detection: Ideally we want to
find out all the multipath signal components that traverse be-

tween the transmitter and the receiver. However, due to lim-
ited (20MHz) bandwidth of WiFi, we can only determine a
discrete channel impulse response (CIR). From equation (4)
in section 2, it is clear that the discrete CIR depends on the
operating frequency of the WiFi chipset. Thus, we expect that
the structure of the CIR will vary across channels. Adjacent
channels may have a relatively similar CIR structure and CIRs
from widely separated channels can be quite dissimilar (fig-
ure 7). Thus, it is not possible to use the CIRs collected from
a single channel in the 5GHz frequency band, to infer the
strongest channel in the 2.4GHz band. However, we will show
in our evaluation that it is possible to predict the strongest
channel, amongst atleast a few adjacent channels with rea-
sonably high accuracy.
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Figure 7: Similarity of aggregate CIRs collected from
channel 36 with other channels. The similarity is high for
nearby channels (40, 44, 48), but low for channel 163 and
even lower for channel 6 which is in 2.4GHz.

4. WHY DOES PREDICTION WORK?
Measurement results from the previous section clearly show
that we can predict the best among the adjacent channels
based on the observations from the current channel. How-
ever, as discussed in Section 2, this is surprising, and has to
follow from a certain structure of the channel response. The
goal of this section is to explain the intuition of why are we
able to make any prediction at all. To this end, we construct a
simplified channel model and a simple predictor based on the
observations in the current channel and prove that it is able to
predict the best among the two adjacent channels. Note that
the actual prediction algorithm we use in our implementation
is different, and described in the following section. The actual



algorithm is more general but is not amenable to a simple the-
oretical analysis. In this section we are deliberately focusing
on a simple but analytically tractable scheme, to illustrate the
intuition of why the prediction is possible at all.

Firstly, we define a predictor. Let

∆c = tan(�ĥc[1])− tan(�ĥc[0]))

be the phase difference between the first and the second tap
of the CIR of channel c (where �x denotes the phase of a
complex number x). Note that this is purely based on the ob-
servations we make in channel c. We claim that when ∆c < 0
in channel c we expect that channel c+ 1 is better than chan-
nel c − 1. Secondly, we defined a simplified channel model.
We start with a well known Saleh-Valenzuela (SV) channel
model [9]. The key observation from [9] we use is that the
path phases φ(p) are random (i.e. φ(p) and φ(q) are indepen-
dent when p 6= q) and uniformly distributed on [0, 2π]. Also,
let Td be the delay spread of the channel such that a(p) = 0
for τ(p) > Td (and a(p) can be an arbitrary value for p such
that τ(p) ≤ Td). This is also in accordance with the SV model.
We then have the following proposition

PROPOSITION 1. Let us consider a W = 20MHz bandwidth
radio and a channel with the delay spread Td = 20ns. Under
the assumptions on the channel model above, we have

E
[
∆c

(∣∣∣ĥc+1(0)
∣∣∣2 − ∣∣∣ĥc−1(0)

∣∣∣2)] < 0 (6)

PROOF. Due to a lack of space we only give a sketch of the
proof and ignore little-o terms. First, let
Â(p) = a(p)eiφ̂(p) = A(p)e−2π(fc−W/2)τ(p)). It is easy to see
that the phase φ̂(p) is also random, uniformly distributed in
[0, 2π] and independent across paths. Using Taylor expansions
(and omitting little-o terms) we then obtain the following ap-
proximation

∆c = tan(�ĥc[1])− tan(�ĥc[0])) ≈ ∂ tan(�ĥc[l])
∂l

∣∣∣∣∣
l=0

≈
∑
p,q

a(p)a(q) sin φ̂(p) cos φ̂(q)

(
n

Wτ(p)
− n

Wτ(q)

)
.

Also, we have∣∣∣ĥc+1(0)
∣∣∣2 =

=
1

n2

∑
p,q

a(p)a(q) cos
(
φ̂(p)− φ̂(q)− 2πW (τ(p)− τ(q))

)
.

