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• Wired links are usually all-or-nothing
– Either the packet arrives correctly or the link is “cut”

• Wireless links often deliver packets with errors
– Bit error rate depends on interference from other links, and 

multipath fading (recall Roofnetexperiments)

– Packets may have only a few, localized errors

• Or, packets may have mostly errored bits, but a small piece 
of salvageable content
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Context: Coping with wireless bit errors



• When a frame is received with bit errors:
– Sender retransmits just the bits that need correcting
– Receiver combines original transmission with retransmissions 

to form a correct packet

• Increases throughput, because:
1. The retransmission is smallerthan the original
2. Shorter transmissions have higher delivery probability than 

longer transmissions
3. Consequently, senders select higher bit rates
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Idea: Partial Packet Recovery



• Divide each packet into blocks
– Each block has a one-byte sequence number, 8-bit CRC

• Receiver requests retransmit of just blocks that fail checksum by 
replying with a negative acknowledgement (NACK) frame
– NACK frame specifies incorrect block sequence numbers

• Pay block checksum overhead in the common case (no errors)
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Alternate approach #1: Block checksum

Maranello Practical Partial Packet Recovery for 802.11

Block-based partial packet recovery
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• Don’t attempt to identify correct/incorrect bits
– Instead send parity bits that contain information about every

bit in the packet
– Common parity coding scheme: Reed-Solomon (R-S)

• Example: ZipTx [MobiCom ‘08]
– Two-round forward error correction mechanism 
• In 1st round, transmitter sends a small number of R-S parity 

bits for a corrupted packet
• In 2nd round, transmitter sends more R-S parity bits 

– If both rounds fail, the receiver requests a retransmission of 
the whole packet 
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Alternate approach #2:
Forward Error Correction



• Physical layer “scores” each bit with a numerical confidence in 
that bit’s correctness, passes score up to higher layers

• Receiver’s link layer asks for retransmissions of just the bits from 
low-confidence part of the frame

• Many different ways of combining retransmissions with original 
transmission
– Example: SOFT [MobiCom’07] combining information from 

multiple access points that receive a frame
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Alternate approach #3: Physical-layer hints

Physical layer Received	frame:

ConfidenceLink layer

Correct bits Incorrect bits



• Block-based checksum design implemented on 
commodity 802.11 hardware (Broadcom)

• Novel overhead-free link-layer design for the case of no 
wireless bit errors (common case)

• Maranello protocol implemented in firmware (software 
running on a small microprocessor on the Broadcom 
802.11 network interface card)

7

Maranello



• Receiver computes link-layer frame checksum, compares to the 
802.11 frame checksum field, begins recovery if they don’t 
match:

1. Receiverbreaks errored frame into fixed-size blocks
– Sender and receiver agree on the block size beforehand
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Maranello: Protocol
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2. Receivercomputes Fletcher-32 block checksums for each block 
and includes allblock checksums in a NACK reply
– If NACK reply lost, transmitter resends entire packet 

3. Sender computes block checksums over each block
– Compares computedblock checksums to receivedblock 

checksums to determine errored blocks
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Maranello: Protocol (2)

Maranello Practical Partial Packet Recovery for 802.11

Block-based partial packet recovery
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4. Sender transmits repair blocks corresponding to just the blocks 
received that contain errors (repair packet)
– Sender doubles contention window before repair 

transmission (recall bounded exponential backoff)
– If sender’s ACK timer expires, it retransmits repair packet
– If repair packet contains errors, receiver transmits nothing
• Sender then retransmits the original frame
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Maranello: Protocol (3)
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5. Receiver repairs original transmission with repair blocks
– Re-computes and verifies a CRC-32 frame checksum 

(computed over entire frame) to check that the recovered 
packet is indeed correct
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Maranello: Protocol (4)

