PHY IV: Rateless Codes, MIMO

COS 598a: Wireless Networking and Sensing Systems

Kyle Jamieson

Today

- 1. Spinal Codes
- 2. Introduction to MIMO
- 3. SoftRate

Fixed-rate codes require channel adaptation

Existing rate adaptation algorithms

- SampleRate, Bicket, 2005.
- ARF, ONOE

Rateless codes

- Idea: Sender transmits information at a rate higher than the channel can sustain
 - At first glance, this sounds disastrous!

- Receiver extracts information at the rate the channel can sustain at that instant
 - No adaptation loop is needed!

Spinal Codes: Outline

Perry, Ianucci, Fleming, Balakrishnan, Shah. Spinal Codes, SIGCOMM 2012.

- 1. Encoding Spinal Codes
- 2. Decoding Spinal codes
- 3. Implementation and evaluation

Spinal encoder: Computing the spines

- Start with a hash function *h* and an initial random *v*-bit *state s*_o
 - Sender and receiver agree on h and s_o a priori
- Sender divides its *n*-bit *message M* into *k*-bit *chunks m*_{*i*}
- *h* maps the state and a message chunk into a new state
 The *v*-bit states s₁, ..., s_{ln/k} are the spines

Spinal encoder: Information flow

- Observe: State s_i contains information about chunks m₁, ..., m_i
 A stage's state depends on the message bits **up to** that stage
- So only state *s*_{*l*_{*n/kl*} has information about entire message}

Spinal encoder: Computing the spines

- Each spine seeds a random number generator *RNG*
- RNG generates a sequence of *c*-bit numbers
- Encoder output is a series of *passes* of [n/k] symbols $x_{i,l}$ each

Spinal encoder: RNG to symbols

- A constellation mapping function translates *c*-bit numbers x_{i,l} from the RNG to in-phase (I) and quadrature (Q)
 - Generates in-phase (I) and quadrature (Q) components independently from two separate x_i

Digression: What's the best constellation shape?

- a) Start with a square constellation
 - Recall, distance of each symbol from origin determines power
 - So, a circle traces constant power points
- b) Maintaining inter-point spacing, move points inside circle
 - This is **shaping gain:** we maintain error probability, hence throughput, but reduce the average signal power
 - Now can add more points, **increasing throughput (c)** to restore average power to as it was before.

Spinal Codes: Outline

Perry, Ianucci, Fleming, Balakrishnan, Shah. Spinal Codes, SIGCOMM 2012.

- 1. Encoding Spinal Codes
- 2. Decoding Spinal codes
 - "Maximum-likelihood" decoding
 - The Bubble Decoder
 - Puncturing for higher rate
- 3. Implementation and evaluation

Decode by replaying the encoder

Decode by measuring distance

- How to decide between the four possible messages?
- Measure total distance between:
 - Received symbols, corrupted by noise (×), and
 - Replayed symbols (o)
- Sum across stages: the distance increases at first incorrect symbol

Adding additional passes

• **Recall:** The encoder sends **multiple passes** over the same message blocks

Adding additional passes

- What's a reasonable strategy for decoding now?
- Take the average distance from the replayed symbol (o), across all received symbols (×, ×)
 - Intuition: As number of passes increases, noise and bursts of interference average out and impact the metric less

The Maximum Likelihood (ML) decoder

- Consider all 2ⁿ possible messages that could have been sent
 The ML decoder minimizes probability of error
- Pick the message *M*' that minimizes the vector distance between:
 - The vector of all received constellation points **y**
 - The vector of constellation points sent if M' were the message, $\mathbf{x}(M')$

$$\hat{M} = \arg\min_{M' \in \{0,1\}^n} \left\| \mathbf{y} - \mathbf{x}(M') \right\|^2$$

- In further detail:
 - 1. $x_{t,l}(M')$: tth constellation point sent in the lth pass for M'
 - 2. $y_{t,l}$: t^{th} constellation point received in the l^{th} pass

$$\hat{M} = \arg\min_{M' \in \{0,1\}^n} \sum_{\text{all } t,l} |y_{t,l} - x_{t,l} (M')|^2$$

ML decoding over a tree

• Observe: Hypotheses whose initial stages share the same symbol guesses are **identical** in those stages

ML decoding over a tree

• Observe: Hypotheses whose initial stages share the same symbol guesses are **identical** in those stages

• Therefore we can **merge** these initial identical stages:

ML decoding over a tree

ML decoding over a tree: Multiple passes

Efficiently exploring the tree

- Observation: Suppose the ML message M* and some other message M' differ only in the ith bit
 - Only symbols including and after index |i|k| will disagree
 - So the **earlier** the error in *M*', the **larger** the cost
 - Can show that the "runners-up" to M* differ only in the last O(log n) bits
- Consider the **best 100 leaves** in the ML tree:
 - Tracing back through the tree, they will have a common ancestor with M* in O(log n) steps
 - This suggests a strategy in which we only keep a limited number of ancestors

Bubble decoder

- Maintain a *beam* of *B* tree node ancestors to explore, each to a certain depth *d*
- Expand each ancestor, score every child, propagate best child score for each ancestor, pick *B* best survivors
- Example: B = d = 2, k = 1 (lighter color = better score)