We are interested in E[∆c
∣∣∣ĥc+1(0)

∣∣∣2]. Note that E[sin(φ̂(p))] =

E[cos(φ̂(p))] = 0. Since different paths have independent
phases, the expectation of all cross-products containing dif-
ferent phases will be zero (e.g. E[sin(φ̂(p)) cos(φ̂(q))] = 0 for
p 6= q). Taking this into account when expanding the terms in

E[∆c
∣∣∣ĥc+1(0)

∣∣∣2], and with some elementary manipulations,
we get

E[∆c
∣∣∣ĥc+1(0)

∣∣∣2] ≈ 1

n2

P−1∑
p=0

p−1∑
q=0

2a(p)a(q)

× sin (2πW (τ(p)− τ(q)))

(
n

Wτ(p)
− n

Wτ(q)

)
.

Let us order the paths such that τ(p) > τ(q) for p > q. We
then have in every term that τ(p) − τ(q) > 0 and W (τ(p) −
τ(q)) ≤ WTd <

1
2
, thus each sine term is positive and each

term in the sum is negative. Consequently, we have

E[∆c
∣∣∣ĥc+1(0)

∣∣∣2] < 0. Similarly we get E[∆c
∣∣∣ĥc−1(0)

∣∣∣2] > 0

for channel c− 1.

The interpretation of the proposition is as follows. Measure-
ments show that most of the channel energy is concentrated

in the first tap ĥc(0). Term
∣∣∣ĥc+1(0)

∣∣∣2−∣∣∣ĥc−1(0)
∣∣∣2 is thus pro-

portional to the difference in qualities between channels c+1
and c − 1. If this term and ∆c were uncorrelated, then the
expectation of the product would be zero. Since the expecta-
tion is negative, this implies that negative ∆c yields positive
difference between channel qualities of c+1 and c−1, on av-
erage. Thus if one observes negative ∆c, it can conclude that
channel c + 1 is better (on average) than channel c − 1 and
conversely for positive ∆c channel c − 1 is most likely better
than channel c+ 1.

We further verify the finding of Proposition 1 on the measured
data. In Figure 8(a) we plot the empirical PDF functions of
the simple estimator (6) over all measured channel responses.
We verify that the observation from Proposition 1 holds, and
that the mean is negative. Moreover, we see that the sim-
ple estimator has 70% accuracy(figure 8(b)) in practice when
predicting the strongest of the adjacent channels.
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Figure 8: (a) The empirical PDF of the estimator (6) cal-
culated over the entire set of measured CIR samples. (b)
Accuracy of strongest adjacent channel prediction for dif-
ferent current channels.

The main high-level intuition behind the result is that the pre-
diction works because the phases of different paths are uni-
formly random and independent from each other. Thus if we
carefully construct an estimator based on relative phases, as



it was shown in this example, we can recover a bias that is
correlated with the channel quality. But constructing such an
estimator is a difficult task. In the subsequent section we will
use machine learning techniques to systematically explore the
space of estimators and construct the best one for our prob-
lem, which improves the accuracy and expands the prediction
range.

5. DESIGN AND IMPLEMENTATION
In this section we present the design and implementation de-
tails of CSpy. We have seen in Section 4 a simple predictor
that is able to predict the strongest of two adjacent channels.
However, this simple predictor captures only one specifics of
the underlying channel structure. There might be others that
can further improve the accuracy and expand the prediction
power to more distant channels, but as we have seen, they
are not easy to discover. Instead, we use machine learning
techniques to train a predictor on a large training set and au-
tomatically discover various hidden correlations. We first de-
scribe the feature representation and selection process, and
then define the classifier. We further describe another impor-
tant building block that estimates the coherence time of the
channel, and finally we present an overview of the entire sys-
tem design.

5.1 Feature representation and selection
The analysis from Section 4 tells us that the relative phase
differences between the first two taps can provide some in-
formation on SCI. Thus we decided to generalize this obser-
vation and use a feature vector that encodes relative phases
of all taps. To obtain such a vector we take a complex dis-
crete CIR vector observed by the NIC and we normalize its
amplitudes and phases: we divide the discrete CIR vector by
its amplitude and we subtract the phase of the first tap from
the phases of all taps. Such a normalized feature vector then
effectively encodes the descriptions of phases of different taps
relative to the phase of the first one.