Maranello Practical Partial Packet Recovery for 802.11

Block-based partial packet recovery
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• 802.11 sender with Maranello receiver
– Does not recognize Maranello NACK from receiver
– So sender retransmits as normal after the (short) “ack

timeout” period

• Maranello sender with 802.11 receiver
– Just sends 802.11 ACK if correct, nothing if incorrect
– Maranello sender will retransmit entire frame to the 802.11 

receiver after acktimeout
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Interoperation with legacy 802.11



• Orange dot indicates a bit error 
– In packet corresponding to vertical axis position
– At location in that packet corresponding to horizontal axis position

13

Errored bit location by packet
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• Some packets have few bit errors (hypothesis: noise burst?)
– Errors are mostly restricted to certain 64-byte blocks
– Can be recovered by retransmitting those blocks
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Wi-Fi bit errors cluster together



• Some packets have many bit errors (hypothesis: interference or loss of 
synchronization)
– Similarly, can be recovered by retransmitting errored blocks
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Wi-Fi bit errors cluster together



• Horizontal axis: number of bit errors in packets
• Vertical axis: Stacked bar graph (# 64-byte blocks required to repair)
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How many blocks are needed to repair?

Maranello Practical Partial Packet Recovery for 802.11
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• For packets with 1 bit error, one 64-byte block always repairs the packet
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One block fixes a one-bit error



• Among packets with twobit errors:
– One64-byte block repairs the packet 99.7% of the time
– Two64-byte blocks repair the packet 0.3% of the time
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One block usually fixes two bit errors



• Fraction of packets repaired by one64-byte block, by number of errored bits
– Under 15 errored bits, ≈ 90% packets can be fixed with one block
– Packet size 1,500 bytes, so one block is ≈ 4% of the packet’s size
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How many bit errors can one block fix?
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• There are 23 blocks per packet, so orange area represents packets that need a 
complete retransmission(very few)
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How many blocks are needed to repair?
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• So far, we have seen the following:
– The overhead of one block is 4% of a packet
– For 1−2 errored bits, one block fixes most packets
– Under 15 errored bits, one block fixes ≈ 90% packets
– Very few packets require a complete retransmission

• But is number of repair blocks required the right question?
– We are looking for evidence that partial packet recovery will in 

fact increase performance, i.e.,throughput

– This data doesn’t tell us anything about how often how many 
bit errors occur  (i.e.,where on the x-axis are we most of the 
time)
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Summary: How many repair blocks?



• Measure how many repair bits (on average) a particular protocol 
needs to fix one incorrect bit

• Trace-driven simulation
– Use Broadcom cards to send and receive packets with known 

payloads over the air
– Record tracesof the received frames and mark each received 

bit as correct or incorrect
– Software simulator runs the protocol to be evaluated, in 

simulation, using trace data for received frames
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Repair size



• At low BER: Maranello requires only marginally more repair bits than Reed-
Solomon ZipTx approach

• Parity bits fix a small number of errors efficiently (simulated “ideal” ZipTx that 
knows the number of errors needing repair)
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Repair size: Maranello competitive at low 
BER
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• At high BER: Maranello outperforms Reed-Solomon based approach
• Additional Reed-Solomon parity bits contain information about the 

entire packet, inefficient if errors are localized to a single block(s)
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Repair size: Maranello outperforms ZipTx at high BER
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• Backoff and bit rate selection 
impact Maranello’s performance
– 802.11 standard specifies 

backoff (but chipsets do not 
always respect the standard)

– Recall: Standard doesn’t 
specify bit rate selection

• Maranello helps Intel because it 
increases delivery rate at high 
bitrates, avoiding backoff

• Maranello helps Atheros 
because it reduces the chance of 
falling back to 1 Mbit/s

Maranello Practical Partial Packet Recovery for 802.11

Retransmission behavior varies
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• Implementation in the OS kernel driver software
– Microbenchmark shows > 70 μs (≫10 μs SIFS time) delay 

between receipt of packet and triggered response, so 
unsuitable
• CPU interrupt latency and NIC-RAM bus transfer delay

