Practical Partial Packet Recovery
for 802.11: Maranello

fi| veT [Nov (M
TES | TAM
il Ex [Tvm |9

COS 5g8a: Wireless Networking and Sensing Systems

Kyle Jamieson

Context: Coping with wireless bit errors

* Wired links are usually all-or-nothing
— Eitherthe packet arrives correctly or the linkis “cut”

* Wireless links often deliver packets with errors

— Bit error rate depends on interference from other links, and
multipath fading (recall Roofnet experiments)

— Packets may have only a few, localized errors

* Or, packets may have mostly errored bits, but a small piece
of salvageable content

Idea: Partial Packet Recovery

* When aframeis received with bit errors:
— Sender retransmits just the bits that need correcting

— Receiver combines original transmission with retransmissions
to form a correct packet

* Increases throughput, because:
1. Theretransmission is smaller than the original

2. Shortertransmissions have higher delivery probability than
longer transmissions

3. Consequently, senders select higher bit rates

Alternate approach #1.: Block checksum

* Divide each packet into blocks
— Each block has a one-byte sequence number, 8-bit CRC

* Receiverrequests retransmit of just blocks that fail checksum by
replying with a negative acknowledgement (NACK) frame

— NACK frame specifies incorrect block sequence numbers

* Pay block checksum overhead in the common case (no errors)

B Block checksums

corrupt
packet / ‘/ I ‘/ I

Alternate approach #2:
Forward Error Correction

* Don'tattempt to identify correct/incorrect bits

— Instead send parity bits that contain information about every
bitin the packet

— Common parity coding scheme: Reed-Solomon (R-S)

* Example: ZipTx [MobiCom ‘o8]
— Two-round forward error correction mechanism

* In 2% round, transmitter sends a small number of R-S parity
its for a corrupted packet

* In 2" round, transmitter sends more R-S parity bits

— If both rounds fail, the receiver requests a retransmission of
the whole packet

Alternate approach #3: Physical-layer hints

* Physical layer “scores” each bit with a numerical confidence in
that bit's correctness, passes score up to higher layers

* Receiver’s link layer asks for retransmissions of just the bits from
low-confidence part of the frame

* Many different ways of combining retransmissions with original
transmission

— Example: SOFT [MobiCom ‘07] combining information from
multiple access points that receive a frame

: Confidence
Link layer "V‘M\
SWAIEINEYI @ Received frame: EEEEEN

Correct bits Incorrect bits

Maranello

* Block-based checksum design implemented on
commodity 802.11 hardware (Broadcom)

* Novel overhead-free link-layer design for the case of no
wireless bit errors (common case)

* Maranello protocol implemented in firmware (software
running on a small microprocessor on the Broadcom
802.11 network interface card)

Maranello: Protocol Bl Incorrect bits

corrupt I I
packet

* Receiver computes link-layer frame checksum, compares to the
802.11 frame checksum field, begins recovery if they don't
match:

1. Receiver breaks errored frame into fixed-size blocks
— Sender and receiver agree on the block size beforehand

corrupt I I
packet

Maranello: Protocol (2)

corrupt
packet { ‘/ I] I

B Block checksums

2. Receiver computes Fletcher-32 block checksums for each block
and includes all block checksums in a NACK reply

— IFNACK reply lost, transmitter resends entire packet

3. Sender computes block checksums over each block

— Compares computed block checksums to received block
checksums to determine errored blocks

Maranello: Protocol (3)

corrupt
packet / / I /

repair blocks

4. Sendertransmits repair blocks corresponding to just the blocks
received that contain errors (repair packet)

— Sender doubles contention window before repair
transmission (recall bounded exponential backoff)

— Ifsender's ACK timer expires, it retransmits repair packet
— Ifrepair packet contains errors, receiver transmits nothing
* Senderthen retransmits the original frame

10

Maranello: Protocol (4)

repaired
packet

5. Receiverrepairs original transmission with repair blocks

— Re-computes and verifies a CRC-32 frame checksum
(computed over entire frame) to check that the recovered
packetisindeed correct

11

Interoperation with legacy 802.11

* 802.11 sender with Maranello receiver
— Does not recognize Maranello NACK from receiver

— So sender retransmits as normal after the (short) “ack
timeout” period

* Maranello sender with 802.11 receiver
— Just sends 802.11 ACK if correct, nothing if incorrect

— Maranello sender will retransmit entire frame to the 8o02.11
receiver after ack timeout