We obtain the discrete CIR vector by applying the inverse
FFT on a discrete CFR vector obtained from a NIC, as de-
scribed in Section 2. We extract the discrete CFR estimated
for each received packets from Atheros 9390 chipsets with
minor driver modifications. We note that the 802.11n stan-
dard allows higher resolution CFR reports, than the Atheros
9390 chipsets, that can further improve the performance of
our system [19]. The extracted CFR measurements contains
arbitrary phase offsets due to the lack of synchronization be-
tween the transmitter and the receiver.2 We use the tech-
niques described in [8, 20] to compute the phase offset and
adjust the phase of each CFR before utilizing them for further
calculations.

Finally, we note that the l-th tap of the discrete CIR vector
h̄ predominantly contains the aggregate of paths with delays
τ(p) ∈ [l/W, (l+1)/W ], as discussed in Section 2. We observe
that most of the significant multipath components appear in
the first few taps of h̄. This is because the major multipah sig-
nals from the transmitter arrive at the receiver within a short
time period called the delay spread [21], which is around 50ns
in indoor environments. In our evaluation, we will show that

2This is not a problem for a conventional OFDM receiver that
only needs to remove, but not learn the channel response.

the first 10 taps, which carries most of the energy, of the CIR
vector h̄ can be a reliable indicator of the SCI. Using more
taps will only increase the classification complexity, without
any noticeable improvement in performance.

5.2 Training and Classification
Another takeaway from Section 4 is that the predictor (6)
works well under a fairly general channel model assumption.
This suggests that a simple classifier should be effective on
a large class of channel profiles. Therefore, we decided to
use a multi-class support-vector machine (SVM) as a simple
linear classifier. In the training phase we collect CIR sam-
ples from multiple channels at various locations. For each
channel we train our classifier on the training set comprising
{ĥc(x), SCI(x)}x over all locations x. Once a new CIR is ob-
tained in the wild, we apply the classifier on it, derive the SCI
and switch to the best channel. Since SVM is a linear classi-
fier, it is simple and fast to calculate.

It is important to note that our classifier does not need to be
trained on samples from each individual location. It is not
built to learn all possible channel responses. It is designed to
learn correlations that exist under very general assumptions,
like the one illustrated in Section 4. In practical terms this
means that we can train the classifier in one building and may
be able to use it in another, as we demonstrate in our evalu-
ation in Section 6. We also emphasize that the performance
of the classifier does not reflect directly in the classification
accuracy. Often, even if the classifier misestimates the SCI of
the current location, the estimated channel can still have good
performance. We evaluate this aspect in detail our evaluation.

5.3 Tracking the Strongest Channel
Even if it is possible to identify the strongest channel, chan-
nel switching may not always be beneficial due to the switch-
ing cost. To understand how quickly the SCI changes due to
changes in the environment, we collected a few CFR mea-
surements by tuning both the transmitter and the receiver at
channel 36 using a 40MHz bandwidth. We disabled channel
switching as it introduces an unacceptable overhead ( 3ms
in our implementation) in our measurement. We postprocess
each CFR vector over 40MHz to create CFRs of 4 consecutive
10MHz channels, and compute the strongest amongst only
these 4 channels. Figure 9 shows that for a static link, we may
need switch the channel only every 1−2s and thus the switch-
ing cost can be amortized. We observe that although envi-
ronmental variations affect the channel characteristics, the
strongest channel may not always be more affected than other
weak channels. However, if the link is mobile, the strongest
channel remains consistent only for less than 50ms. Thus, to
track the SCI of a mobile link, we may need to switch chan-
nels frequently, which may incur some overhead.

Although it is difficult to estimate the exact duration for which
the SCI can be used, the same duration is proportional to the
coherence time of the channel (Tc). We compute the channel
coherence time as the time-lag beyond which the correlation
of the CFR vectors is less than 0.6. To amortize the cost of the
channel switching time, CSpy ascertains that the strongest
channel can be used for a duration significantly more than
the channel switching duration(Ts). It prescribes a channel
change only when Tc > kTs where k is a constant. We use
k = 10 in our implementation to prevent CSpy from hurting
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Figure 9: Time duration between two consecutive channel
changes while tracking the strongest channel.

performance by triggering frequent channel switching. Ob-
serve that the SCI coherence time (50ms under mobility) is
almost 5x longer than the channel coherence time (typically
10ms for walking speeds). Moderately fast switching time in
recent chipsets (3ms in our implementation) and a reasonable
SCI coherence time allows us to tightly track the SCI in most
scenarios.