• Software-defined radio platforms (e.g. GNU radio)
– High-latency (ms) Ethernet or USB bus makes unsuitable

• Sorasoftware defined radio [NSDI ‘08]
– Software-defined radio on PCI express bus
– Open question as to whether Sora would work for partial 

packet recovery (ACKs cached in current version of Sora)
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Implementation: Alternatives



• OpenFWWFopen firmware for Broadcom 802.11 NIC
– Publically-downloadable firmware assembly code that runs on 

Broadcom NIC microprocessor

• Broadcom 802.11 NIC system components:

1. Tx/Rx FIFO queues: buffers frames to/from the physical layer 
(transmission over the air)

2. Internal shared memory: State variables that can be 
read/written from the kernel driver

3. Template RAM: “Scratch” memory for composing an arbitrary 
frame and transmitting over the air

4. Internal registers and external conditions: Interface with the 
physical layer and timers (for, e.g.,backoff)
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Implementation



• Receiver computes block checksums in firmware

• Problem: For some transmission rates, Maranello NACK airtime is 
greater than 802.11 ACK
– May cause problems if hidden terminals present.  Why?

• Data contains network allocation vector (NAV) but with a duration 
shorter than Maranello needs for NACK

• Solution: No solution; just let the collisions happen.  Claim that 
preliminary experiments show improved overall throughput
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Implementation: NACK generation

S RH



• Problem: 802.11 NIC microprocessor is not fast enough to 
compute block checksums during SIFS interval (10 μs) 
– Each block checksum takes up to 4μs
– But running 802.11, the microprocessor is normally idleduring 

a frame reception

• Solution: Modify firmware to copy partially-received packets 
into memory the microprocessor can access
– Overlapone block’s block checksum computation with 

reception of the next block
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Implementation: NACK generation

Maranello Practical Partial Packet Recovery for 802.11
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ack timeout
DIFS & backoffcorrupt packet retransmission

SIFS

reserved time for expected ack
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• Before the first transmission, sender pre-computes block 
checksums in the OS kernel driver, on the main CPU
– Then sends block checksums to the firmware with the 

packet’s contents

– Why?  Main CPU is more powerful, can spare the time, and 
block checksum computation on the sender is not time-critical 
(why?)
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Implementation: Sender-side



• 802.11 channels 1, 6, 11 (span the 2.4 GHz unlicensed frequency band) 
in environments with background traffic
– Advantage: Characterizes performance of Maranello in situ
• Evaluate in three different environments (research lab, home, 

university), so can claim some generality

– Disadvantage: Lose repeatability of the experiment, so more 
difficult for the experimenters to isolate experimental factors that 
impact performance

• Enable Minstrel bit rate adaptation
– So compare Maranello and 802.11 at or close to the best bit rate for 

a particular link

• Evaluate throughput, latency gains, and then drill-down for causes
31

Performance evaluation



• By how much does Maranello increase link throughput?

• Methodology
– Use the Iperfnetwork measurement tool in UDP mode to 

saturate a wireless link in the testbed
– A one-minute run for 802.11, then immediately afterwards, a 

one-minute run for Maranello
• < 15 second gap implies wireless conditions unlikelyto 

have changed
– Repeat the experiment ten times with sender and receiver in 

the same locations
– Change locations of sender and receiver, in the same testbed
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Link throughput experiment



• University building results
– Best results (high channel 

contention)
– Other environments 

qualitatively similar
– Each point in the scatter plot 

represents an Iperf run

• Slanted lines delineate constant-
factor gains

• Results:
– About one-third of the time 

little to no gain

– About one-third of the time 
almost 2×gain
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Figure 6: Maranello has a higher throughput than 802.11. Each figure compares 802.11 with Maranello in a different
environment, or to show the uncertainty of the comparison, with 802.11 itself. Each point represents the performance
of back-to-back one-minute UDP throughput measurements; ten points were collected for each configuration of sender
and receiver stations.
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Figure 7: With block-based repair, Maranello recovers
packets faster than 802.11’s retransmissions.