Decoding complexity

- The bubble decoder operates in *n/k d* **steps**
 - Each step explores *B*·2^{*kd*} nodes, evaluating the RNG *L* times
 - Selecting the best *B* candidates takes $B \cdot 2^k$ comparisons
- Overall cost: O((n/k)BL·2^{kd}) hashes, O((n/k)B·2^k) comparisons
- Comparison with LDPC **belief propagation** algorithms
 - These operate in iterations, too, involve all message bits
 - But, these are also quite parallelizable
 - Hard to give exact head-to-head comparison

Adjusting the rate

- Spinal codes as described so far uses different numbers of passes to adjust the rate
- Two problems in Spinal codes as described so far:
 - 1. Must transmit one full pass, so max out at k bits/symbol
 - Increase k? No: Decoding cost is **exponential** in k
 - 1. Sending *L* passes reduces rate to *k*/*L*—**abrupt drop**
 - Introduces plateaus in the rate versus SNR curve

Puncturing for higher and finer-controlled rates

- Idea: Systematically skip some spines
 - Sender and receiver agree on the pattern beforehand
 - Receiver can now attempt a decode before a pass concludes
- Decoder algorithm unchanged, missing symbols get zero score
- Max rate of this puncturing: 8-*k* bits/symbol

Framing at the link layer

- Sender and receiver need to maintain synchronization
 - Sender uses a short sequence number protected by a highly redundant code
- Unusual property of Spinal codes: Shorter message length n is more efficient
 - This is in opposition to the trend most codes follow
 - Divide the link-layer frame into shorter checksum-protected code blocks
- If half-duplex radio, when should sender wait for feedback?
 For more information, see *RateMore* (MobiCom '12)

Spinal Codes: Outline

Perry, Ianucci, Fleming, Balakrishnan, Shah. Spinal Codes, SIGCOMM 2012.

- 1. Encoding Spinal Codes
- 2. Decoding Spinal codes
 - "Maximum-likelihood" decoding
 - The Bubble Decoder
 - Puncturing for higher rate
- 3. Performance evaluation

Methodology

- Software simulation: Simulated wireless channel (additive white Gaussian noise and Rayleigh fading)
- Hardware platform: Airblue (Xilinx Virtex-5 FPGA, USRP2 radio)
 Real 10, 20 MHz bandwidth channels in 2.4 GHz ISM band
- Gap to capacity: How much more noise could a capacity-achieving code tolerate at same rate?
 - Smaller gap is better
 - *e.g.*: This code achieves six bits/symbol at 20 dB SNR;
 for a 2 dB gap to capacity

Performance evaluation: Questions

- 1. How well do Spinal codes perform versus other codes:
 - Rateless codes such as Raptor and Strider?
 - Rated codes such as LDPC?
- How should one choose various parameters:
 Bits per chunk k, beam width B, output bits c?

Spinal codes: Higher rate on AWGN channel

- Simulated AWGN channel: no link-layer performance effects here
- LDPC envelope: Choose best-performing rated LDPC code at each SNR to mimic the best a rate adaptation strategy could do
- **Strider+:** Strider + puncturing: finer rate control, but significant gap to capacity

Rateless codes can "hedge their bets"

Spinal codes tolerate unknown channels well

- Rayleigh fading channel changing every τ symbols (multipath fading) with average SINR as shown on x-axis
- Measure codes' performance without knowing τ
 - Shorter coherence time is harder on the code
 - Conclude that Spinal can adapt to unknown channel conditions better than Strider+

Choosing chunk length

- Each decoder can choose *B* without restriction; how to choose
 - Consider *decoder compute budget:* B·2^k operations per k bi

Shannon bound

gap to capacity (dB)

-2

-3

- Conclude that k = 4 is a good choice (maximizes rate)
- Also claim that B = 256 is a reasonable choice

Choosing number of output bits c

- Can send at most 2. c output bits per symbol, so caps maximum rate
- Choose *c* so that the rate cap isn't a problem at operational SNRs
- c = 6 is a reasonable choice

Spinal codes: Better at sending short messages

- Longer code block means more opportunities to prune correct path

 So Spinal codes achieves better performance (smaller gap to capacity) with smaller code block length n
- We can see artifacts due to puncturing at higher SNRs

Spinal Codes: Conclusion

- Spinal Codes give performance close to Shannon capacity
- Eliminate the need to run a bit rate adaptation algorithm
- Simpler design and better performance

Today

- 1. Spinal Codes
- 2. Introduction to MIMO
- 3. SoftRate

Single-input, single-output (SISO)

Single-input, single-output (SISO)

Interfering transmissions in SISO

Multiple-input, multiple-output: MIMO

• Now, the AP hears **two** received signals, one on each antenna:

Leveraging MIMO to detect two users

Zero-forcing overcomes interference

- MIMO *zero-forcing* (Paulraj *et al.*, Foschini *et al.*):
- **1.** Rotate one antenna's signal (o)
- 2. Sum the two antennas' signals together (o+a)

Zero-forcing **cancels** B, **revealing** A Can re-run to cancel A, revealing B

Does zero-forcing work all the time?