5.4 Overall System Design
Figure 10 presents the overall design of CSpy. CSpy trains
a SVM classifier with the CIR feature vectors, obtained from
the CFR readings, after appropriate phase and amplitude san-
itization. It groups the CIR feature vectors according to the
empirically determined SCI. Once the classifier is trained with
sufficiently diverse set of CIR readings, it can be used to in-
fer the strongest channel. During run-time, CSpy estimates
the CIR feature vector as well as the channel coherence time
from the CFR readings obtained from a single channel. It clas-
sifies the CIR vector using the previously trained classifier, to
obtain the SCI. Finally, CSpy switches to the strongest chan-
nel only if the coherence time of the channel is significantly
more than the channel switching time.

6. EVALUATION
We evaluate CSpy across 70 different links in two different
office buildings, and a parking lot. We conduct experiments
to answer 2 key performance questions. (1) What is CSpy’s
strongest channel estimation accuracy? (2) How much per-
formance gain can CSpy achieve by tracking the strongest
channel? We begin by explaining our evaluation methodol-
ogy.

6.1 Experiment Design
We employ a trace-driven simulation approach to evaluate
CSpy. We use the same measurement setup as described in
section 3.1 and collect traces during daytime. At 70 fixed lo-
cations, we cycle through 9 different channels and gather the
CFRs. For each round, we compute the strongest amongst
the all the channels by using the expected throughput metric.
We also collect 8 walking traces from a single 40MHz channel
(channels 36 bonded with channel 40), and thereafter divide
the CFR into 4 contiguous 10MHz channels. We use only these
4 channels to evaluate CSpy’s performance under mobility. 3

To evaluate CSpy’s performance for a particular link li, we

3It is not possible to evaluate all possible channels because
the multipath structure changes frequently under mobility.
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Figure 10: CSpy design.

train the SVM classifier using the CIR features collected from
all other links lj |i 6=j . Unless specified, we use the 10 taps
specified in Section 5.1 as our feature vector.

Metrics and comparison: We use the following three metrics
to evaluate CSpy’s performance: (1) Accuracy – the fraction
of cases when the expected throughput of the estimated SCI is
within 90% of the actual strongest channel. (2) False positives
(FP) – the fraction of cases in which the classifier estimates a
weak channel, whose expected throughput is less than the
average throughput across all available channels. In other
words, false positives account for scenarios when CSpy hurts
performance by switching to a weak channel. (3) Throughput
– We compute CSpy’s throughput as the expected throughput
of the estimated SCI, aggregated over time. We also compute
the optimal throughput from the known SCI determined em-
pirically. Apart from the optimal scheme, we compare CSpy
with a scheme which always uses a fixed channel and a prob-
ing scheme which periodically scans all possible channels to
determine the SCI.

6.2 SCI Estimation Performance
Accurate estimation of the SCI will help in improving the
wireless throughput by switching to a stronger channel. Oth-
erwise, CSpy may hurt performance by switching to a weak
channel. Figure 11(a) shows CSpy’s SCI estimation perfor-
mance across 50 locations in a single building. Evidently,
CSpy’s classification technique can determine the SCI from
the observed CIR with a median accuracy of 83%. In rare
occasions (mean 2.5%) CSpy underperforms and estimates
a weak channel as the SCI. However, we observe poor ac-
curacy (less than 50%) at a few locations. Careful investi-
gation showed that these locations received packets at weak
signal strengths, that results into low fidelity of the estimated
CIRs [8].

CSpy collects the CIR from the current operating channel and
utilizes it to estimate the strongest channel. Figure 11(b) fur-
ther analyzes CSpy’s performance and shows the accuracy/
false-positives on a per operating channel basis. The accu-
racy varies across different channels because the richness of
the CIRs may vary across channels. We find that the chan-
nels at the edge of the frequency band, indices 36, 161, 165,
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Figure 11: Mean accuracy/false-positive of SCI determination (a) at 50 different locations, (b) for CIRs collected from
different operating channels, (c) with increasing frequency gap between the operating channel and the actual SCI.

performs poorly in comparison to other channels. Due to
the dependency of the CIR on the operating frequency (sec-
tion 3.2), CSpy’s SCI determination accuracy is low if the SCI
is far away (in terms of frequency) from the current operat-
ing channel (figurel 11(c)). Nonetheless, it is still possible to
use the CIRs from a single channel to reliably estimate the
strongest channel within a few (4− 5) adjacent channels.

