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Medium access: Timeline

Packet radio Wireless LAN Wired LAN

ALOHAnNet 19605
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Amateur packet radio Ethernet 19705



ALOHAnNet: Context

* Norm Abramson, late 1960s at the University of Hawaii
— Seven campuses on four islands

— Want to keep campus terminals in contact with mainframe

— Telephone costs high, so build (the first) packet radio network




Unslotted ALOHA
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Unslotted ALOHA: Performance

* Suppose some node /is transmitting; let's focus on i's frame

will overlap will overlap

. with start of | with end of |
i+— i’s frame —»i+—i’s frame —»

node i frame |

Vulnerabfe period

to-l to t0+1

* Vulnerable period of (normalized) length 2 around i's frame



Unslotted ALOHA: Utilization

* What fraction of the time is there a non-colliding packet on the
medium? This is called utilization

« Utilization: A x Pr(no other transmission in 2) = Ae >4
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Slotted ALOHA

Divide time into slots of duration 1, synchronize so that nodes
transmit only in a slot

— Each of N nodes transmits with probability p in each slot

— Soaggregate transmissionrate A=Nxp

As before, if there is exactly one transmission in a slot, can receive; if
two or more in a slot, no one can receive (collision)

Node 1 | -
Node 2 : :
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ALOHA throughput: slotted versus unslotted
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Forcing transmissions into slots =
2x peak medium utilization!



Medium access: Timeline
Packet radio Wireless LAN Wired LAN

ALOHAnNet \ 19605
Amateur packet radio Ethemet  1970s

—




How did the Ethernet get built?

* Bob Metcalfe, PhD student at Harvard in early 1970s
— Working on protocols for the ARPAnet

— Intern at Xerox Palo Alto Research Center (PARC), 1973

— Needed a way to network the =100 Alto workstations in-building
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The Ethernet: Physical design

Coaxial cable, propagation delay t
— Propagation speed: 3/5 x speed of light

 Experimental Ethernet 10° m
— Data rate: B=3 Mbits/s TS 110°
— Maximum length: 2000 m 3(3%10" mis
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Propagatian delay: T

11



Review: Ethernet MAC

» (S (Carrier Sense): listen for others’ transmissions before
transmitting; defer to others you hear

* CD (Collision Detection): as you transmit, listen and verify you
hear exactly what you send; if not, abort and try again later

N\

S1 S2

S1 S2

* IsCD possible on a wireless link? \Why or why not?
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Collisions

L L & @Z

Propagation dglay: T seconds

* Packet of N bits: N/B seconds on the wire

* Fromthe perspective of a receiver (B):
— Overlapping packets at B means signals sum
— Not time-synchronized: result is bit errors at B
— No fate-sharing among receivers: C receives okay in this
example
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Collision detection

. &

Propagation d\élay: T seconds

* Paperisn't clear on this point (authors did have a patentinthe
filing process)

* Mechanism: monitor average voltage on cable

— Manchester encoding means your transmission will have
a predictable average voltage V; others will increase V,

— Abort transmission immediately if V.. .oq> Vs
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When does a collision happen?
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Propagation dglay: T seconds

Suppose Station A begins transmitting at time o
* Assume that the packet lasts much longerthant

All stations sense transmission and defer by time t
— Don't begin any new transmissions

Attime T, will a packet be collision-free?
Only if no other transmissions began before time t
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How long does a collision take to detect?
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Propagation dglay: T seconds

* Suppose Station A begins transmitting at time o
 tseconds afterZ starts, A hears Z's transmission

* When does A know whether its packet collided or not? At
time 2T
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Slotted Ethernet backoff

* Backofftimeis slotted and random
— Station’s view of the where the first slot begins is at the end of the
busy medium

— Random choice of slots within a window, the contention window

(CW)

™ I~ Slottime

/ Busy Medium ////////' Transmit

Contention Window
(CW)

* Goal: Choose slot time so that different nodes picking different slots
carrier sense and defer, thus don't collide




Picking the length of a backoff slot

* Considerfrom the perspective of one packet
1. Transmissions beginning >t before will cause packet to defer
2. Transmissions beginning > T after will not happen (why not?)