6.3 The Sources of Throughput Gain and
Latency Reduction

To break down the sources of performance improvement,
we enhance the transmission status report for each packet
with the following information: (1) whether a repair

packet was used, (2) if used, at which attempt, and (3)
the number of retransmitted blocks in the repair packet.
The original report also includes (1) whether the packet
is successfully delivered, (2) the number of attempts, (3)
the bit rate used for the packet. With this information,
we can calculate the delivery probability at each attempt,
the transmission airtime and the number of transmitted
bytes for each attempt. We run Iperf for one minute for
10 randomly selected links and plot in Figure 8 the prob-
ability of successful attempt for two retransmission rate
fallback schemes: Linux “minstrel” fallback which al-
ways uses 1 Mbps as fallback rate, and 2-step fallback
which drops the bit rate selected by minstrel for the ini-
tial transmissions by 2 steps (if possible) and uses it as
fallback rate. The two-step fallback selection emulates
the Broadcom driver for Windows XP (Section 4.1). In
this figure, the x-axis is transmission attempt. The retry
limit of Broadcom cards is 7, 1 initial transmission, and
at most 6 retransmissions. The y-axis is the probability
that an attempt can succeed.

Figure 8 shows that the probability of successful re-
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• Does Maranello decrease the time it takes to correctly deliver one 
packetacross a link?

• Methodology
– Measure time from the firmware fetching a packet from the head 

of the Tx FIFO queue, to receipt of an ACK
– Includes retransmissions (in the case of 802.11), repair transmissions 

(in the case of Maranello), backoff, etc.
– Firmware’s microsecond timestamp counter measures this time 

precisely

– Desired: Measure time from fetching a packet from the head of 
the Tx FIFO queue to packet’s correct reception
• In most cases, this would be a fixed time interval less than 

proposed measurement (time to deliver the ACK to sender)
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Transmission latency experiment



• Latency for packets that need one or more retransmissions

• One pair of sender, receiver locations

• 802.11 modes at 16 and 32 ms represent Minstrel 1 Mbit/s fallback

• A log scale on the x-axis would show more detail at lower latencies
– Possibly showing the high-rate retransmissions
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6.3 The Sources of Throughput Gain and
Latency Reduction

To break down the sources of performance improvement,
we enhance the transmission status report for each packet
with the following information: (1) whether a repair

packet was used, (2) if used, at which attempt, and (3)
the number of retransmitted blocks in the repair packet.
The original report also includes (1) whether the packet
is successfully delivered, (2) the number of attempts, (3)
the bit rate used for the packet. With this information,
we can calculate the delivery probability at each attempt,
the transmission airtime and the number of transmitted
bytes for each attempt. We run Iperf for one minute for
10 randomly selected links and plot in Figure 8 the prob-
ability of successful attempt for two retransmission rate
fallback schemes: Linux “minstrel” fallback which al-
ways uses 1 Mbps as fallback rate, and 2-step fallback
which drops the bit rate selected by minstrel for the ini-
tial transmissions by 2 steps (if possible) and uses it as
fallback rate. The two-step fallback selection emulates
the Broadcom driver for Windows XP (Section 4.1). In
this figure, the x-axis is transmission attempt. The retry
limit of Broadcom cards is 7, 1 initial transmission, and
at most 6 retransmissions. The y-axis is the probability
that an attempt can succeed.