Effect of training data: CSpy trains an SVM classifier with
CIRs collected from different locations. The diversity of the
training data affects CSpy’s SCI estimation accuracy. The ac-
curacy increases with the amount of training data (figure 12(a)).
By using the training data from 30 locations, it is possible to
estimate the SCI with 79% accuracy.
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Figure 12: SCI estimation performance (a) at 50 loca-
tions with different number training locations in the same
building, (b) in the second building by using the training
data collected from only the first building.

The CIR features used in CSpy depend solely on the proper-
ties of the multipath components, and does not specifically
depend on the location they are collected from. Thus, we find
that we can train the classifier in the first building and use it
to correctly classify the CIRs observed at 10 different locations
in a second building (figure 12(b)). Figure 13 presents the
accuracy and false-positive graphs for the parking lot experi-
ment. In this scenario, we placed the transmitter right outside
the first building, and collected traces at 10 random locations
in the adjacent parking lot. We achieved only a modest ac-
curacy in estimating the SCI at the outdoor locations by us-
ing the training data collected only from the indoor measure-
ments, implying that outdoor and indoor channel characteris-
tics in our measurements are quite different (figure 13(a)). Of
course, the accuracy improves if the classifier is also trained
with outdoor measurements (figure 13(b)). We further ob-
serve that although training separate classifiers for indoor and
outdoor measurements may be possible, it improves CSpy’s
performance only marginally. We conclude that if a single
classifier is sufficiently trained with a variety of CIRs, it may
be able to determine the strongest channel at any location
with reasonable accuracy.

Effect of feature length: The SCI estimation performance
depends on the length of the chosen CIR feature vector. If
the length is small, the estimation accuracy may not be sat-
isfactory, whereas, if we use all the 56 complex taps of the
CIR vector as the distinguishing feature, it may complicate
the classification operation. Figure 13(c) plots the perfor-
mance of SCI estimation for different feature lengths. Ac-
curacy plateaus after a feature length of 10 because most of
the multipath signals arrive at the receiver within a short du-
ration. Figure 13(c) also specifies the average runtime of the
classification operation for different feature lengths using a
2.8GHz CPU. As expected, the runtime as well as accuracy in-
creases with the feature length. CSpy uses a feature length of
10 for training and classification to strike a balance between
runtime and performance.

6.3 Performance Gain from SCI Detection
In this subsection we demonstrate how CSpy improves the
wireless performance by tracking the strongest channel. In a
typical WLAN scenario, a wireless link operates on a single
fixed channel and does not exploit diversity across channels.
CSpy tracks channel quality variations, and switches to the
strongest channel whenever necessary. Figure 14(a) demon-
strates that CSpy provides similar throughput gain over any
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Figure 13: SCI estimation performance at 10 locations in the parking lot by using the training data collected from (a) the
first, and the second building only, (b) the parking lot as well as from the two buildings. (c) SCI estimation performance
for different CIR feature lengths.

fixed channel scheme. Because channel conditions change
quite randomly at different locations, we also find that CSpy’s
throughput gain varies across different locations, with gain of
upto 100% (figure 14(b)) over an average channel. When the
current operating channel is the weakest of all the possibili-
ties, CSpy can provide upto 250% improvement in through-
put. On average, CSpy also achieves 85% of the throughput
achieved by an optimal algorithm which always picks the cor-
rect SCI (figure 14(b)).
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Figure 14: CSpy’s throughput gain (a) against fixed chan-
nel scheme, (b) against the weakest, an average channel,
and the optimal scheme, across 60 indoor locations.