* Transmissions beginning < time t apart will collide with packet

* So should we pick a backoff slot length of t?

|

oK Bgd OK
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The problem of clock skew
* No! Slots are timed off the tail-end of the last packet
— Therefore, stations’ clocks differ by at most t
— This is called clock skew A (-t <A< T)

* So choose backoff slot length 2 T =10 microseconds



Medium access: Timeline

Packet radio Wireless LAN Wired LAN
ALOHAnNet \ 1960S
Amateur packet radio — >, Ethernet 19705
] AppleTalk  1980s
MACA <« 19905

MACAW
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Multi-channel

* Suppose we have 100 MHz of spectrum to use for a wireless LAN

 Strawman: Subdivide into 5o channels of 2 MHz each: FDMA,
narrow-band transmission

— Radio hardware simple, channels don’t mutually interfere, but

— Multi-path fading (mutual cancellation of out-of-phase
reflections)

— Base station can allocate channels to users. How do you
support arbitrary communication patterns?
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Single, shared channel

* Spread transmission across whole 100 MHz of spectrum
— Remove constraint of one communication channel per user
— Robust to multi-path fading (some frequencies arrive intact)
— Supports peer-to-peer communication

* Collisions: A receiver must hear <1 strong transmission at a time
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Assumptions and goals

* Assumptions
— Uniform, circular radio propagation
— Fixed transmit power
— Equal interference and transmit ranges

* What are authors’ stated goals?
— Fairmess in sharing of medium
— Efficiency (total bandwidth achieved)
— Reliability of data transfer at MAC layer



Hidden Terminal Problem

A 3:8 C

* CS Multiple Access (CSMA): nodes listen to determine channel
idle before transmitting

* Nodes placed a little less than one radio range apart
— Ccan'thearA, so will send while A sends; result: collision at B

* (CSinsufficient to detect all transmissions on wireless networks!

* Key insight: Spatially, collisions are located at receiver
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Collisions
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Space
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Exposed Terminal Problem

/

A<—2B C—
\

* BsendstoA; Csendstoanode otherthanB

o [fCtransmits, does it cause a collision at A?

— Yet C cannot transmit while B transmits to Al

* Same insight: collisions are spatially located at receiver

* One possibility: directional antennas rather than omnidirectional
Why does this help? Why is it hard?

* Simpler solution: use receiver’s medium state to determine
transmitter behavior
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Key Points

* No concept of a "global collision:”
— Different receivers hear different signals
— Different senders reach different receivers

 (Collisions are at the receiver, not sender
— Only care if receiver can hear the sender clearly
* It does not matter if sender can hear someone else
— As long as that signal does not interfere with receiver

* Goal of protocol:
— Detect if receiver can hear sender
— Tell senders who might interfere with receiver to shut up



Carrier Sense Multiple Access with
Collision Avoidance (CSMA/CA)

* One of thefirst uses was the AppleTalk wired LAN

* Since can't detect collisions, we try to avoid them:

* Before every data transmission

—Sender sends a Request to Send (RTS) frame containing the
length of the transmission

—Receiver respond with a Clear to Send (CTS) frame

* Overhear RTS or CTS packet directed elsewhere?
— Defer until the end of the data transmission
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Multiple Access with
Collision Avoidance (MACA)
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* Before every data transmission
— Sender sends RTS containing length of transmission
— Receiver responds with CTS
— Sender sends data
— Receiver sends an ACK: now another sender can send data
* When sender doesn't geta CTS back, it assumes collision
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MACA’s collision avoidance
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* When you hear RTS, but not CTS, send (after the CTS finishes)
—Presumably, sender’s intended destination out of your range
* Can cause problemswhenaCTSis lost

* Whenyou heara CTS, you keep quiet until scheduled
transmission is over (hear ACK)
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RTS /CTS Protocols (MACA)

B sends to C

Overcomes hidden terminal problems with contention-free
protocol

1. BsendstoCRequestToSend (RTS)

2. AhearsRTS and defers (to allow C to answer)
3. Crepliesto B with ClearTo Send (CTS)

4. DhearsCTS and defers to allow the data

5. BsendstoC



RTS/CTS in MACA and MACAW

* RTS/CTS solves hidden terminal problem!

* What happensif CTSs get lost? RTSs collide themselves?