Figure 8 shows that the probability of successful re-

11

Maranello Practical Partial Packet Recovery for 802.11

Retransmission behavior varies

16

Windows Broadcom

Windows Intel

Windows Atheros

Linux ‘minstrel’ Broadcom

 0
 2
 4
 6
 8

 10
 12

tx
 ti

m
e 

(m
s)

retransmission rate (Mbit/s)

 0
 2
 4
 6
 8

 10
 12

ba
ck

of
f (

m
s)

54 1

 0
 2
 4
 6
 8

 10
 12

tx
 ti

m
e 

(m
s)

retransmission rate (Mbit/s)

 0
 2
 4
 6
 8

 10
 12

ba
ck

of
f (

m
s)

54 48 36 24

 0
 2
 4
 6
 8

 10
 12

tx
 ti

m
e 

(m
s)

retransmission rate (Mbit/s)

 0
 2
 4
 6
 8

 10
 12

ba
ck

of
f (

m
s)

54 36

 0
 2
 4
 6
 8

 10
 12

tx
 ti

m
e 

(m
s)

retransmission rate (Mbit/s)

 0
 2
 4
 6
 8

 10
 12

ba
ck

of
f (

m
s)

54 48 36 1



• Attempts #2, #3: Both 802.11 and Maranello maintain bit rate
– But, Maranello sends a shorter repair packet
– Shorter packet has a lesser chance of being lost

• Minstrel fallback to 1 Mbit/s on attempt #4 increases delivery probability
– Maranello still sending shorter repair packets
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Source of Maranello’s improvements
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Figure 8: Maranello can successfully retransmit a packet earlier than 802.11. Each line represents a link measured
either with 802.11 or Maranello; the probability that Maranello’s recovery packets are delivered is typically higher.
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Figure 9: Maranello can use airtime more effectively for packet transmissions. Each line represents a link measured
either with 802.11 or Maranello; Maranello spends more time transmitting bits not yet correctly received.

transmission for Maranello is usually higher than that of
802.11. Because the retransmission rate fallback does
not budge for the first two retransmissions, the proba-
bility of successful retransmission can be thought of as
the conditional probability that, given a packet (or two)
recently failed to be delivered at the chosen rate, this
next transmission at the same rate will be delivered. Not
surprisingly, for 802.11, this probability descends more
steeply than for Maranello. Maranello, in contrast, can
send shorter repair packets, which are less likely to be
corrupted [8], even at the original bit rate.

The delivery probability increases at the fourth attempt
because the firmware reduces the bit rate for the last
four attempts. The successful attempt probabilities for
the first three attempts are more important, because most
packets can succeed at the first two retransmissions. The
estimate of the delivery probability for the seventh at-
tempt (after three previous attempts at 1 Mbit/s) is un-
certain due to the dearth of data. For example, the 7th

attempt that had 0.0 delivery probability of Maranello,
only one packet was transmitted seven times. For the
7th attempt with 1.0 delivery probability of 802.11, there
were 5 packets transmitted 7 times and all succeeded at
this last attempt.

We also plot the fraction of effective time for each
transmission attempt in Figure 9. Effective time
represents the time spent transmitting correct blocks;
Maranello can use airtime more effectively, because the
correct bits in corrupted packets may be combined with
recovery packets to reconstruct the original packets and
the transmission time of these correct bits is effective.

6.4 Deployment on Access Points
To show that Maranello can increase overall network per-
formance and does not interact poorly with unmodified
802.11 devices, we deploy Maranello on Linksys wire-
less routers running OpenWRT [23]. We associate two
desktop stations, A and B, with the Maranello AP. We
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• Measure delivery probability of 
each transmission attempt
– Higherdelivery probability àhigher

throughput, lowerlatency

• Note: this graph counts transmissions
(including first transmission)

• Attempt #1: Roughly equal between 
802.11, Maranello (both just send the 
original packet)



• 802.11 frame aggregation
– As bit rates increase, relative overhead of DIFS, backoff, 

headers, and ACK increases
– 802.11n, 802.11ac aggregatemany frames together
• Each frame gets own checksum (like “block checksum” 

approach)
– Aggregation increases latency
– Maranello is complementary with aggregation: can repair 

corrupted aggregates

• Optimal Maranello block size
– Larger block size would be less efficient on wireless channel 

but more computationally efficient
– Can dynamically vary the block size based on BER

37

Frame aggregation and optimal block size
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