12

Errored bit location by packet

(72)
e
)
X
O
®©
o
e
)
e
o
>
| -
S
O
o
=)
o
e

* Orangedotindicatesabiterror
— In packet corresponding to vertical axis position
— Atlocation in that packet corresponding to horizontal axis position

13

Wi-Fi bit errors cluster together

0 |
“-‘\
Q)‘
X |
Q |
O |
Q |
O |
O |
-+
Q_‘
= |
L‘
L‘
Qo |
Q |
o |
Oi
™ |

* Some packets have few bit errors (hypothesis: noise burst?)
— Errors are mostly restricted to certain 64-byte blocks
— Canbe recovered by retransmitting those blocks

14

Wi-Fi bit errors cluster together

N
-+
O
-
O
©
o
O
(O]
s}
Q.
-
-
-
O
(&
-
o
b

* Some packets have many bit errors (hypothesis: interference or loss of
synchronization)

— Similarly, can be recovered by retransmitting errored blocks
15

How many blocks are needed to repair?

Wl

o
o

7))
-
@)
9o
O
>
0
©
O]
=
©
o
O]
S
-
O
-
(@)
©
| -
(-

O 1
1 2 3-7 8-14 15-32 33-368 369-3475 3476-5847
fraction corrupt packets, labeled by bit errors

* Horizontal axis: number of bit errors in packets
* Vertical axis: Stacked bar graph (# 64-byte blocks required to repair)

16

One block fixes a one-bit error

wn
'
(&
O
0
>
0
3
2 05
©
Q.
()
| -
c
O
-]
(&)
©
—

2 3-7 8-14 15-32 33-368 369-3475 3476-5847
fraction corrupt packets, labeled by bit errors

* Forpackets with 1 bit error, one 64-byte block always repairs the packet

17

One block usually fixes two bit errors

O
o

h
\
|

)
-
O
o
0
>
@)
©
()
=
©
Q.
()
| -
-
O
-
O
©
-
——

0 .
1 2 37 814 15-32 33-368 369-3475 3476-5847

4 fraction corrupt packets, labeled by bit errors

* Among packets with two bit errors:
— One 64-byte block repairs the packet 99.7% of the time
— Two 64-byte blocks repair the packet 0.3% of the time

18

How many bit errors can one block fix?

O
o

2]
X
&)
Qo
@)
>
@)
©
o
=
®
O
o
| -
C
O
-
&)
©
-
[S—

0
1 2 3-7 8-14'15-32 33-368 369-3475 3476-5847

fraction corrupt packets, labeled by bit errors

* Fraction of packets repaired by one 64-byte block, by number of errored bits
— Under 15 errored bits, = g0% packets can be fixed with one block
— Packet size 1,500 bytes, so one blockis = 4% of the packet's size

19

How many blocks are needed to repair?

LI I,I Il |||||5|||||||F'n“uu"qw

)
X
&)
9o
O
>
@)
©
()
=
®
o
()
S
c
9
ol
@)
©
-
[S—

1 2 37 8-14 15-32 33-368 369-3475 3476-5847
fraction corrupt packets, labeled by bit errors

* Thereare 23blocks per packet, so orange area represents packets that need a
complete retransmission (very few)

20

Summary: How many repair blocks?

So far, we have seen the following:
— The overhead of one block is 4% of a packet
— Fora-2 errored bits, one block fixes most packets
— Under 15 errored bits, one block fixes = go% packets
— Very few packets require a complete retransmission

* Butis number of repair blocks required the right question?

— We are looking for evidence that partial packet recovery will in
factincrease performance, i.e., throughput

— This data doesn't tell us anything about how often how many
bit er)rors occur (i.e.,, where on the x-axis are we most of the
time

21

Repair size

* Measure how many repair bits (on average) a particular protocol
needs to fix one incorrect bit

* Trace-driven simulation

— Use Broadcom cards to send and receive packets with known
nayloads overthe air

— Record traces of the received frames and mark each received
oIt as correct or incorrect

— Software simulator runs the protocol to be evaluated, in
simulation, using trace data for received frames

Repair size: Maranello competitive at low
BER

Full retransmission s

Symbols (PPR) mummmm
Ideal Reed Solomon (ZipTx)

64 byte blocks (Maranello)

=
O
—
(®)
()
p -
S
@)
(&)
£
o
()
o
N
=
0O
=
©
o
(<)
S

.003 .007

error traces by average bit error rate

* AtJow BER: Maranello requires only marginally more repair bits than Reed-
SolomonZipTxapproach