* NoCTSreply
* The sender must persist:
— But at times of high load, “back off”

* Ideafrom Ethemet: Sender backs off exponentially (BEB)
before retrying
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BEB in MACA

* Maintain a current backoff window of duration B
— Maximum size B, ; minimum ize B,

MACA sender:
— B, =2and B,,=64
— Upon successful RTS/CTS, B < B,
— Upon failed RTS/CTS, B €< min[2B,B,]

Before retransmission, wait a uniform random number of RTS lengths
(30 bytes)in [0,B]

* No carrier sense! (Karn concluded useless because of hidden terminals)
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BEB leads to unfairness

* BEB canleadto unfairness

* Simple example: two senders sending to the same receiver, each
sending at a rate that can alone saturate the network

— After a collision the one with smaller B is more likely to win
* Thusresettingits B < B,
—Thus more likely to win next time

— One with smaller B has decreasing chance to acquire medium

* Result: One sends at channel capacity, other zero throughput



BEB in MACAW: “Copy” mechanism

* MACAW proposal: senders write their Binto packets; upon
hearing a packet, “copy” its B

— Result: dissemination of congestion level of “winning”
transmitter to its competitors

* Isthisagoodidea?
* RTS failure rate at one node propagates far and wide
* Ambient noise? Regions with different loads?
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Reliability: ACK

* MACA relies on transport layer for reliability
— Significant wait for recovery of lost DATA packets

* MACAW introduces an ACK after DATA packets

— Sender retransmits if RTS/CTS succeeds but no ACK returns;
doesn’t back off

— Avoids TCP window reductions when interference present

— Are ACKSs useful for broadcast packets?
* Consequencesfor, e.g., ARP?
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802.11 backoff with physical carrier sense

* Backofftime is slotted and random
— Station’s view of the where the first slot begins is at the end of
the busy medium

— Random choice of slots within a window, the contention
window (CW)

™ I Slottime

/ Busy Medium //////// Transmit

Contention Window
(CW)

* Goal: Choose slot time so that different nodes picking different
slots carrier sense and defer, thus don’t collide




Picking the length of a backoff slot

* Consider from the perspective of one packet
1. Transmissions beginning >t before will cause packet to defer
2. Transmissions beginning > T after will not happen (why not?)
* Transmissions beginning < time t apart will collide with packet

* So should we pick a backoff slot length of t?

38



MACAW and 802.11 Differences

* 802.11 Uuses physical CS before transmissions and defers a
uniform random number of slots, in [0, B]

— Sets timer to count down random period

* Timer pauses when carrier sensed, continues when
channelidle

— Packet transmitted when timer reaches zero

* 802.11 combines physical CS with virtual CS from RTS/CTS
packets in the Network Allocation Vector (NAV)

e 802.11Uses BEB when an ACK doesn't return



Two regimes: Concurrency v. taking turns

* Far-apart links should send concurrently: -
Y

29
~ PR, Sz

ST

* Near links should time-multiplex:

‘@R .

Carrier sense atterpts todistinguish these cases

Uses energy threshold to determine if medium occupied

What about cases in between these extremes?

[Figures: Micah Brodsky]
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When does carrier sense work well?

* Agreement:

— Iftwo senders and two receivers, and both receivers achieve
highest throughput when both use concurrency or both use
multiplexing, the links agree

* Far-apart links agree on concurrency
* Nearlinks agree on time-multiplexing

* Inbetween, risk links don't agree; CS may not work well
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Simulation study of carrier sense
[Brodsky and Morris, SIGCOMM ‘og]

Place sender S and interferer | at fixed locations

Place receiver from S uniformly at random within some radius
of S

Compare throughputs at receiver over all locations

Vary distance between sender and interferer
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Individual receivers

Stol distance D =55

B Prefers concurrency
[ Prefers multiplexing

[] Starved w/o multiplexing
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Receiver location only matters in the
“transitional” case

Receiver preference vs. position:

Excellent agreement
on multiplexing

Excellent agreement
on concurrency

D=120

M Prefers concurrency
[0 Prefers multiplexing
[ Starved w/o multiplexing
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802.11: A Dose of Reality

* The canonical wireless link in the research community. Why?
— Hardware commoditized, cheap
— First robust wireless network with LAN-like bitrate

* |npractice noone uses RTS/CTS!
— Take-away from prior slides: CS works pretty well
— Have | been wasting your time?

* Why? Are MACAW and the hidden terminal problem irrelevant?



802.11, Base Stations, and Hidden
Terminals

* Tofirst order, everyone uses base stations, not peer-to-peer
802.11 networks

— When base station transmits, there can be no hidden
terminals within one LAN. Why?

* (Clients can be hidden from one another. But what's the usual
packet output stream of a wireless client (e.g., laptop)? Packet
sizes? TCP ACKSs; short packets.

* What'sthe cost of RTS/CTS? How big are RTS and CTS packets?
Greatest cost when RTS/CTS same size as data



Topic for next time:
Bit rate adaptation
Mesh networking

Your task:
Read papers, file HotCRP reviews
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