Comparison with probing schemes: Probing all the avail-
able channels incurs an overhead (approximately 40ms in our
implementation) because it requires scanning across all the
available channels, along with packet exchanges to evaluate

the channel qualities. Probing-based schemes are inapplica-
ble in mobile scenarios because the overhead is often more
than the channel coherence time of a mobile link. Even for
static links, it is difficult to avoid the trade-off between prob-
ing frequency and SCI estimation accuracy. Frequent probing
can track the SCI but incurs large overhead, whereas, the es-
timated SCI becomes stale if the channels are probed only oc-
casionally. CSpy outperforms probing-based mechanisms by
eliminating the need of periodic channel scanning (figure 15).

.25 .5 .75 1 1.25 1.5 1.75 2 2.25 2.5
0

50

40

60

80

Channel probing frequency (seconds)

C
S

p
y
’s

 t
h

ro
u

g
h

p
u

t 
g

a
in

 (
%

)

Figure 15: Throughput gain of CSpy over a probing-based
scheme.

Effect of mobility: The SCI may change frequently for mobile
links, and thus it may not be always beneficial to switch chan-
nels due to the costs involved. CSpy switches to the strongest
channel if the estimated coherence time is significantly more
the channel switching overhead. To evaluate CSpy’s perfor-
mance under mobility, we include the channel switching time
(3ms in our implementation) as an overhead in our simula-
tion. Figure 16 shows reduced throughput gain when the link
is mobile because CSpy pays a higher overall switching cost.
However, thanks to the light-weight estimation scheme, CSpy
can still achieve a moderate performance improvement (me-
dian 24%) in mobile scenarios, when the channel is changing
frequently.

7. RELATED WORK
Opportunistic channel selection is a well studied area in the
context of cognitive radio systems [10–12, 22–26]. The goal
of most of these studies is to reduce the effect of interfer-
ence by communicating on channels that are either free or
sparsely occupied. WiFi based multi-channel solutions also
aim at avoiding channels which are heavily occupied by other



1 2 3 4 5 6 7 8
0

10

20

30

Walking trace number

C
S

p
y’

s 
th

ro
u
g
h
p
u
t 
g
a
in

 (
%

)

22

31.5

26.6

17.6

29.7

33.8

19.6

22.9

Figure 16: Throughput gain of CSpy for 8 different walk-
ing traces

devices. Early proposals required multiple radios to monitor
all the available channels [27], which was later resolved using
temporal synchronization [28], and channel hopping [29].
Interference-aware channel assignment was also studied in
the context of mesh networks [30] and WLANs [31]. Au-
thors in [32, 33] demonstrate that wireless throughput can
be improved by allocating spectrum based on bandwidth de-
mand. Recently PHY layer information has been exploited
to select channels based on occupancy. Authors in [34] use
a subset of OFDM subcarriers to detect narrowband interfer-
ence, while Jello [35] identifies idle spectrum fragments us-
ing power spectrum density maps. While channel selection
solutions optimize for a free or lightly-used channel, CSpy’s
aim is to determine the strongest channel that can deliver the
highest PHY bit-rate. CSI-SF [36] combines CFRs from two
adjacent channels to reconstruct the CFR of one bonded chan-
nel and use it for channel quality prediction; this still requires
probing individual sub-channels.

Cellular networks [7] uses opportunistic scheduling by assess-
ing the channel quality of all the registered users and serving
clients which have a better channel quality. The concept of op-
portunistic scheduling has also been applied in multi-channel
systems mostly by using probes [1, 5, 6, 37]. The main idea
is to evaluate the quality of all the channels to a client by us-
ing short probe packets, and thereafter estimate and utilize
the strongest channel. The issue is that probing techniques
require frequent channel switching which incurs a large over-
head. Author in [1] attempts to reduce the probing over-
head in the context of whitespaces by utilizing opportunistic
sampling, but still incurs a prohibitive overhead in finding the
strongest channel. CSpy can be used in the cellular systems to
remove or reduce the probing overhead. Cellular systems also
employ coherence time based training to predict throughput
and bitrate based on SNR [38]. While CSpy can benefit from
this framework, it relies on features of multipath to estimate
the strongest channel.

8. DISCUSSION AND FUTURE WORK
Dependency on training: As we discuss in Section 5.2, our
training algorithm learns the generic properties of CIR. As our
evaluation demonstrates, we need to retrain the classifier only
for different types of environment: an indoor-trained classi-
fier works in various indoor environments but not outdoors,
and vice verse. This is expected, given that the proof of Propo-
sition 1 depends on the channel’s delay spread. We leave the

full classification of different classes of environments and how
to deal with them for future work.