* Parity bits fixa small number of errors efficiently (simulated “ideal” ZipTx that
knows the number of errors needing repair)

Repair size: Maranello outperforms ZipTx at high BER

67 Full retransmission s

,.!, Symbols (PPR) mmmm
3’ Ideal Reed Solomon (ZipTx)
64 byte blocks (Maranello)

P |

=
0
h—
(&)
o
P -
p -
)
&)
=
S
)
o
N
=
o)
=
©
o
()
| -

.003 .007 015 102 .106

error traces by average bit error rate

* Athigh BER: Maranello outperforms Reed-Solomon based approach

* Additional Reed-Solomon parity bits contain information about the
entire packet, inefficient if errors are localized to a single block(s)

Retransmission behavior varies across
hardware

Backoff and bit rate selection
impact Maranello’s performance

— 802.11 standard specifies
backoff (but chipsets do not
always respect the standard)

— Recall: Standard doesn’t

S eci bit rate selection r?transmission rate (Mbit/s)
pecify Windows Intel

(ms) backoff (ms)

retransmissions =

tx time

* Maranello helps Intel becauseit | retransmissions
increases delivery rate at high
bitrates, avoiding backoff

* Maranello helps Atheros x
because it reduces the chance of
falling back to 1 Mbit/s

Windows Atheros

Implementation: Alternatives

* |Implementation inthe OS kernel driver software

— Microbenchmark shows >70 s (2> 10 us SIFS time) delay
betw_eerlw3 Ireceipt of packet and triggered response, so
unsuitable

* CPU interrupt latency and NIC-RAM bus transfer delay

* Software-defined radio platforms (e.g. GNU radio)
— High-latency (ms) Ethernet or USB bus makes unsuitable

 Sora software defined radio [NSDI '08]
— Software-defined radio on PCl express bus

— Open question as to whether Sora would work for partial
packet recovery (ACKs cached in current version of Sora)

Implementation

* OpenFWWF open firmware for Broadcom 802.12 NIC
— Publically-downloadable firmware assembly code that runs on

Broadcom NIC microprocessor

* Broadcom 802.11 NIC system components:

1.

Tx/Rx FIFO queues; buffers frames to/from the physical layer
(transmission over the air)

Internal shared m%mory: State variables that can be
read/written from the kermnel driver

1]_'emplate RAM: "Scratch” memory for composing an arbitrary
rame and transmitting over the air

Interna) registers and exl%ernal conditions: Interface with the
physical layer and timers (for, e.g., backo

Implementation: NACK generation

Receiver computes block checksums in firmware

Problem: For some transmission rates, Maranello NACK airtime is
greaterthan 802.11 ACK

— May cause problemsif hidden terminals present. Why?
NACE
&) @*=®

Data contains network allocation vector (NAV) but with a duration
shorter than Maranello needs for NACK

Solution: No solution; just let the collisions happen. Claim that
preliminary experiments show improved overall throughput

Implementation: NACK generation

"%y

L Dt]

corrupt packet o n» DIFS & backoff retransmission

* Problem: 802.11 NIC microprocessor is not fast enough to
compute block checksums during SIFS interval (10 ps?

— Each block checksum takes up to 4 ps

— But running 802.11, the microprocessor is normally idle during
a frame reception

* Solution: Modify firmware to copy partially-received packets
into memory the microprocessor can access

— Overlap one block’s block checksum computation with
reception of the next block

29

Implementation: Sender-side

* Before thefirst transmission, sender pre-computes block
checksums in the OS kernel driver, on the main CPU

— Then sends block checksums to the firmware with the
packet's contents

— Why? Main CPU is more powerful, can spare the time, and
block checksum computation on the sender is not time-critical

(why?)

Performance evaluation

* 8o2.112channels 1, 6, 11 (spanthe 2.4 GHz unlicensed frequency band)
in environments with background traffic

— Advantage: Characterizes performance of Maranello in situ

* Evaluate in three different environments (research lab, home,
university), so can claim some generality

— Disadvantage: Lose repeatability of the experiment, so more
difficult for the experimenters to isolate experimental factors that
impact performance

* Enable Minstrel bit rate adaptation

— So compare Maranello and 802.11 at or close to the best bit rate for
a particular link

* Evaluate throughput, latency gains, and then drill-down for causes

31

Link throughput experiment

* By how much does Maranello increase link throughput?

