
COS-598A, Spring 2017, Kyle Jamieson

45-node indoor wireless testbed
Mesh topology
Linux Soekris router with Atheros 802.11a/b/g card
RTS/CTS protocol disabled
Link-level acknowledgements enabled
Use a quiet 802.11 channel
Throughput experiments

Indoor, 802.11g; vary the bit rate over possible links.

Note that most of the 24 Mbit/s links are not operating at 24 Mbit/s, and there are many such links.
Similar trends for other bit rates.

From previous graphs we would expect very few intermediate links, but that’s not how it
works in practice.
Contradicts theoretical packetized throughput prediction!

Bit rate adaptation algorithms must cope

Experiment: one sender at a time in indoor network, 1500 byte packets, everyone else listens, all links
9 Mbit/s vs 6 Mbit/s (upper right): 9 works well only if 6 works well. Both use BPSK, same modulation,
but different channel coding.
6 Mbit/s vs 1 Mbit/s (upper left): Some links are better with the newer but faster 6 Mbit/s 802.11g
OFDM, some work better with the older but slower 1 Mbit/s 802.11b DSSS.
Similar trends in newer work with differing numbers of spatial streams

Delivery probability fluctuates rapidly (Figure 3-4), some links more bursty than others with similar
average delivery probabilities.
Each node sends interleaved 1500 byte packets at 6, 9, 12, 18, 24 Mbit/s; divide time into t millisecond

L3: SampleRate (Chapter 3)
Indoor Network Measurements

Difference from theory: Many intermediate delivery rates exist (Figure 3-2, middle)

 = 2, 000452

Difference from theory: Does faster always mean more loss? (Figure 3-3)

How rapidly does bit rate adaptation need to adapt? (Figures 3-4, 3-5)

intervals over which an “omniscient” algorithm chooses the best throughput bit rate.

Diminishing gains past second adaptation interval
What about ms (not shown) – some measurement studies claim the indoor wireless
channel stays the same for about 30 ms, so there might be more room for improvement (later
work with walking speed mobility affirms this).

Figure 3-6: Each graph = one bit rate, each point = one link
x axis? average SNR
y axis? average delivery rate
Takeaway: Can’t choose a useful S/N threshold that predicts delivery

Figure 3-7: Each graph = one receiver, each point = one sender (all 1 Mbit/s rate)

This factors out receive radio hardware variability, better relationship
Multipath different on different links though.

Across all links, picking a S/N threshold that predicts delivery is hard, so SampleRate abandons this.
But subsequent work showed benefits (Effective SNR, will read later).

Three example links shown here (Figure 3-8).
Grey bar: ideal throughput; black bar: actual throughput achieved, averaged across time.
Definitions (count of types in Figure 3-9):

Steep: All links either > 90% delivery, or < 10% delivery
Gradual: Gradually more loss at higher bitrates but the best-performing bitrate = highest bitrate
with < 50% loss
Lossy: Best link has delivery rate well below < 50%

Implications:
For steep bitrates, can just pick highest loss-free bitrate; but this is disasterous when gradual
links exist.
For lossy links, need to increase bitrate despite loss.

Original WaveLAN-II (Lucent) algorithm, circa 1996
Definion: packet is new data, may have several transmissions (attempts to send the packet).
Algorithm

State: current bit rate, # consecutive successful transmissions

t = 10
t < 50

Can SNR predict delivery probability? (Figures 3-6, 3-7)

Classifying links' bitrate-loss relationships (Figures 3-8, 3-9)

ARF, Adaptive ARF (Chapter 4)

Start at highest
Okay packet is one that required just one transmission. Maintain okay_transmit_count

Step down if no ack after num_xmits

Step up if 10 consecutive “okay” transmissions occur (this is called a probe)

What would ARF do:
On the steep links? + (Start at 11, fail, pick 5.5)
..gradual links? – (Get stuck at high rate sometimes, don’t step down until complete failure. Once
you step up in a Gradual link, less likely to step down immediately than in a Steep link, less loss
@ 11 for Gradual, since you need four consecutive frame losses to step down.)
..lossy links? – (Once you step down, you may not step up, and get stuck at low rate sometimes.)

Adaptive ARF: Even on steep link, ARF sends probes. Adapt step-up parameter (10 transmits),
double every time increase bitrate and subsequent packet fails.

Backoff penalty high for high 802.11g bit rates, so helps.
Will AARF do better on gradual? (no) Lossy? (no)

Atsushi Onoe (engineer at Sony/Japan)
Highest bitrate with < 50% loss

makes sense in 802.11b: 11/2=5.5; 5.5/2 ~= 2; 2/2=1, less sense in 802.11a (36,24,18,12,9,6)
Maintain numtx, numtx_ok
Start at highest bit rate like ARF.

Each second on the wall clock:

if #1: if no successful transmits, step down
if #2: if less than 50% success rate, step down
if #3: if less than 10% success rate, lose credit
if #4: if greater than 90% success rate, gain a credit, step up if you have more than 10
credits.

what would ONOE do on the steep links? + 1st sec. 11 2nd sec. 5.5 3rd sec. 5.5 … 10th sec. 11 11th
sec 5.5 12th sec 5.5

what would ONOE do on the gradual links? + 1st sec. 11 2nd sec. 5.5 (line 3) 3rd sec. 5.5 NO probe
up to 11 periodically every 10 sec. (credits don’t accum)

what would ONOE do on the lossy links? – 1st sec 11 2nd sec 5.5 3rd sec 2 4th sec 1

ONOE

SampleRate (Chapter 5)

Basic idea: consider time to send a packet. Track:

Average send time @ bitrate (empirically measure)
Lossless send time @ bitrate (constant)

Choose bitrate with least average send time

Probe some other bitrates

Probing happens one every 10 packets
Probe a candidate set of rates having a lossless transmission time less than the current
average transmission time

Expire information that is more than 10 seconds old

Any problems with this?
What about backoff time before transmissions apart from the last one?
What about intervening transmissions from other nodes?
Not counted in this calculation, but impacts all bit rates about the same.

Notation: packets(transmissions)@rate
upper dest: fails at rate = 11, perfect at rate = 5.5

4(16)@11, switch to 5.5, 100(100)@5.5
why won’t it try rate = 2, 1? (lossless@2 and 1 > average@5.5)
when will it next try rate = 11? (10 sec, after remove_stale_results runs)

lower dest: one retry at rate = 11, 90% 0 retries, 10% 1 retry at rate = 5.5
9(18)@11, 1(1)@5.5, switch to 5.5, 9(9)@5.5
why probe 5.5? (b/c 2976 < 3761)
why switch to 5.5? (b/c 2976 (avg. xmit time) < 3761, same reason)

x-axis: static-best throughput
y-axis: hypothetical – take the bitrate that ARF chose most often, plot throughput of static-best for that
bitrate
Conclusion: ARF chose right bitrate most of the time! Hypothesis: ARF spends too much time trying
other bit rates.

Slide: Measuring time to send a packet

Slide: SampleRate in operation

Evaluation (Chapter 6)

ARF mostly chooses correct bit rate (Figure 6-2)

ARF spends too much time trying other bit rates, especially on the steep links

What about interference from other 802.11 traffic?
What about mobility?
What about SNR-based rate adaptation?

Cellular mobile networks use SNR to adapt
Why do we have trouble applying it for 802.11?
More recent work in this area by Halperin (SIGCOMM 2010)

Slide: 802.11a indoor throughput

Discussion