CSpy in WLAN scenarios: This paper demonstrates the fea-
sibility of improving the performance of a single link by es-
timating and communicating on the strongest channel. Our
findings are directly applicable to scenarios where the trans-
mitter has only one receiver to cater to, e.g., wifi-direct, wire-
less tethering, wireless displays, etc. If the transmitter (AP)
has to serve multiple receivers (clients), it can either choose a
fixed channel that is the strongest for majority of the clients,
or periodically switch between the strongest channel of each
client. Of course, CSpy can perform significantly better if the
AP can switch to the strongest channel on a per-packet ba-
sis, for each individual client, without incurring large switch-
ing costs. This may be possible by using sophisticated phys-
ical layer techniques such as RODIN [39] and WiFi-NC [40].
IEEE 802.11ac also defines an enhanced RTS/CTS mechanism
that enables the AP and a client to find and use the best sub-
channel within a given 40 or 80 MHz bonded channel on a
per-packet basis, but it incurs a large RTS/CTS probing over-
head. CSpy can also be incrementally deployed across mul-
tiple APs, although APs employing CSpy may experience a
higher performance than those without CSpy.

Combining CSpy with interference-aware channel selec-
tion: Wireless throughput depends on both channel quality
and the degree of interference. In some cases, a highly loaded
channel may offer better performance over a less loaded chan-
nel, if the quality of the highly loaded channel is better. Bal-
ancing the channel quality and medium access in an optimal
and distributed way is still an open research problem. CSpy
optimizes for the former, without considering the effect of
interference. Since channels at different locations are inde-
pendent [7, 8, 41], it is reasonable to assume that SCI will
be random and independent at different locations. Thus we
speculate that using the channel quality as the channel se-
lection metric across the entire network will yield a balanced
distribution of links across channels. Alternatively, one can
combine the existing works on interference-aware dynamic
channel selection schemes [13, 42, 43] with CSpy. We leave
both these directions for future work.

SCI estimation and MIMO: It is straightforward to extend
CSpy to a MIMO system. However, MIMO already exploits
channel diversity through spatial diversity, hence the expected
gains of CSpy over MIMO will be smaller. Indeed, we measure
a smaller but still substantial gain of 29% over an average
channel and 62% over the weakest channel in the same ex-
perimental setting with 2x2 MIMO. This will further decrease
with a larger number of antennas. But CSpy could potentially
be beneficial in a different MIMO setting, similar to WLAN
scenario discussed above, where an AP with a large number
of antennas serves multiple clients concurrently. Since in this
case the AP effectively assigns one antenna to each client,
CSpy can guide the client and channel selection to improve
the overall performance.

CSpy for bandwidth selection: In this paper, we assumed
channels having homogeneous bandwidth. Recent wireless
technologies allow various bandwidth options (20, 40, or 80
MHz in IEEE 802.11ac). In order to maximize the perfor-
mance gain, not only the center frequency (channel index)



but also the width of channel should be optimally decided.
Thus, training and classifying heterogeneous bandwidth op-
tions, along with the channel index, is a natural next step.

9. CONCLUSION
Finding a quality channel has been a long-sought but still crit-
ical problem in wireless communications, particularly with
the systems using unlicensed bands. While existing solutions
rely on either active or passive measurements (probings), we
propose a mechanism that can find the best quality channel
among the candidate channels, purely based on the measure-
ment done in one single channel. We leverage the multipath
structure embedded in channel frequency response (CFR),
which is a byproduct of OFDM/MIMO processing, to infer
the best quality channel. Although the limited granularity of
CFR doesn’t allow us to reconstruct the CFRs of unseen chan-
nels, the aggregate multipath structure extracted from CFR
has enough information for us to employ a machine learning
classifier to find the best channel. To our best knowledge, this
work is the first to present a viable solution to find the best
quality channel without probing, and with reasonable accu-
racy (80%). Our evaluations show reasonable classifier train-
ing overhead and realtime classification overhead, hinting an
immediate deployment in production networks.
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