* Methodology

— Use the Iperf network measurement tool in UDP mode to
saturate a wireless link in the testbed

— A one-minute run for 802.11, then immediately afterwards, a
one-minute run for Maranello

* <15 second gap implies wireless conditions unlikely to
have changed

— Repeat the experiment ten times with sender and receiverin
the same locations

— Change locations of sender and receiver, in the same testbed

Maranello increases link throughput

* University building results

— Best results (high channel 30 -
contention)
— Otherenvironments o5 | 2X 1.6X 1.3X 1X

qualitatively similar

— Each pointinthe scatter plot
representsan Iperfrun

7.0%17.9% . 36.2% 4.1%
20| o osas%

throughput of Maranello

30

* Slanted lines delineate constant- Rl
actorgains
10 |
* Results: g | i
— About one-third of the time
Iittle tono gain ok
0 5 10 15 20 25
— About one-third of thetime throughput of 802.11
almost2x gain

33

Transmission latency experiment

* Does Maranello decrease the time it takes to correctly deliver one
packet across a link?

Methodology

— Measure time from the firmware fetchinﬂ a packet from the head
of the Tx FIFO queue, to receipt of an AC

— Includes retransmissions (in the case of 802.11), repair transmissions
(in the case of Maranello), backoff, etc.

— Firm_wa|| re’s microsecond timestamp counter measures this time
precisely

— Desired: Measure time from fetching a packet from the head of
the Tx FIFO queue to packet’s correct reception

* Inmost cases, this would be a fixed time interval less than
proposed measurement (time to deliver the ACK to sender)

34

Maranello decreases transmission latency

1r

10
08ty 1t & 8
']
2
0.6 0
L 2
a 4
O 6
0.4 | 18
12

0.2 | 1

' retransmission rate (Mbit/s)
| Maranello s . . R
o 80211 — Linux ‘minstrel’ Broadcom

10 20 30 40 50 60 70 80 90 100 110
link layer latency (ms)

* Latency for packets that need one or more retransmissions
* One pairof sender, receiver locations
* 802.11modes at 16 and 32 ms represent Minstrel 1 Mbit/s fallback

* Alogscale onthe x-axis would show more detail at lower latencies
— Possibly showing the high-rate retransmissions

Source of Maranello’s improvements

* Measure delivery probability of 1

each transmission attempt 5
— Higherdelivery probability > higher & os :
throughput, lower latency S
* Note:thisgraph counts transmissions g .
(including first transmission) 2 o4l o
5 O
* Attempt #1: Roughly equal between 2 0o | ﬁ
802.11, Maranello (bothjust send the ¢ 802,11
original packet) . Maranello
° 1 2 3 4 5

transmission attempt

* Attempts #2, #3: Both 802.11 and Maranello maintain bit rate
— But, Maranello sends a shorter repair packet
— Shorter packet has a lesser chance of being lost

* Minstrelfallback to 2 Mbit/s on attempt #4 increases delivery probability
— Maranello still sending shorter repair packets

Frame aggregation and optimal block size

* 802.11frame aggregation

— As bit rates increase, relative overhead of DIFS, backoff,
headers, and ACK increases

— 802.11n, 802.11ac aggregate many frames together

* Each frame gets own checksum (like “block checksum”
approach)

— Aggregation increases latency

— Maranello is complementary with aggregation: can repair
corrupted aggregates

* Optimal Maranello block size

— Larger block size would be less efficient on wireless channel
but' more computationally efficient

— Candynamically vary the block size based on BER

37

Further reading

ZipTx: Harne_ssinlg Partial Packetsin 80%.11 Networks. Kate Ching-Ju Lin, Nate
Kushman, Dina Katabi. Proceedings of MobiCom 2008

— Apractical implementation and evaluation of the forward error correction
approach to the problem of partially-received packets

Beyond the Bits: Coo%erative Packet Recovery using Physical Layer
Information (SOFT).]gaceWoo, Pouya Kheradpour, Dawei Shen, Dina
Katabi. Proceedings of MobiCorm 2007.

Datalink Streaming in Wireless Sensor Networks (Seda% Ra%hu Ganti,
Eraveen Ja;éachan ran, Haiyun Luo, and Tarek Abdelzaher. Proceedings of
ensys 2006.

Fast Resilient Jumbo Frames in Wireless LANSs. lyer et al., Proceedings of
WQoS 2000.

Sora: High Performance Software R?dio usin)g General Purpose Multi-core
Processors. Tan et al., Proceedings of USENIXNSDI 2009.

